Abstract
Entangled quantum networks are a fundamental of any global-scale quantum Internet. Here, a mathematical model is developed to quantify the dynamics of entangled network structures and entanglement flow in the quantum Internet. The analytical solutions of the model determine the equilibrium states of the entangled quantum networks and characterize the stability, fluctuation attributes, and dynamics of entanglement flow in entangled network structures. We demonstrate the results of the model through various entangled structures and quantify the dynamics.
Subject terms: Mathematics and computing, Computer science, Pure mathematics
Introduction
As quantum computers continue to evolve significantly1–18, there arises a fundamental need for a communication network that provides unconditionally secure communication and all the network functions of the traditional internet. This novel network structure is called the quantum Internet19–43, a quantum communication network20–23,25,27,31–36,38–42,44–76 in which the nodes are represented by quantum devices (such as quantum repeaters28,29,43,49,58,77–82 or quantum computers1–5, 83–86), while the connections among the nodes are formulated via quantum entanglement. An entangled connection refers to a shared entangled quantum system among the quantum nodes19,20,87,88–111. Therefore, quantum entanglement is the key to any global-scale quantum Internet. Due to the fundamentally different processes and procedures associated with communication in the quantum Internet, the dynamic nature of these networks is also fundamentally different from a traditional network77–81,112–124. The dynamics125–127 involve the behavior of the network structure, which fluctuates along with the stability and reliability of the communication processes within the entangled structures. Quantifying the dynamics of the entangled structures allows us to determine the conditions for the development of stable quantum communications in strongly fluctuating and noisy environments, as well as to derive the basis for reliable and stable quantum communications in a global-scale quantum Internet21,23,25,28,48–50 setting. The quantum Internet is not yet available for experimentation, however, it must be ready for use as quantum computers become publicly available. Therefore, derivation of the fundamental dynamical attributes and behavioral characteristics of the entangled structures of the quantum Internet is fundamentally important and represents an emerging issue. While in a classical Internet a TCP/IP dynamics serves as an analytical tool to model the transmission, in a quantum Internet setting a dynamics model that characterizes the transmission of quantum states (density matrices) over the quantum channels is not available. A fundamental difference between the two settings, that in a quantum Internet the communication between distant points is realized over quantum channels (i.e., via CPTP—completely positive trace preserving—maps in a mathematical formalism), while the transmitted systems are entangled density matrices (assuming a general quantum Internet scenario). The correlation measure functions are also different in a quantum Internet setting, due to the fundamental nature of a classical communication channel and a quantum channel128.
Here, we develop an analytical model to quantify the dynamics of entangled network structures and entanglement flow in the quantum Internet. The analytical solutions of the model determine the equilibrium states of entangled quantum networks and characterize their stability and fluctuation attributes and the dynamics of entanglement flow within entangled network structures. Our work provides fundamental definitions and terms and proves fundamental theorems that quantify the dynamics of the entangled quantum networks of the quantum Internet. The proposed results are independent of the actual physical implementations; therefore, they can be applied within the heterogeneous structures of a global-scale quantum Internet.
To quantify the dynamic attributes of entangled structures of the quantum Internet, the analytical model defines a stability function motivated by the free energy thermodynamical potential function in thermondynamics129–131 and statistical physics132–135 (The free energy thermodynamical potential function is defined as , where E is the energy, T is an absolute temperature, while S is the entropy. The free energy thermodynamical potential function can also be interpreted as Gibbs free energy if E is interpreted as enthalpy135 (chemical reactions at constant pressure.) The concept of stability function is therefore essentially roots in the Le Chatelier principle136,137 in a chemical equilibrium. The Le Chatelier principle says that chemical equilibrium occurs at minimum Gibbs energy of the reactants and the products and disturbance of the mix would result in restoration of the equilibrium in a way that cancels the perturbation.). In the developed model, the stability function determines the equilibrium state of the entangled structure. A stable equilibrium state of the entangled quantum network N is stable if heavy fluctuations in the network have zero effect on the entanglement flow in the entangled quantum network. If is in a global minima, then the entangled structure is in a stable equilibrium state . The determination of the stable equilibrium states of an entangled structure is fundamental to any seamless communication in a global-scale quantum Internet. The seamless quantum communication refers to a stable (reliable) transmission without fluctuations (the fluctuation does not exceed a critical limit). In a stable network state, the probability of non-erroneous information transmission between nodes and at moment is above a critical bound , , given that at moment the communication is correct. The entanglement flow is considered seamless optimal if it is seamless and if the entanglement rate exceeds a critical lower bound set for the entangled connections. We quantify the stability function for various entangled structures. The reliability of quantum communication is analyzed via the stability function of the entangled quantum network, since the stability of the entangled structure implies the reliability of quantum communication within the network.
Depending on the entanglement transmission rate of the entangled connections, the global quantum network can be decomposed into weakly and strongly entangled subnetworks. In a weakly entangled structure, the entanglement rate of the entangled connections is below a critical limit, while in a strongly entangled structure, the entanglement rate of the entangled connections exceeds this limit. As we prove, these structures are characterized by fundamentally different dynamic attributes and stability properties.
Entanglement purification is a cornerstone of the entangled networks of the quantum Internet21,23,25,28,48,56,138–140. Entanglement purification is a process that allows us to improve the entanglement fidelity of entangled states. It is a high-cost procedure since it requires the transmission of several quantum systems between the nodes to improve the final fidelity. Similar to the fundamental dynamic attributes of the quantum Internet, the dynamic effects of entanglement purification on an entangled structure remain unknown. We reveal the effects of entanglement purification on a large quantum network and show that the application of entanglement purification in a separated manner does not improve the capabilities of the quantum network.
The entanglement flow in the entangled structure is the process of entanglement transmission in a large-scaled quantum entangled network N. Using the analytical model, we prove the conditions of seamless and seamless optimal entanglement transmission. The fluctuation of the entangled connections is derived via the Laplacian of the entangled structure, which is an important tool in spectral graph theory141–144.
The proposed analytical model also reveals the quantum supremacy (properties and attributes that are not available in a traditional internet) of the quantum Internet over the traditional internet. The proposed analytical solutions indicate that, for both weakly and strongly entangled structures, seamless optimal entanglement flow is always possible. Furthermore, the model revealed that an entangled structure can be transformed into a zero-fluctuation network via the establishment of a novel connection between the nodes, the result of which is proven via the use of spectral graph theory.
The novel contributions of our manuscript are as follows.
Dynamics of the entangled network structures of the quantum Internet is quantified in a closed-form. The fundamental definitions and terms are provided, fundamental theorems proven for entangled quantum networks.
We evaluate the stability of the entangled quantum networks of the quantum Internet and define the characteristics of weakly and strongly entangled structures.
We prove the stable equilibrium states of weakly and strongly entangled structures and quantify them in an exact closed form. We study the effects of noise on the stable equilibrium states of entangled structures.
We derive the fluctuation dynamics of entanglement transmission in the quantum Internet. Using the stable equilibrium states of entangled structures, we determine the conditions of seamless and seamless optimal entanglement flow in the quantum Internet.
We quantify the maximally allowed fluctuations in entangled structures for the seamless and seamless optimal entanglement flow in the quantum Internet. We prove the conditions for the construction of an entangled network structure with zero fluctuations.
