Abstract
先天性肌无力综合征(CMS)是由于基因缺陷导致神经肌肉传导受损所引起的一组临床和遗传异质性疾病。目前,已报道可导致CMS的致病基因达30余个。所有CMS亚型都具有易疲劳和肌无力的临床特征,但发病年龄、症状和治疗反应因潜在遗传缺陷的分子机制而异。现CMS患者的治疗常采用药物治疗和对症支持治疗等方法,在动物中,反义寡核苷酸技术已被证明对CHRNA1相关的CMS是有益的。CMS作为一组日益被认可的临床和遗传异质性疾病,揭示其临床特点、基因研究和治疗等方面的最新知识和最新进展,不仅有助于对该病进行早期诊断与治疗,还将有助于对CMS发病机制的进一步深入了解,从而有望在CMS的治疗上取得新的突破。
Keywords: 先天性肌无力综合征, 临床特征, 基因功能, 治疗
Abstract
Congenital myasthenic syndrome (CMS) is a group of clinical and genetic heterogeneous diseases caused by impaired neuromuscular transmission due to genetic defects. At present, it has been reported that more than 30 genes can cause CMS. All CMS subtypes have the clinical features of fatigue and muscle weakness, but age of onset, symptoms, and treatment response vary with the molecular mechanisms underlying genetic defects. Pharmacotherapy and symptomatic/supportive treatment are the main methods for the treatment of CMS, and antisense oligonucleotide technology has been proven to be beneficial for CHRNA 1-related CMS in animals. Since CMS is a group of increasingly recognized clinical and genetic heterogeneous diseases, an understanding of the latest knowledge and research advances in its clinical features, genetic research, and treatment helps to give early diagnosis and treatment as well as gain a deeper understanding of the pathogenesis of CMS, so as to make new breakthroughs in the treatment of CMS.
Keywords: Congenital myasthenic syndrome, Clinical feature, Gene function, Treatment
先天性肌无力综合征(congenital myasthenic syndromes, CMS)是一大组由于基因缺陷影响神经肌肉接头形成、维持与功能的罕见遗传性疾病。因发病率低,临床表现异质性大,临床很容易被漏诊和误诊。但总体而言,CMS是一组早期诊断和针对性治疗可以明显改善预后的遗传性疾病,系统学习、了解该病的临床特点,对于这类患者能得到及时有效的治疗相当重要。
神经肌肉接头依赖突触前膜、突触间隙和突触后膜的众多蛋白相互协调来共同完成信号传递,所以相关编码基因出现的影响功能的致病突变,都可能导致CMS[1]。目前,已报道30余个可导致CMS的致病基因中,最常见的是CHRNE、RAPSN、COLQ、DOK7、CHAT和GFPT1。CMS可分为常染色体显性遗传(autosomal dominant, AD)和常染色体隐性遗传(autosomal recessive, AR)两种遗传方式[2]。
1. 分类
CMS根据损害部位分类,可分为突触前膜缺陷、突触间隙缺陷、突触后膜缺陷和糖基化缺陷;又因其相关的32个编码基因可分为32个CMS亚型[2-5],如表 1所示。
1.