This paper is organized as follows. Second section gives the basic terms and definitions. Third section evaluates the dynamics and equilibrium states of entangled networks. Fourth section focuses on the dynamics of entanglement flow. Finally, fifth section concludes the results. Supplementary Information is included in the Appendix.
Problem statement
The problems to be solved are as follows.
Problem 1
Evaluate and quantify the dynamics and stability of an entangled network structure in an exact closed form. Prove the equilibrium state and fluctuation dynamics of the entangled network structures of the quantum Internet. Determine the effects of noise on the equilibrium states of the entangled network.
Problem 2
Prove the attributes of weakly and strongly entangled structures of the quantum Internet. Determine the stable equilibrium states of the entangled network structures for both noiseless and noisy cases and for both weakly and strongly entangled structures.
Problem 3
Prove the dynamic effects of local entanglement purification in the quantum Internet.
Problem 4
Prove the maximally allowed fluctuations in entangled structures for seamless entanglement flow in the quantum Internet.
Problem 5
Determine the attributes of an entangled network structure that statistically leads to zero fluctuations.
The resolutions to Problems 1–5 are proposed in the Theorems and Lemmas of the manuscript.
Preliminaries
This section briefly summarizes the basic terms and definitions. For further details, we suggest28,128.
Entanglement fidelity
Let be the target Bell state subject to be generated between distant nodes A and B145. The entanglement fidelity F at a given shared system between A and B is
1 |
such that for a perfect Bell state and for an imperfect state28,145.
Entanglement levels
Let V refer to the nodes of an entangled quantum network N, which consists of a transmitter node , a receiver node , and quantum repeater nodes , 145. Let , refer to a set of edges between the nodes of V, where each identifies an -level entanglement, , between quantum nodes and , respectively. In the doubling architecture28, the number of spanned nodes is doubled in each level of entanglement swapping. The hop distance for an l-level entangled connection -level between nodes is51
2 |
where refers to a direct connection between x and y with no intermediate quantum repeaters145.
Entanglement throughput, entanglement purification, entanglement swapping
Entanglement throughput
The entanglement throughput of an l-level entangled connection is a quantity that measures the number of entangled density matrices transmittable over per a unit time , where s is a nonzero real number, , of a particular entanglement fidelity F, where C is a cycle (see “Dynamics of the entangled structure” section). (Since is formulated via a set of physical links, it abstracts the capabilities of the physical links of and the efficiency of entanglement swapping in the nodes). Practically, the entangled states are realized via Bell states in current implementations145 (The entanglement throughput is related to the term “bandwidth” from classical communication theory. A fundamental difference that a quantum channel can transmit several different correlations, such as classical, private classical and quantum correlation128, and the quantum repeaters generate and outputs entangled density matrices (halves of an EPR states in practice) to establish an l-level entangled connection (see (2)). Quantum entanglement is a quantum correlation, therefore the term “bandwidth” is related to the quantum capacity128,146 of the quantum channel . In a classical setting only classical correlations can be transmitted over a classical channel N, therefore the “bandwidth” in a traditional interpretation is related to the C(N) classical capacity of N.).
Entanglement purification
The entanglement purification process28,56,138–140 takes two imperfect systems and with , and outputs a higher-fidelity system such that
3 |
For a detailed technical description of entanglement purification, we suggest28.
Entanglement swapping
The entanglement swapping operation splices two short-distance Bell states into a longer-distance Bell pair via operations applied in an intermediate quantum node and via classical side information (i.e., a similar mechanism to quantum teleportation28,145).
Definitions
The dynamics terms utilized in the model are defined as follows. The aim of the definitions is to introduce the related quantities, the detailed definitions are given in the particular sections.
Entanglement flow
Definition 1
(Entanglement flow) The entanglement flow is the entanglement transmission over the quantum repeaters of the physical network N. For a given jth entangled path of , , where Q is the total number of paths in N, an ith quantum node , , outputs n density matrices on path . For the total Q paths of N, an ith quantum repeater outputs density matrices on the Q paths .
Entanglement flow is the number of entangled density matrices (half of EPR pairs in a practical setting) generated and outputted by the quantum repeaters, see also “Average entanglement rate of an entanglement flow” section. In the entanglement distribution procedure, a given quantum repeater has a particular number of incoming density matrices (halves of EPR states received from source neighbor quantum nodes in a practical scenario) and outcoming density matrices (the given quantum repeater generates entangled states, and sends out one half of the EPR states to a destination node, see also “Entanglement throughput” section.) The terminology “outputs a state into a path” means that a particular output state of the quantum repeater belongs to a particular path. Other outputs belong to other paths, etc.
Stability of the entangled quantum network
Definition 2
(Stability function) The stability function (will be detailed in (20)) measures the effects of any network fluctuation and noise on the entangled structure and the entanglement flow. If is in a local minima, then the entangled structure is in an equilibrium state. If is in a global minima, then the entangled structure is in a stable equilibrium state .
Equilibrium state of an entangled quantum network
Definition 3
(Equilibrium state of the quantum network) The equilibrium state of the entangled quantum network N is a state of the entangled structure in which the network structure keeps the network state at fluctuations of the quantum network, where is a (normalized) fluctuation of a node , defined as
4 |
where is the outcoming entanglement throughput of node (number of density matrices – half of EPR pairs in a practical setting – outputted by ), while is a critical lower bound for the entanglement throughput of . The state of the quantum network is detailed in “State of the quantum network” section, see also (21).
Stable equilibrium state
Definition 4
(Stable equilibrium state of the quantum network) The equilibrium state of the entangled quantum network is stable if heavy fluctuations, , where is a critical bound on network fluctuation set for the nodes of N, keeps the network state (Detailed definition of is given in (45).).
Average entanglement fidelity of an entanglement flow
For a jth path , the function identifies the average (Note: an averaging of quantities is used by the statistical model of the quantum network.) entanglement fidelity output via the quantum repeater in the entanglement flow of N, as
5 |
where is an fth, , entangled subsystem outputted by on path . For the Q paths of N, the fidelity is derived for as
6 |
where is the number of density matrices outputted to the Q paths by . From (6), the average fidelity of is as
7 |
Average entanglement rate of an entanglement flow
For a jth path of with quantum nodes and entangled connections, the average entanglement rate of at a particular entanglement fidelity F is
8 |
where identifies the average entanglement throughput of an sth entangled connection for a particular entanglement fidelity F, .
For the total Q paths of N, the average entanglement throughput of for a particular entanglement fidelity F is as
9 |
Average noise of an entanglement flow
The average (Note: an averaging of quantities is used by the statistical model of the quantum network.) noise probability (referred to as average noise) of is defined as
10 |
where is the average noise of an ith quantum node ,
11 |
where is the noise probability on an fth output density matrix of , defined as
12 |
where is a noisy channel, while is the noisy density matrix with an arbitrary noise, defined as
13 |
where is an error transformation.
State of the quantum network
Let refer to the state (statistical model) of N, as
14 |
where is a normalized value of (see (9)), is given in (10), while is a normalized value of (see (7)).
Seamless property and optimality of an entanglement flow
Seamless entanglement flow
Definition 5
(Seamless property of entanglement flow) An entanglement flow is seamless, , if for all nodes of N
15 |
where is a critical bound on network fluctuation (see (45)) set for the nodes of N.
Seamless optimal entanglement flow
Definition 6
(Seamless optimal entanglement flow) An entanglement flow is seamless optimal, , if is seamless, , and
16 |
where is a lower bound on in a stable equilibrium state of N.
Dynamics of the entangled structure
Weakly entangled quantum networks
Definition 7
(Weakly entangled subnetwork of the entangled quantum network) Let be a subnetwork of N with quantum nodes. The subnetwork is weakly entangled, , if only
17 |
holds for the average entanglement throughput of for a particular entanglement fidelity F,
18 |
where is the number of paths of , while is an expected value of for a particular entanglement fidelity F.
Strongly entangled quantum networks
Definition 8
(Strongly entangled subnetwork of the entangled quantum network) The subnetwork of N is strongly entangled, , if only
19 |
for a particular entanglement fidelity F.
Cycle
Definition 9
A cycle C with cycle-time is set via an oscillator with frequency in the quantum nodes used for synchronization of a quantum network.
The sC cycles identify , where s is a nonzero real number.
Dynamics and equilibrium states of entangled networks
Stability of an entangled quantum network
Theorem 1
(Dynamics of the entangled network structure) The stability function defines the stability of the entangled structure N as
20 |
where is the average fidelity of , is a normalizing function, and are constants, while is statistical quantity determined via and .
Proof
The proof is purely statististical, defines the stability function motivated by the terminology of free energy potential, showing how the network state evolves where a challenge is evaluating the Chapman–Kolmogorov equation, that will be defined in (48).
Let refer to the state of N as given by (14). Then, a stable equilibrium state of (14) is defined as
21 |
where refers to the function values in .
The formalization of (14) is plausible model for the fluctuation dynamics analysis, since the entangled network structure formulates a macroscopic system with local interactions125,126. In our analytical model, the local interactions are represented by a normalized value of the average entanglement rate of entanglement flow, while the global parameter is the average noise of entanglement flow in the entangled structure. Another important parameter of the statistical model is the order parameter, which represents the statistical orderliness of the system. In the statistical physics model of the entangled quantum network structure, the orderliness of the system is represented by a normalized value of the average fidelity of the entanglement flow in the quantum network.
The and normalizing functions are defined as follows.
The normalized value of (see (7)) is defined as
22 |
where identifies the ratios of quantum repeaters in N for which the average fidelity (see (6)) is and , where is a lower bound on . See also (29) and (33) for a detailed definition of .
The normalized value of is defined as
23 |
where is a critical bound for .
The function in (23) can be characterized as
24 |
Using the statistical physics model of (14), let be the Hamiltonian of the entanglement flow in the entangled network structure N, as
25 |
where is an interaction parameter, while is the Hamiltonian125,126 of the average noise (see (10)), as
26 |
where is a normalization term defined via 125,126, as
27 |
while and constants, while represents a state of quantum node of N, , defined as
28 |
where is as
29 |
where the function returns the sign of x ( is considered as negative), is as
30 |
The Hamiltonian of from (25) can be rewritten as
31 |
The result in (31) is equivalent to an Ising system125–127 in statistical physics, while in some physical models can also refer to spin up/down of qubits i, j. In the current system model, these parameters refer to the state of quantum nodes in terms of quantum fidelity, see (29) and (30).
From some fundamentals of statistical physics125–127, the Hamiltonian of (29) can be derived in the following manner. Let and be associated to and , as given in (29). Then, by utilizing the Weiss mean field147 approximation (The Weiss mean field theory is the mean field theory of an Ising model147.), can be evaluated as
32 |
where is defined as
33 |
As follows, (22) can be rewritten as a statistical quantity, as
34 |
and the range of (34) can be characterized as
35 |
From the relations (32) and (33), the Hamiltonian from (31) can be rewritten as
36 |
where is the average number of entangled connections between the nodes, defined as
37 |
where is given in (23), while
38 |
since the term takes twice the entangled connections of N.
Since is derived for the and case, from (36), the Hamiltonian of is as
39 |
From the Hamiltonian in (36), the energy of the system can be straightforwardly evaluated as
40 |
while the entropy of is as (see also the Shannon–Boltzmann formula125–127)
41 |
where is a constant (set as the Boltzmann’s constant in statistical physics), while is a distribution function (Gibbs state125–127) as
42 |
where is the temperature in statistical physics125–127, however in our setting, is an internal parameter called fluctuation frequency. The value of quantifies the fluctuations of the network structure, and determined as follows.
Using (see (39)) in (42), allows us to rewrite in function of , and , as
43 |
where is a normalization term, defined as
44 |
thus from (42) and (43), is yielded as
45 |
Since, from some fundamentals of statistical physics125, the stability of is analogous to the difference of the energy and the weighted entropy ,
46 |
where is the fluctuation frequency (analogous to temperature in the thermodynamical free energy potential function). The term (34) therefore identifies the weighted average fidelity of , such that is a stochastic variable, since fluctuates over the system states , , where T is a total system evaluation time period, and is the state of N at a particular t. Therefore, at a particular system state , can be characterized by a function
47 |
such that refers to (42) taken over at a given . The derivative of is evaluated as
48 |
where is the probability of the transition at a given state , is the probability of at a given . In statistical physics, (48) identifies the so-called master equation, or Chapmann–Kolmogorov equation125,126.
A challenge in the evaluation of (48) is the determination of the conditional probabilities for a given , and to find the solutions of the derivative to determine the probability distribution of the state-transition function .
The conditional probabilities in (48) are derived as follows. Assuming that is a current system state, the following condition can be written for the conditional probabilities:
49 |
Then, using (42) with the Hamiltonian, the distribution function at a particular can be evaluated, as
50 |
where is a normalization term,
51 |
Using (50) and (51), can be yielded as
52 |
where
53 |
and
54 |
Since, the value of can be selected from W possible values, the formula of (52) can be written as
55 |
where , , and
56 |
Therefore, for the entangled quantum network N, (55) can be written as
57 |
Then, using (50), the formula of (49) can be rewritten as
58 |
and since , the conditional probabilities are yielded as
59 |
and
60 |
where Q is a constant.
From (59) and (60), the derivative in (48) can be rewritten as
61 |
where
62 |
where
63 |
and
64 |
while
65 |
therefore the solution125,126 of the derivative is yielded as
66 |
where c is a constant.
It also can verified, that for , (50) picks up the value of
67 |
thus using (39), the entropy at a particular is as
68 |
As a corollary, from (46) and (68), the stability function at a particular is yielded as
69 |
where is defined as
70 |
where is evaluated via (26) as
71 |
where is given in (42), is as in (39), while can be rewritten via (37) as a statistical quantity
72 |
Therefore, such as in (34), both and can be rewritten as statistical parameters of of the entangled quantum network N.
The next problem is the analysis of function (69) to derive the fluctuation model and the stable equilibrium state of the entangled network. The stability analysis of N is as follows.