CMS的病因分类
项目 | 机制和基因 |
注:[AChR]乙酰胆碱受体。 | |
突触前膜 | 轴突运输障碍(SLC5A7);乙酰胆碱合成和再循环障碍(CHAT、SLC18A3);突触囊泡胞吐作用功能障碍(SNAP25、VAMP1、SYB1、SYT2、MUNC13-1) |
突触间隙 | 乙酰胆碱酯酶缺乏症(COLQ)、突触基底膜缺损(LAMB2、LAMA5、COL13A1) |
突触后膜 | 原发性AChR缺乏症(CHRNA1、CHRNB1、CHRND、CHRNE、CHRNG);AChR动力学异常(快通道综合征、慢通道综合征);AChR聚集信号通路中的缺陷(AGRN、LRP4、DOK7、MUSK、RAPSN、PREPL、MYO9A、SCN4A、PLEC1、SLC25A1) |
糖基化缺陷 | GFPT1、GMPPB、ALG2、ALG14、DPAGT1 |
2. CMS致病基因
2.1. 突触前膜
突触前膜缺陷中以CHAT基因突变引起的最多见,占CMS病例的4%~5%[2]。CHAT基因编码的胆碱乙酰基转移酶是一种在神经元胞体内合成的酶,随轴浆顺向转运到神经末梢,其功能是催化乙酰辅酶A和胆碱合成乙酰胆碱[2-3]。SLC18A3蛋白能将新合成的乙酰胆碱从神经元胞浆转入突触囊泡,SLC5A7蛋白参与轴突运输。SNAP25编码的可溶性N-乙基-马来酰亚胺敏感融合(NSF)附着蛋白,VAMP1/SYB1编码的囊泡相关膜蛋白-1,SYT2编码的突触素-2和MUNC13-1蛋白在突触小泡的贴靠、膜融合及胞吐作用中起重要作用[6-14]。
2.2. 突触间隙
突触间隙缺陷中以COLQ基因突变引起的最多见,占10%~15%[2]。COLQ基因编码乙酰胆碱酯酶的胶原尾亚基,能将乙酰胆碱酯酶锚定在基底板。所以COLQ基因突变胆碱酯酶将无法锚定在突触间隙,乙酰胆碱无法被正常水解,造成突触后膜乙酰胆碱受体的过度激活,影响正常信号传递,导致CMS[1-2, 4, 15]。LAMB 2、LAMA 5和COL13A1基因分别编码层黏连蛋白β2、层黏连蛋白α5和XⅢ型胶原蛋白α1,突变可导致突触基底膜缺损[2-3, 16-18]。
2.3. 突触后膜
CMS亚型中以突触后蛋白编码基因最常见,据报道已有15种,其中以CHRNE最常见,RAPSN和DOK7次之,分别占30%~50%、15%、10%。突触后CMS可分为三类:原发性乙酰胆碱受体(acetylcholine receptor, AChR)缺乏症、AChR动力学异常、AChR聚集信号通路中的缺陷[2]。
CHRNA1、CHRNB1、CHRND、CHRNE和CHRNG分别编码烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor, nAChR)的α亚基、β亚基、δ亚基、ε亚基和γ亚基,这5个亚基组成五聚体离子通道。这5个基因突变可导致AChR离子通道的表达丧失,减少突触后膜中乙酰胆碱受体的数量从而导致原发性AChR缺乏症。也可以使离子通道功能发生变化,导致通道开放时间延长(慢通道综合征)或通道开放时间缩短(快通道综合征),即AChR动力学异常[19-21]。
AChR聚集信号通路:神经末梢释放集聚蛋白(Agrin)—Agrin与LRP4蛋白结合—骨骼肌受体酪氨酸激酶(MuSK)激活并与LRP4蛋白形成Agrin的共同受体—蛋白质DOK7二聚化完全激活MuSK—AChR β亚基磷酸化—与细胞质锚定蛋白Rapsyn结合—AChR聚集并锚定在突触后膜上—AChR簇最终稳定。AGRN基因编码集聚蛋白(Agrin),LRP4基因编码作为Agrin的受体的LRP4蛋白,MUSK基因编码MuSK,DOK7基因编码的Dok7蛋白充当MuSK的激活剂和MuSK下游信号传导的衔接蛋白,RAPSN基因编码细胞质锚定蛋白Rapsyn[2, 6, 22-23]。
MYO9A基因编码的蛋白已知在轴突运输中起重要作用[24]。PREPL基因编码的PREPL蛋白是网格蛋白相关的衔接蛋白-1(AP-1)的必需活化剂,参与囊泡乙酰胆碱的运输和填充[25]。SCN4A基因编码突触后钠通道,负责膜动作电位的生成[26]。SLC25A1编码跨内线粒体膜的线粒体柠檬酸盐载体,是脂肪酸和固醇生物合成,染色体完整性和自噬调节的关键参与者[27]。
2.4. 糖基化缺陷
糖基化对神经肌肉接头的正常运作是必不可少的,它发生在内质网中[2]。由于AChR糖基化缺陷,导致终板区域AChR的缺失,进而引起突触后膜乙酰胆碱的反性下降,临床上表现为CMS[28]。已知有5个参与AChR糖基化的基因,以GFPT1最多见,占2%。GFPT1基因编码谷氨酰胺果糖-6-磷酸转氨酶1,它是控制氨基己糖生物合成途径的关键限速酶[2, 29]。GMPPB基因编码催化酶GMPPB,将甘露糖-1-磷酸和GTP转化为GDP-甘露糖,GDP-甘露糖作为糖供体[30]。ALG2、ALG14和DPAGT1编码的酶催化天冬酰胺连接糖基化的早期步骤[31]。
3. 临床特点
CMS具有一些共同的临床表现:(1)CMS起病早,常在出生后或婴幼儿期发病,缓慢进展。(2)临床主要表现为眼部、躯干、肢体肌肉力弱。常有喂养困难、哭声低、眼睑下垂、吞咽呛咳和运动发育迟滞等症状。(3)不耐受疲劳,症状可能在发热、感染等诱因下突然加重。(4)心肌和平滑肌通常不受累[1-2, 15]。因为遗传机制的不同,各CMS亚型可具有相对特异的临床表现(表 2)[1-3, 7-42]。
2.
不同基因所致CMS临床特点和治疗选择
基因 | 定位 | 遗传方式 | 临床表现 | 药物治疗 |