To find the state of N, the derivative of (69) is taken, as
73 |
from which the condition of results in
74 |
Then, since
75 |
the result in (74) can be rewritten as
76 |
As, the average noise of the entanglement flow in the entangled structure is zero, , (76) is yielded as
77 |
where , , , thus (77) can be rewritten as
78 |
with solutions , as125
79 |
and
80 |
As is determined via (79) and (80), the stability of can be determined via the second derivative of , which is for a given solution , is as
81 |
From (81), the stability of the equilibrium state of the entangled quantum network N is as follows.
If
82 |
then the equilibrium state of the entangled quantum network N is stable (in a stable equilibrium state, system fluctuations cannot transform to a non-stable system state), if
83 |
then equilibrium state is critical stable (in a critical stable equilibrium state, the system is fragile and a small fluctuation can transform to a non-stable system state), while if
84 |
then the equilibrium state of the entangled quantum network N is non-stable.
As a corollary, if and
85 |
then the equilibrium state of N is stable only for . If and
86 |
then the equilibrium state is stable only for .
The stability derivation for the case, is as follows.
From the series expansion of (69), can be rewritten as
87 |
thus the equilibrium state can be determined from the derivative of (87), as
88 |
89 |
The stability of the equilibrium state can be determined from the second derivate of (87),
90 |
If is a critical stable equilibrium state, then
91 |
which holds only if the parameters in (89) are set as
92 |
and
93 |
where
94 |
with
95 |
for a critical stable equilibrium state (91).
Therefore, if , then for any , in (90). However, the entangled network structure still could have stable equilibrium state at and , but not a critical stable.
At (91), the average noise for a critical stable equilibrium state (see (91)) is as
96 |
such that
97 |
from which can be rewritten as
98 |
As follows, (95) can be rewritten as
99 |
which yields the condition for a critical stable state
100 |
The result in (100) indicates that for any and , the entangled network is in a critical stable equilibrium state . If and , the entangled network is in a stable or in a non-stable equilibrium state .
To conclude the statements, if , then the stable equilibrium state is yielded at a system state that minimizes , as a global minima
101 |
such that .
The derivations also reveals that for any , the solutions of evaluated via (89) are determined by the actual value of . As a corollary, the minimal values of in (101) also depend on .
Then, let us assume that the entangled structure is in a non-equilibrium state. Finally, it also can be verified that from it is always possible to reach a stable equilibrium state, as follows.
Let and refer to (33) at and , defined as
102 |
where after some calculations is yielded as
103 |
where is as
104 |
where G is a constant, and
105 |
Thus, from the system will be in a stable at , as
106 |
where
107 |
where is given in (104).
The proof is concluded here.
Stable equilibrium state of the entangled network
This section illustrates the results of Theorem 1.
Noiseless scenarios Here, the stable equilibrium states of the entangled structure are determined for scenarios.
In Fig. 1, the stability function (see (69)) and the stable equilibrium states of the entangled quantum network N are depicted at average noise (71), in function of the normalized fidelity (see (22)) and normalized entanglement throughput (see (23)). As it is depicted in Fig. 1a, if , then the entangled structure has only one stable equilibrium state at (depicted by the green-line empty dot). As depicted in Fig. 1b, if , then entangled structure has two different stable equilibrium states (depicted by the red dots) at and .
Figure 1.
The stability function and the stable equilibrium states of the entangled quantum network N at , in function of and . (a) The stable equilibrium state of the entangled structure for (depicted by green-line empty dot), and the stable equilibrium states of the entangled structure for (depicted by red dots). As , the entangled structure has one stable equilibrium state (green), while as , the entangled structure has two stable equilibrium states (red dots). (b) The stable equilibrium states of the entangled structure for (depicted by red dots). Since , the entangled structure has two stable equilibrium states (red dots) for a given .
Noisy scenarios Here, the stable equilibrium states of the entangled quantum network are determined for scenarios.
In Fig. 2, the stability function (see (69)) and the stable equilibrium states of the entangled quantum network N are depicted at average noise (71), in function of the normalized fidelity (see (22)) and normalized entanglement throughput (see (23)). As it is depicted in Fig. 2a, c, e, g, if and , then the entangled structure has only one stable equilibrium state at a particular (depicted by the green-line empty dot). As depicted in Fig. 2b, d, f, h, if and , then entangled structure has two different stable equilibrium states (depicted by the red dots) at and .
Figure 2.
The stability function and the stable equilibrium states of the entangled quantum network N at , in function of and , . (a) The stable equilibrium state of the entangled structure at and for (depicted by green-line empty dot), and the stable equilibrium states of the entangled structure for (depicted by red dots). (b) The stable equilibrium states of the entangled structure for and (depicted by red dots). (c) The stable equilibrium state of the entangled structure at and for (depicted by green-line empty dot), and the stable equilibrium states of the entangled structure for (depicted by red dots). (d) The stable equilibrium states of the entangled structure for and (depicted by red dots). (e) The stable equilibrium state of the entangled structure at and for (depicted by green-line empty dot), and the stable equilibrium states of the entangled structure for (depicted by red dots). (f) The stable equilibrium states of the entangled structure for and (depicted by red dots). (g) The stable equilibrium state of the entangled structure at and for (depicted by green-line empty dot), and the stable equilibrium states of the entangled structure for (depicted by red dots). (h) The stable equilibrium states of the entangled structure for and (depicted by red dots).
A comparative analysis is included in Section A.1 of the Supplementary Information.
Weakly and strongly entangled structures of the quantum Internet
Theorem 2
(Weakly and strongly entangled subnetworks of the entangled network) For a weakly entangled subnetwork , the fidelities of the nodes of are uncorrelated, while for a strongly entangled subnetwork , the fidelities of the nodes in are correlated.
Proof
Let refer to a subnetwork of N with quantum nodes. For the definition of weakly entangled and strongly entangled subnetworks, see (17) and (19), respectively. For any , N has strongly entangled subnetworks, , only if , while for , N has only weakly entangled subnetworks.
For the nodes of , , , let be a fidelity measure, defined as
108 |
where is defined in (30), .
Then, let be the number of subnetworks, and let refer to an zth subnetwork, . For the subnetworks, let be the average of (108) , as
109 |
From (108) and (109), the weakly and strongly entangled subnetworks can be determined for any and .
As a corollary, at for a weakly entangled subnetwork , the
110 |
fidelities of the nodes of are uncorrelated that leads to
111 |
since , the value of in (108) is as
112 |
for the nodes of .
While for a strongly entangled subnetwork , the
113 |
fidelities of the nodes in are correlated via an entanglement purification , that leads to
114 |
It is because at , the value of in (108) is as
115 |
for the nodes of .
As , both and are increased,
116 |
and
117 |
since the values of in (108) and in (115) are decreased due to .
The proof is concluded here.
Weakly and strongly entangled structures
In this section, the results are illustrated with entangled network structures.
Noiseless scenarios The results are depicted in Fig. 3 for strongly and weakly entangled structures at , and , , .
Figure 3.
Weakly and strongly entangled structures at , and , , . (a) The distribution of the node fidelities at , , of a weakly entangled structure at (depicted by black), and of a strongly entangled structure at (depicted by red). (b) The normalized fidelities of the subnetworks , , for a weakly entangled structure at (depicted by black), and of a strongly entangled structure at (depicted by red). (c) The values of the subnetworks , , for a weakly entangled structure at (depicted by black) and the average (depicted by dashed green line). (d) The values of the subnetworks , , for a strongly entangled structure at (depicted by black) and the average (depicted by dashed green line).