注:[AD]常染色体显性遗传;[AR]常染色体隐性遗传;[AChEI]乙酰胆碱酯酶抑制剂;[3, 4-DAP] 3, 4-二氨基吡啶。-示未见报道。 | ||||
SLC5A7 | 2q12.3 | AD | 肌无力,肌张力低下,伴间歇性呼吸暂停,可有神经发育迟缓、脑萎缩 | AChEI或沙丁胺醇 |
CHAT | 10q11.23 | AR | 肢体肌肉无力,上睑下垂,易疲劳,发作性呼吸暂停 | AChEI |
SLC18A3 | 10q11.23 | AR | 肌无力,上睑下垂,眼球麻痹,呼吸暂停危象,易疲劳,可有先天性副肌强直症样表现(冷水症状加重) | AChEI |
SNAP25 | 20p12.2 | AD | 肌无力,关节挛缩,大脑皮质过度兴奋,小脑共济失调和严重智力障碍 | 3, 4-DAP |
VAMP1 | 12p13.21 | AR | 肌无力,肌张力低下,喂养困难,运动发育迟缓,眼球麻痹,可有关节挛缩和呼吸功能不全 | AChEI |
SYB1 | 12p | - | 肌无力,肌张力低下,喂养困难,眼球麻痹,感染可出现呼吸衰竭 | AChEI |
SYT2 | 1q32.1 | AD | 下肢肌肉明显无力,膝反射减弱,上睑下垂,脚畸形,关节松弛,运动神经元病 | 3, 4-DAP |
MUNC13-1 | 19 | AR | 肌无力,肌张力低下,进食困难,呼吸功能不全,小头畸形,面部畸形,脊柱侧弯 | 溴吡斯的明和3, 4-DAP部分有效 |
COLQ | 3p24.2 | AR | 近端为主肌无力,眼睑下垂,眼球活动障碍,肢带型肌无力表现 | 沙丁胺醇或麻黄碱 |
LAMB2 | 3p21.31 | AR | 肌无力,运动里程碑延迟,Pierson综合佂(表现为先天性肾病综合征和眼部畸形) | 麻黄碱 |
LAMA5 | 20q13.33 | - | 肌无力,近视,面部抽搐 | AChEI或3, 4-DAP |
COL13A1 | 10q22.1 | AR | 肢体无力,进食困难,上睑下垂,呼吸功能不全,关节松弛 | 沙丁胺醇或3, 4-DAP |
CHRNA1 | 2q31.1 | AD/AR | 呼吸困难,吞咽困难,上睑下垂,眼球麻痹,肌肉萎缩,发育迟缓 | AChEI |
CHRNB1 | 17p13.1 | AD/AR | 近端为主肌无力,上睑下垂,眼球麻痹,吞咽困难,翼状肩,脊柱侧凸 | 氟西汀 |
CHRND | 2q37.1 | AD/AR | 肌无力,喂养困难,感染引起的反复发作的呼吸功能不全 | AChEI或3, 4-DAP |
CHRNE | 17p13.2 | AD/AR | 近端为主肌无力,易疲劳 | AChEI或沙丁胺醇单独使用,或氟西汀与沙丁胺醇联合使用 |
CHRNG | 2q37.1 | AR | 可出现胎动减少,呼吸窘迫,关节挛缩,身材矮小,脊柱侧弯,多发畸形:高腭弓、腭裂、蛛网膜畸形或隐睾,可伴非致死性多发性翼状胬肉综合征 | - |
DOK7 | 4p16.3 | AR | 近端为主肌无力,肢带型肌无力表现 | 麻黄碱或沙丁胺醇 |
MUSK | 9q31.3 | AR | 近端肢体肌无力及延髓、面部和眼部肌无力,呼吸功能不全,上睑下垂,肢带型肌无力表现 | 沙丁胺醇 |
MYO9A | 15q23 | AR | 肢体肌肉无力,吞咽困难,阵发性呼吸暂停,呼吸衰竭和上睑下垂 | AChEI单用或AChEI和3, 4-DAP联合应用 |
AGRN | 1p36.33 | AR | 婴儿型的特点是下肢无力和消瘦,迟发型的特点是上睑下垂、眼球麻痹及轻度的面部、延髓肌无力 | 麻黄碱或沙丁胺醇 |
LRP4 | 11p11.2 | AR | 呼吸无力,近端肌和眼外肌受累 | 沙丁胺醇 |
PREPL | 2p21 | AR | 近端肢体肌无力,肌张力低下,进食困难,上睑下垂 | AChEI |
SCN4A | 17q23.3 | AR | 婴儿期表现为全身性肌张力减退、吸吮功能受损、吞咽困难、运动发育迟缓,后可出现发作性、波动性肌无力,老年患者中可能仅出现易疲劳 | AChEI部分有效 |
RAPSN | 11p13-q1 | AR | 上睑下垂,偶有延髓症状,颈部肌肉和轻度近端肢体肌无力,感染可加剧临床症状恶化 | AChEI单用通常有效,加用3, 4-DAP可以明显改善 |
PLEC1 | 8q24.3 | AR | 肌无力,大疱性表皮松解症与肌营养不良样表现 | AChEI |
SLC25A1 | 22q11.21 | AR | 易疲劳,可出现肌张力低下、呼吸暂停、视神经萎缩、癫痫、智力障碍、延髓功能障碍、羟基戊二酸尿症 | 3, 4-DAP |
GFPT1 | 2p13.3 | AR | 以波动性肌无力、肢带型肌无力为主要表现,可出现线粒体疾病特征 | AChEI |
GMPPB | 3p21.31 | AR | 四肢近端肌无力,且具有日间波动性,晨轻暮重 | AChEI单独或与3, 4-DAP和/或沙丁胺醇联合使用 |
ALG2 | 9q22.33 | AR | 婴儿期起始的近端肌无力,肌张力减退,运动里程碑延迟和关节挛缩 | AChEI |
ALG14 | 1p21.3 | AR | 肌无力,严重的肌张力低下,进行性脑萎缩,难治性癫痫和关节挛缩 | AChEI能带来暂时的改善 |
DPAGT1 | 11q23.3 | AR | 肢带型肌无力表现,可有智力障碍和自闭症 | AChEI或3, 4-DAP |
4. 诊断