The results of Fig. 3 are detailed as follows. At , the weakly and strongly entangled structures have a fundamentally different characteristics. While for a weakly entangled structure at , the fidelities of the nodes are uncorrelated and statistically independent, for a given subnetwork , the number of quantum repeaters with fidelity and are statistically equal. As a corollary, in Fig. 3b, the normalized fidelities taken for the quantum repeaters of the subnetworks are around zero, . On the other hand, for a strongly entangled structure at , the distribution of the fidelities are fundamentally different, since the quantum repeaters are connected via high entanglement-throughput connections that allows to perform entanglement purification between the nodes. As a corollary, if the quantum nodes are connected via high entanglement-throughput connections, the quantum nodes formulate a strongly entangled structure, and the fidelities become correlated. As follows, for a strongly entangled subnetwork , the fidelities of the quantum nodes are statistically not independent. Therefore, the normalized fidelities taken for the quantum repeaters of the subnetworks are as , since for the nodes of the strongly entangled subnetwork, the corresponding relation is . Since the values are evaluated from the node fidelities at a particular , the fundamentally different characteristics of the weakly and strongly entangled structure are also reflected in Fig. 3c, d. While for a weakly entangled structure , the is around zero, for a strongly entangled structure , is significantly below zero. As a corollary, the average converges to zero for a weakly entangled structure , while it is significantly below zero for a strongly entangled structure .
Noisy scenarios The results of are depicted in Fig. 4 for strongly and weakly entangled structures at , and , , .
Figure 4.
Weakly and strongly entangled structures at , and , , . The subnetwork noise for a zth subnetwork is set as . (a) The distribution of the node fidelities at , , , of a weakly entangled structure at (depicted by black), and of a strongly entangled structure at (depicted by red). (b) The values of the subnetworks , at , for a weakly entangled structure at (depicted by black), and of a strongly entangled structure at (depicted by red). (c) The values of the subnetworks , at , for a weakly entangled structure at (depicted by black) and the average (depicted by dashed green line). (d) The values of the subnetworks , at , for a strongly entangled structure at (depicted by black) and the average (depicted by dashed green line).
The situation significantly differs from the case, however the relation between the weakly and strongly entangled structures is analogous to the case. As a fundamental impact of the increased noise level, the fidelity of the quantum nodes are decreased, therefore for a particular , the probability of is higher compared to the case. As a corollary, in Fig. 4b, the values are increased for both the weakly entangled and strongly entangled structures. Similarly, the values in Fig. 4c, d are also increased compared to the case, since in the setting, the values of of the quantum nodes pick up a positive value with higher probability than in the setting for both the and entangled structures. Therefore, the corresponding relations and straightforwardly follow between the weakly and strongly entangled structure of the noisy and noiseless scenarios.
Impacts of noise on the equilibrium states of the entangled network
Lemma 1
(Impacts of noise on the equilibrium states of the entangled network) For a given , the stable equilibrium states of the entangled network are determined only by .
Proof
The proof trivially follows form the formula of (69).
The proof is concluded here.
Stable equilibrium states of the entangled structure at noise
This section demonstrates the results for noisy scenarios.
The stability function of the entangled network in the function of is depicted in Fig. 5a–f. Figure 5a, b show a weakly entangled network structure, while Fig. 5c–f illustrate a strongly entangled network structure.
Figure 5.
Impacts of noise on the equilibrium states of a weakly entangled structure (a), (b) and strongly entangled (c)–(f) quantum network at a given , . The stability function (left) in function of and , and in function of , , at a given (right) identify the: (a) Weakly entangled quantum network, . (b) Weakly entangled quantum network, . (c) Strongly entangled quantum network, . (d) Strongly entangled quantum network, . (e) Strongly entangled quantum network, . (f) Strongly entangled quantum network, .
Analysis of stable equilibrium states can be found in Section A.2 of the Supplementary Information.
Corollaries
The corollaries of the derivations are summarized in Corollaries 1, 3.
Corollary 1
For any , a weakly entangled network structure has only a global stable equilibrium state .
Corollary 2
For , a strongly entangled network structure has a global stable equilibrium state or two local, symmetrical equilibrium states , depending on the value of .
Corollary 3
For any , a strongly entangled network structure has a global stable equilibrium state or two local, but asymmetrical equilibrium states depending on the value of .
Dynamics of a local entanglement purification
Lemma 2
(Dynamics impacts of local entanglement purification in the quantum Internet) The use of entanglement purification for the improvement of the entanglement fidelity only for a given subset of quantum nodes statistically decreases the total capability of the quantum network to improve the average fidelity of the network.
Proof
To derive the proof via the statistical physics model, we construct a quantum repeater-level model, in the following manner.
Let characterize the state of an ith quantum repeater , defined as
118 |
where is the entanglement rate consumption of entanglement purification (sum of incoming and outcoming entanglement rates in associated with ), as
119 |
where is the set of entangled connections of associated with entanglement purification , is the cardinality of set , while is defined as
120 |
where is a target average fidelity of ,
121 |
while is a current average fidelity of defined via (6), and is a target value of , as
122 |
The quantity in (120) therefore identifies a statistical cost of reaching in terms of entanglement rate consumption (Increasing at a given means that a higher entanglement rate consumption is needed in , and as a corollary, is decreased.). The target values and are considered as global quantities, i.e., (120) is considered to be the same for all quantum repeaters of the network.
Then, let be the ratio of the target average fidelity of the entanglement flow of N and ,
123 |
which quantity identifies and preserves the value of the local with respect to a given global in the statistical model.
Using (123), can be expressed as
124 |
From (118) and (123), the capability of a given quantum repeater to improve the average fidelity of to a target via an entanglement purification is defined as
125 |
Using (125), the capability of the entangled network N to improve the average fidelity of to a target via in the nodes, , of N is as
126 |
where is the total entanglement rate consumption of entanglement purification in N,
127 |
from which the average entanglement rate consumption at for a given node is
128 |
Note that and in (126) are global quantities (same for all quantum nodes of the quantum network).
Then, at a given , let be an entanglement purification in a local with an increased target entanglement rate consumption , such that
129 |
where is given in (119).
Using , allows us to rewrite (120) as
130 |
that can be rewritten as
131 |
where are constants, is the total entanglement rate consumption of entanglement purification , as
132 |
thus for a given quantum node the average entanglement rate consumption at is
133 |
As a corollary, using (131), the state of from (118) can be rewritten at as
134 |
while the capability of a given from (125) can be rewritten as
135 |
while from (126), the capability of the entangled network N to improve the average fidelity of to a target via in the nodes, , of N is as
136 |
After some calculations, in (136) is maximized if is
137 |
Putting (137) into (136) yields
138 |
from which can be found via the solution of
139 |
which yields
140 |
As it can be concluded from the comparison of (135) and (137), at a node-level maximization in (135), and in a network-level maximization in (137), in fact, are different.
Let assume that in the quantum network, a set of
141 |
quantum nodes use purification ,
142 |
where , such that
143 |
where is a constant, while the remaining set of
144 |
quantum nodes use purification , with .