诊断CMS依赖于详细病史和体格检查,全面血液检测、电生理检查、肌肉病理及基因检测等检查。如果有以下症状,一般应怀疑CMS:(1)临床表现:肌无力和易疲劳。(2)家族病史阳性。(3)重症肌无力抗体检测为阴性。(4)重复神经电刺激示低频刺激波幅递减,神经传导测定可见重复的复合肌肉动作电位(RCMP)波,或单纤维肌电图出现颤抖值增宽或传导阻滞。(5)乙酰胆碱酯酶抑制剂(acetylcholine-esterase inhibitors, AChEI)治疗有效;新斯的明试验阳性。(6)经免疫抑制疗法无改善。(7)肌酸激酶、肌电图、肌肉活检等不支持其他神经肌肉接头疾病。(8)基因测序检测到致病基因突变[1-6, 15]。
5. 治疗
药物治疗:现在用于CMS的药物主要有4类,包括AChEI(溴吡斯的明、新斯的明)、钾通道阻滞剂(3, 4-二氨基吡啶)、β2-肾上腺素能受体激动剂(麻黄碱、沙丁胺醇)和AChR的通道阻滞剂(氟西汀、奎尼丁)[3]。大多数CMS(约2/3)对AChEI、3, 4-二氨基吡啶有较好的反应,而AChEI无效的CMS(COLQ/DOK7,占1/5~1/4左右)大多可选择沙丁胺醇、麻黄碱治疗;慢通道综合征通常用奎尼丁和氟西汀治疗;而COLQ、LAMB2、DOK7、MUSK和LRP4基因相关CMS和慢通道综合征用溴吡斯的明病情会加重[2-5]。各CMS亚型的治疗见表 2。
其他治疗:对症支持治疗:包括理疗、言语治疗;矫形器、步行器或轮椅;呼吸支持等[2, 31-32]。动物中,反义寡核苷酸技术(antisense oligonucleo-tides, AONs)已被证明对CHRNA1相关的CMS是有益的[20]。
6. 总结和展望
因CMS发病率低,临床表现异质性大,可以很容易地与其他神经肌肉疾病(尤其是肢带型肌营养不良和线粒体疾病)混合在一起,很容易被误诊和漏诊。如果临床出现波动性肌无力症状、家族史阳性、起病年龄早且治疗效果不好反复复发的重症肌无力患者,均需考虑CMS可能,可尝试早期遗传学检测,并尝试性使用AChEI或β2-肾上腺素能受体激动剂治疗。CMS的诊断和治疗尚未标准化,但通过早期诊断和早期针对性用药,许多患者可以得到明显改善。而且近年来,已经提出了许多有前途的建议来治疗某些CMS亚型,比如在动物中,AONs已被证明对CHRNA1相关的CMS是有益的。
Biography
肖婷, 女, 硕士研究生
References
- 1.戴 毅, 丁 青云, 何 腾龙, et al. 终板胆碱酯酶缺失型先天性肌无力综合征一家系的临床、电生理、肌肉病理和基因研究. 中华神经科杂志. 2016;49(8):604–609. doi: 10.3760/cma.j.issn.1006-7876.2016.08.005. [DOI] [Google Scholar]
- 2.Finsterer J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019;14(1):57. doi: 10.1186/s13023-019-1025-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Vanhaesebrouck AE, Beeson D. The congenital myasthenic syndromes:expanding genetic and phenotypic spectrums and refining treatment strategies. Curr Opin Neurol. 2019;32(5):696–703. doi: 10.1097/WCO.0000000000000736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Engel AG. Congenital myasthenic syndromes in 2018. Curr Neurol Neurosci Rep. 2018;18(8):46. doi: 10.1007/s11910-018-0852-4. [DOI] [PubMed] [Google Scholar]
- 5.Engel AG, Shen XM, Selcen D, et al. Congenital myasthenic syndromes:pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14(4):420–434. doi: 10.1016/S1474-4422(14)70201-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Souza PV, Batistella GN, Lino VC, et al. Clinical and genetic basis of congenital myasthenic syndromes. Arq Neuropsiquiatr. 2016;74(9):750–760. doi: 10.1590/0004-282X20160106. [DOI] [PubMed] [Google Scholar]
- 7.Bauché S, O'regan S, Azuma Y, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet. 2016;99(3):753–761. doi: 10.1016/j.ajhg.2016.06.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Arican P, Gencpinar P, Cavusoglu D, et al. Clinical and genetic features of congenital myasthenic syndromes due to CHAT mutations:case reportand literature review. Neuropediatrics. 2018;49(4):283–288. doi: 10.1055/s-0038-1654706. [DOI] [PubMed] [Google Scholar]
- 9.O'Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology. 2016;87(14):1442–1448. doi: 10.1212/WNL.0000000000003179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83(24):2247–2255. doi: 10.1212/WNL.0000000000001079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Salpietro V, Lin W, Delle Vedove A, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol. 2017;81(4):597–603. doi: 10.1002/ana.24905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Shen XM, Scola RH, Lorenzoni PJ, et al. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4(2):130–138. doi: 10.1002/acn3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Whittaker RG, Herrmann DN, Bansagi B, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology. 2015;85(22):1964–1971. doi: 10.1212/WNL.0000000000002185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Xu J, Camacho M, Xu Y, et al. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of munc13-1 C1C2BMUN. Elife. 2017;6:e22567. doi: 10.7554/eLife.22567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.孔 维泽, 刘 明生, 关 鸿志, et al. COLQ基因突变致先天性肌无力综合征一例. 中华神经科杂志. 2016;49(2):127–128. doi: 10.3760/cma.j.issn.1006-7876.2016.02.011. [DOI] [Google Scholar]
- 16.Maselli RA, Ng JJ, Anderson JA, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. http://cn.bing.com/academic/profile?id=f27d1c92d5eddb5d915c7dae24fe81cb&encoded=0&v=paper_preview&mkt=zh-cn. J Med Genet. 2009;46(3):203–208. doi: 10.1136/jmg.2008.063693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Maselli RA, Arredondo J, Vázquez J, et al. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173(8):2240–2245. doi: 10.1002/ajmg.a.38291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Logan CV, Cossins J, Rodríguez CP, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the atypical non-fibrillar collagen type XIII α1 chain. Am J Hum Genet. 2015;97(6):878–885. doi: 10.1016/j.ajhg.2015.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Brugnoni R, Maggi L, Canioni E, et al. Identification of previously unreported mutations in CHRNA1, CHRNE and RAPSN genes in three unrelated Italian patients with congenital myasthenic syndromes. J Neurol. 2010;257(7):1119–1123. doi: 10.1007/s00415-010-5472-0. [DOI] [PubMed] [Google Scholar]