For a given from set , is as
145 |
while for the total nodes of ,
146 |
Similarly, for a given from set , is as
147 |
while for the total nodes of ,
148 |
For the total network , from (146) and (148), is evaluated as
149 |
From (147) follows, that the improvement of the local capability requires the parameterization and . On the other hand, from (149) follows that for any and , the capability of the entangled network N from (138) is decreased by a ratio to
150 |
where
151 |
that immediately proves that statistically, the capability of the entangled network N to improve the average fidelity of to a target is decreased if an improved entanglement purification with is applied only to a local subset of quantum nodes in the quantum network, while the remaining set quantum nodes use purification , with .
The proof is concluded here.
Entanglement flow dynamics
This section derives the dynamics of optimal entanglement flow in the entangled structures of the quantum Internet at fluctuating entangled connections and quantum nodes. The derivations utilize the fundamentals of spectral graph theory141–143.
Theorem 3
(Maximally allowed fluctuations in entangled structures for seamless entanglement flow) For the total Q paths of N, the entanglement flow is seamless, , if for , where is an upper bound on in a stable equilibrium state, .
Proof
A main challenge here is the determination of the fluctuation coefficients of the entangled connections . As we prove, the fluctuation coefficients of the entangled connections straightforwardly can be yielded from the structure of the entangled network N, in the following manner.
Let be the fluctuation of an entangled connection between nodes x and y, defined as
152 |
where and are the fluctuations associated with x and y, defined as
153 |
where is the normalized outcoming entanglement rate of x on connection ,
154 |
thus from (153) is as
155 |
while
156 |
where is the normalized incoming entanglement rate of y on connection , as
157 |
thus from (156) can be rewritten as
158 |
Thus, from (152) can be rewritten as
159 |
The and the critical coefficients are determined as follows.
For a given between and , let be defined as the sum of normalized entanglement throughput of all paths over , as
160 |
where is as in (8), while is a critical bound on .
Then, let
161 |
be a matrix, defined as
162 |
where is a constraint for , such that a symmetry condition
163 |
holds, where is a constraint for . The scaling factors formulate as
164 |
For a given , let be the set of all entangled connections of , and let be defined as
165 |
from which a matrix is defined for the quantum nodes of N, as
166 |
From (161) and (166), the symmetric Laplacian141 of the undirected entangled quantum network N is defined as
167 |
Using the condition from (163), can be rewritten as an asymmetric and symmetrizable141–143 Laplacian , as
168 |
Note, that for a general Laplacian of a directed entangled quantum network N,
169 |
with
170 |
the relation in (163) is not a required condition. If (163) is not satisfied, then the general is unsymmetrizable141.
Then, let be the node fluctuations in N
171 |
subject to be found.
Then,
172 |
where is an eigenvalue of . Thus, from (171) can be rewritten as an eigenvector that is associated with .
The eigenvalues of are evaluated from (167) and (164) via the relation
173 |
where is the scaled Laplacian .
Then, (173) can be evaluated further as
174 |
thus has the same eigenvalues as , with eigenvector ,
175 |
The eigenvalues of are nonnegative, since
176 |
where is an ith element of (see (164)).
Then, let be an orthonormal eigenvector associated with an ith eigenvalue (eigenbasis of ), as
177 |
such that
178 |
where is the Kronecker delta141.
Using (177), the eigenvalues can be determined via , from which is straightforwardly yielded by (172). Thus, the fluctuation (152) of an entangled connection can be quantified in an exact form.
Then, let be a stable equilibrium state of N with an entanglement flow rate , and let be the normalized entanglement rate of flow in , defined as
179 |
where is a critical bound on in .
The problem then is the determination of the upper bound on (152) for all entangled connections, such that for a given
180 |
We show that of can be evaluated from the Laplacian of the entangled quantum network N, since for any seamless entanglement flow , the general Laplacian of the entangled quantum network N is decomposable141 as
181 |
where is a symmetrizable Laplacian (168), while is a residual Laplacian, such that
182 |
where is a null matrix.
Let be the state of the entangled network at a particular t, . Then, from (181), the dynamics of the fluctuation coefficients (171) of the entangled structure can be evaluated as
183 |
with
184 |
and with a scaled Laplacian as
185 |
such that , and
186 |
and
187 |
where is a constant ((187) is the typical diffusive wave equation on a graph, where the graph Laplacian plays the role of the operator.).
Since (184) can be rewritten via the eigenbasis of as
188 |
where is defined via the relation of
189 |
as
190 |
where
191 |
where is the fluctuation amplitude, and
192 |
is the fluctuation phase, while
193 |
As follows, can be rewritten as
194 |
From (194) follows, that the determination of the upper bounds on is directly related with the values of . After some calculations, can be rewritten as
195 |
where .
Thus, the critical condition
196 |
is yielded via (195) if only
197 |
It also can be verified that (197) holds for a general (see (181)), if only , which condition is given in (182).
We recall the definition of seamless entanglement flow from (15). It can be straightforwardly verified that relation is determined via (197) for all entangled connections of the quantum network. Therefore, if is selected for all the quantum nodes of the quantum network such that (197) is satisfied for all , , then holds for all entangled connections.
The proof is concluded here.
Additional results are included in Section A.3 of the Supplementary Information.
Conclusions
The quantum Internet is an adequate answer to the computational power that becomes available via quantum computers. Here, we evaluated and quantified the dynamics of the entangled network structures of the quantum Internet. We proved the equilibrium states of entangled network structures and derived the effects of noise on the equilibrium states of the entangled network to provide stable quantum communications. We identified the attributes of weakly and strongly entangled structures of the quantum Internet and derived the dynamic effects of local entanglement purification in the global entangled structure of the quantum Internet. The model is independent of the actual physical implementations and it can be applied within the heterogeneous experimental structures of a global-scale quantum Internet.
Ethics statement
This work did not involve any active collection of human data.
Supplementary Information
Acknowledgements
Open access funding provided by Budapest University of Technology and Economics (BME). The research reported in this paper has been supported by the Hungarian Academy of Sciences (MTA Premium Postdoctoral Research Program 2019), by the National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program), by the National Research Development and Innovation Office of Hungary (Project No. 2017-1.2.1-NKP-2017-00001), by the Hungarian Scientific Research Fund - OTKA K-112125 and in part by the BME Artificial Intelligence FIKP grant of EMMI (Budapest University of Technology, BME FIKP-MI/SC).
Author contributions
L.GY. designed the protocol, wrote the manuscript and analyzed the results.
Data availability
This work does not have any experimental data.
Competing interests
The author declares no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
is available for this paper at 10.1038/s41598-020-68498-x.
References
- 1.Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature. 10.1038/s41586-019-1666-5 (2019). [DOI] [PubMed]
- 2.Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. [Google Scholar]
- 3.Harrow AW, Montanaro A. Quantum computational supremacy. Nature. 2017;549:203–209. doi: 10.1038/nature23458. [DOI] [PubMed] [Google Scholar]
- 4.Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. In Proceedings of the 32nd Computational Complexity Conference, CCC’17, 22:1–22:67 (2017).
- 5.Farhi, E., Goldstone, J., Gutmann, S. & Neven, H. Quantum algorithms for fixed qubit architectures. arXiv:1703.06199v1 (2017).
- 6.Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. arXiv:1910.08187 (2019).
- 7.Farhi, E., Gamarnik, D. & Gutmann, S. The quantum approximate optimization algorithm needs to see the whole graph: a typical case. arXiv:2004.09002v1 (2020).
- 8.Alexeev, Y. et al. Quantum computer systems for scientific discovery. arXiv:1912.07577 (2019).
- 9.Loncar, M. et al. Development of quantum interconnects for next-generation information technologies. arXiv:1912.06642 (2019).
- 10.Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. arXiv:2001.08343 (2020). [DOI] [PubMed]
- 11.Ajagekar A, Humble T, You F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Comput. Chem. Eng. 2020;132:106630. [Google Scholar]
- 12.Ajagekar A, You F. Quantum computing for energy systems optimization: challenges and opportunities. Energy. 2019;179:76–89. [Google Scholar]
- 13.Harrigan, M. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. arXiv:2004.04197v1 (2020).
- 14.Rubin, N. et al. Hartree–Fock on a superconducting qubit quantum computer. arXiv:2004.04174v1 (2020). [DOI] [PubMed]
- 15.Lloyd, S. Quantum approximate optimization is computationally universal. arXiv:1812.11075 (2018).
- 16.Sax, I. et al. Approximate approximation on a quantum annealer. arXiv:2004.09267 (2020).
- 17.Brown KA, Roser T. Towards storage rings as quantum computers. Phys. Rev. Accel. Beams. 2020;23:054701. [Google Scholar]
- 18.Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. arXiv:1802.06002v1 (2018).
- 19.Pirandola S, Braunstein SL. Unite to build a quantum Internet. Nature. 2016;532:169–171. doi: 10.1038/532169a. [DOI] [PubMed] [Google Scholar]
- 20.Pirandola S. End-to-end capacities of a quantum communication network. Commun. Phys. 2019;2:51. [Google Scholar]
- 21.Wehner S, Elkouss D, Hanson R. Quantum internet: a vision for the road ahead. Science. 2018;362:6412. doi: 10.1126/science.aam9288. [DOI] [PubMed] [Google Scholar]
- 22.Pirandola S, Laurenza R, Ottaviani C, Banchi L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017;8:15043. doi: 10.1038/ncomms15043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Pirandola S, Braunstein SL, Laurenza R, Ottaviani C, Cope TPW, Spedalieri G, Banchi L. Theory of channel simulation and bounds for private communication. Quantum Sci. Technol. 2018;3:035009. [Google Scholar]
- 24.Pirandola S. Bounds for multi-end communication over quantum networks. Quantum Sci. Technol. 2019;4:045006. [Google Scholar]
- 25.Pirandola, S. Capacities of repeater-assisted quantum communications. arXiv:1601.00966 (2016).
- 26.Pirandola, S. et al. Advances in quantum cryptography. arXiv:1906.01645 (2019).
- 27.Laurenza R, Pirandola S. General bounds for sender–receiver capacities in multipoint quantum communications. Phys. Rev. A. 2017;96:032318. [Google Scholar]
- 28.Van Meter R. Quantum Networking. New York: Wiley; 2014. [Google Scholar]
- 29.Kimble HJ. The quantum internet. Nature. 2008;453:1023–1030. doi: 10.1038/nature07127. [DOI] [PubMed] [Google Scholar]
- 30.Lloyd S, Shapiro JH, Wong FNC, Kumar P, Shahriar SM, Yuen HP. Infrastructure for the quantum internet. ACM SIGCOMM Comput. Commun. Rev. 2004;34:9–20. [Google Scholar]
- 31.Gyongyosi, L. & Imre, S. Dynamic topology resilience for quantum networks. In Proceedings of SPIE 10547, Advances in Photonics of Quantum Computing, Memory, and Communication XI, 105470Z. 10.1117/12.2288707 (2018).
- 32.Gyongyosi, L. & Imre,. Topology adaption for the quantum Internet. Quantum Inf. Process.. 10.1007/s11128-018-2064-x (2018).
- 33.Gyongyosi, L. & Imre, S. Entanglement access control for the quantum Internet. Quantum Inf. Process.. 10.1007/s11128-019-2226-5 (2019).
- 34.Gyongyosi, L. & Imre, S. Opportunistic entanglement distribution for the quantum Internet. Sci. Rep.. 10.1038/s41598-019-38495-w (2019). [DOI] [PMC free article] [PubMed]
- 35.Gyongyosi, L. & Imre, S. Adaptive routing for quantum memory failures in the quantum Internet. Quantum Inf. Process.. 10.1007/s11128-018-2153-x (2018).
- 36.Gyongyosi, L. & Imre, S. Entanglement-gradient routing for quantum networks. Sci. Rep.. 10.1038/s41598-017-14394-w (2017). [DOI] [PMC free article] [PubMed]
- 37.Gyongyosi L, Bacsardi L, Imre S. A survey on quantum key distribution. Infocom. J. 2019;XI(2):14–21. [Google Scholar]
- 38.Liao S-K, et al. Satellite-to-ground quantum key distribution. Nature. 2017;549:43–47. doi: 10.1038/nature23655. [DOI] [PubMed] [Google Scholar]
- 39.Ren J-G, et al. Ground-to-satellite quantum teleportation. Nature. 2017;549:70–73. doi: 10.1038/nature23675. [DOI] [PubMed] [Google Scholar]
- 40.Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature526, 682–686 (2015). [DOI] [PubMed]
- 41.Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys.11(1), 37–42 (2015).
- 42.Noelleke C, et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 2013;110:140403. doi: 10.1103/PhysRevLett.110.140403. [DOI] [PubMed] [Google Scholar]
- 43.Imre S, Gyongyosi L. Advanced Quantum Communications—An Engineering Approach. New Jersey: Wiley-IEEE Press; 2013. [Google Scholar]
- 44.Gyongyosi, L. & Imre, S. Optimizing high-efficiency quantum memory with quantum machine learning for near-term quantum devices. Sci. Rep.. 10.1038/s41598-019-56689-0 (2019). [DOI] [PMC free article] [PubMed]
- 45.Gyongyosi, L. & Imre, S. Theory of noise-scaled stability bounds and entanglement rate maximization in the quantum Internet. Sci. Rep.. 10.1038/s41598-020-58200-6 (2020). [DOI] [PMC free article] [PubMed]
- 46.Gyongyosi L, Imre S. Entanglement accessibility measures for the quantum Internet. Quantum Inf. Process. 2020;19:115. doi: 10.1007/s11128-020-2605-y. [DOI] [Google Scholar]
- 47.Gyongyosi L, Imre S. Entanglement concentration service for the quantum Internet. Quantum Inf. Process. 2020;19:221. doi: 10.1007/s11128-020-02716-3. [DOI] [Google Scholar]
- 48.Van Meter R, Ladd TD, Munro WJ, Nemoto K. System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 2009;17(3):1002–1013. [Google Scholar]
- 49.Van Meter R, Satoh T, Ladd TD, Munro WJ, Nemoto K. Path selection for quantum repeater networks. Netw. Sci. 2013;3(1–4):82–95. [Google Scholar]
- 50.Van Meter R, Devitt SJ. Local and distributed quantum computation. IEEE Comput. 2016;49(9):31–42. [Google Scholar]
- 51.Gyongyosi, L. & Imre, S. Decentralized base-graph routing for the quantum Internet. Phys. Rev. A. 10.1103/PhysRevA.98.022310 (2018).