- 20.Tei S, Ishii HT, Mitsuhashi H, et al. Antisense oligonucleotide-mediatedexon skipping of CHRNA1 pre-mRNA as potential therapy for congenital myasthenic syndromes. Biochem Biophys Res Commun. 2015;461(3):481–486. doi: 10.1016/j.bbrc.2015.04.035. [DOI] [PubMed] [Google Scholar]
- 21.Webster R, Liu WW, Chaouch A, et al. Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α-ε subunit interface. Neuromuscul Disord. 2014;24(2):143–147. doi: 10.1016/j.nmd.2013.10.009. [DOI] [PubMed] [Google Scholar]
- 22.Huzé C, Bauché S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85(2):155–167. doi: 10.1016/j.ajhg.2009.06.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. Clin Exp Neuroimmunol. 2016;7(3):246–259. doi: 10.1111/cen3.12316. [DOI] [Google Scholar]
- 24.O'Connor E, Töpf A, Müller JS, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cde190e165fb7f267f7b51277f005562. Brain. 2016;139(Pt 8):2143–2153. doi: 10.1093/brain/aww130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Régal L, Shen XM, Selcen D, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology. 2014;82(14):1254–1260. doi: 10.1212/WNL.0000000000000295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Habbout K, Poulin H, Rivier F, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology. 2016;86(2):161–169. doi: 10.1212/WNL.0000000000002264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Chaouch A, Porcelli V, Cox D, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1(1):75–90. doi: 10.3233/JND-140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.戴 廷军, 赵 冰, 温 冰, et al. 鸟苷二磷酸甘露糖焦磷酸化酶β亚基基因突变致肢带型肌营养不良合并先天性肌无力综合征. 中华神经科杂志. 2018;51(6):412–418. doi: 10.3760/cma.j.issn.1006-7876.2018.06.003. [DOI] [Google Scholar]
- 29.Helman G, Sharma S, Crawford J, et al. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology. 2019;92(6):e587–e593. doi: 10.1212/WNL.0000000000006886. [DOI] [PubMed] [Google Scholar]
- 30.Jensen BS, Willer T, Saade DN, et al. GMPPB-associated dystroglycanopathy:emerging common variants with phenotype correlation. Hum Mutat. 2015;36(12):1159–1163. doi: 10.1002/humu.22898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Cossins J, Belaya K, Hicks D, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3580273. Brain. 2013;136(Pt 3):944–956. doi: 10.1093/brain/awt010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.刘 志梅, 方 方, 丁 昌红, et al. CHAT基因突变导致的先天性肌无力综合征伴发作性呼吸暂停二例. 中华儿科杂志. 2018;56(3):216–220. doi: 10.3760/cma.j.issn.0578-1310.2018.03.012. [DOI] [Google Scholar]
- 33.Schara U, Christen HJ, Durmus H, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations. Eur J Paediatr Neurol. 2010;14(4):326–333. doi: 10.1016/j.ejpn.2009.09.009. [DOI] [PubMed] [Google Scholar]
- 34.Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve. 2011;44(5):789–794. doi: 10.1002/mus.22176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Shen XM, Okuno T, Milone M, et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum Mutat. 2016;37(10):1051–1059. doi: 10.1002/humu.23043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Tan JS, Ambang T, Ahmad-Annuar A, et al. Congenital myasthenic syndrome due to novel CHAT mutations in an ethnic kadazandusun family. Muscle Nerve. 2016;53(5):822–826. doi: 10.1002/mus.25037. [DOI] [PubMed] [Google Scholar]
- 37.苏 净, 李 传芬, 陶 珍, et al. CHRNE基因突变导致的先天性肌无力综合征的临床和电生理分析. 中华神经科杂志. 2014;47(12):847–851. doi: 10.3760/cma.j.issn.1006-7876.2014.12.007. [DOI] [Google Scholar]
- 38.Bevilacqua JA, Lara M, Díaz J, et al. Congenital myasthenic syndrome due to DOK7 mutations in a family from Chile. http://cn.bing.com/academic/profile?id=6333787e09b3352d5fc235840661567b&encoded=0&v=paper_preview&mkt=zh-cn. Eur J Transl Myol. 2017;27(3):6832. doi: 10.4081/ejtm.2017.6832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Giarrana ML, Joset P, Sticht H, et al. A severe congenital myasthenic syndrome with "dropped head" caused by novel MUSK mutations. Muscle Nerve. 2015;52(4):668–673. doi: 10.1002/mus.24687. [DOI] [PubMed] [Google Scholar]
- 40.Nicole S, Chaouch A, Torbergsen T, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006337018. Brain. 2014;137(Pt 9):2429–2443. doi: 10.1093/brain/awu160. [DOI] [PubMed] [Google Scholar]
- 41.Natera-de Benito D, Bestué M, Vilchez JJ, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to RAPSN mutations. Neuromuscul Disord. 2016;26(2):153–159. doi: 10.1016/j.nmd.2015.10.013. [DOI] [PubMed] [Google Scholar]
- 42.张 巍, 徐 春晓, 孟 令超, et al. 谷氨酰胺-果糖-6-磷酸转氨酶1相关性肢带型先天性肌无力综合征二例临床分析. 中华神经科杂志. 2015;48(7):580–584. doi: 10.3760/cma.j.issn.1006-7876.2015.07.008. [DOI] [Google Scholar]