- 52.Quantum Internet Research Group (QIRG). https://datatracker.ietf.org/rg/qirg/about/ (2018).
- 53.Gyongyosi, L. & Imre, S. Multilayer optimization for the quantum Internet. Sci. Rep.. 10.1038/s41598-018-30957-x (2018). [DOI] [PMC free article] [PubMed]
- 54.Gyongyosi, L. & Imre, S. Entanglement Availability differentiation service for the quantum Internet. Sci. Rep.. 10.1038/s41598-018-28801-3 (2018). [DOI] [PMC free article] [PubMed]
- 55.Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 10.1016/j.Cosrev.2018.11.002 (2018).
- 56.Rozpedek F, Schiet T, Thinh L, Elkouss D, Doherty A, Wehner S. Optimizing practical entanglement distillation. Phys. Rev. A. 2018;97:062333. [Google Scholar]
- 57.Humphreys, P. et al. Deterministic delivery of remote entanglement on a quantum network. Nature558, 268–273 (2018). [DOI] [PubMed]
- 58.Sangouard N, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011;83:33. [Google Scholar]
- 59.Cuomo, D., Caleffi, M. & Cacciapuoti, A. S. Towards a distributed quantum computing ecosystem. arXiv:2002.11808v1 (2020).
- 60.Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007;79:135–174. [Google Scholar]
- 61.Petz D. Quantum Information Theory and Quantum Statistics. Heidelberg: Springer; 2008. [Google Scholar]
- 62.Bacsardi L. On the way to quantum-based satellite communication. IEEE Commun. Mag. 2013;51(08):50–55. [Google Scholar]
- 63.Biamonte J, et al. Quantum machine learning. Nature. 2017;549:195–202. doi: 10.1038/nature23474. [DOI] [PubMed] [Google Scholar]
- 64.Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013).
- 65.Lloyd S, Mohseni M, Rebentrost P. Quantum principal component analysis. Nat. Phys. 2014;10:631. [Google Scholar]
- 66.Lloyd, S. The universe as quantum computer. In A Computable Universe: Understanding and exploring Nature as computation (ed. Zenil, H.) (World Scientific, Singapore, 2013). arXiv:1312.4455v1.
- 67.Shor PW. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 1995;52:R2493–R2496. doi: 10.1103/physreva.52.r2493. [DOI] [PubMed] [Google Scholar]
- 68.Chou C, Laurat J, Deng H, Choi KS, de Riedmatten H, Felinto D, Kimble HJ. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science. 2007;316(5829):1316–1320. doi: 10.1126/science.1140300. [DOI] [PubMed] [Google Scholar]
- 69.Muralidharan S, Kim J, Lutkenhaus N, Lukin MD, Jiang L. Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 2014;112:250501. doi: 10.1103/PhysRevLett.112.250501. [DOI] [PubMed] [Google Scholar]
- 70.Yuan Z, Chen Y, Zhao B, Chen S, Schmiedmayer J, Pan JW. Experimental demonstration of a BDCZ quantum repeater node. Nature. 2008;454:1098–1101. doi: 10.1038/nature07241. [DOI] [PubMed] [Google Scholar]
- 71.Kobayashi, H., Le Gall, F., Nishimura, H. & Rotteler, M. General scheme for perfect quantum network coding with free classical communication. In Lecture Notes in Computer Science. Automata, Languages and Programming SE-52, Vol. 5555, 622–633 (Springer, 2009).
- 72.Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A. 2007;76:040301(R). [Google Scholar]
- 73.Hayashi, M., Iwama, K., Nishimura, H., Raymond, R. & Yamashita, S, Quantum network coding. In Lecture Notes in Computer Science. STACS 2007 SE52, Vol. 4393 (eds. Thomas, W. et al.) (Springer, Berlin, 2007).
- 74.Chen L, Hayashi M. Multicopy and stochastic transformation of multipartite pure states. Phys. Rev. A. 2011;83(2):022331. [Google Scholar]
- 75.Schoute, E., Mancinska, L., Islam, T., Kerenidis, I. & Wehner, S. Shortcuts to quantum network routing. arXiv:1610.05238 (2016).
- 76.Ahmadzadegan, A. Learning to utilize correlated auxiliary classical or quantum noise. arXiv:2006.04863v1 (2020).
- 77.Briegel HJ, Dur W, Cirac JI, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998;81:5932–5935. [Google Scholar]
- 78.Dur W, Briegel HJ, Cirac JI, Zoller P. Quantum repeaters based on entanglement purification. Phys. Rev. A. 1999;59:169–181. [Google Scholar]
- 79.Van Loock P, Ladd TD, Sanaka K, Yamaguchi F, Nemoto K, Munro WJ, Yamamoto Y. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 2006;96:240501. doi: 10.1103/PhysRevLett.96.240501. [DOI] [PubMed] [Google Scholar]
- 80.Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 2007;98:190503. doi: 10.1103/PhysRevLett.98.190503. [DOI] [PubMed] [Google Scholar]
- 81.Sangouard N, Dubessy R, Simon C. Quantum repeaters based on single trapped ions. Phys. Rev. A. 2009;79:042340. [Google Scholar]
- 82.Azuma K, Tamaki K, Lo H-K. All-photonic quantum repeaters. Nat. Commun. 2015;6:6787. doi: 10.1038/ncomms7787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Gyongyosi, L. & Imre, S. Training optimization for gate-model quantum neural networks. Sci. Rep.. 10.1038/s41598-019-48892-w (2019). [DOI] [PMC free article] [PubMed]
- 84.Gyongyosi, L. & Imre, S. Dense quantum measurement theory. Sci. Rep.. 10.1038/s41598-019-43250-2 (2019). [DOI] [PMC free article] [PubMed]
- 85.Gyongyosi, L. & Imre, S. State stabilization for gate-model quantum computers. Quantum Inf. Process.. 10.1007/s11128-019-2397-0 (2019).
- 86.Gyongyosi, L. & Imre, S. Quantum circuit design for objective function maximization in gate-model quantum computers. Quantum Inf. Process.. 10.1007/s11128-019-2326-2 (2019).
- 87.Caleffi, M. End-to-end entanglement rate: toward a quantum route metric, 2017 IEEE Globecom. 10.1109/GLOCOMW.2017.8269080 (2018).
- 88.Caleffi, M. Optimal routing for quantum networks. IEEE Access. 10.1109/ACCESS.2017.2763325 (2017).
- 89.Caleffi, M., Cacciapuoti, A. S. & Bianchi, G. Quantum Internet: from communication to distributed computing. arXiv:1805.04360 (2018).
- 90.Castelvecchi, D. The quantum Internet has arrived. Nature. News and Comment. https://www.nature.com/articles/d41586-018-01835-3 (2018). [DOI] [PubMed]
- 91.Cacciapuoti, A. S. et al. Quantum Internet: networking challenges in distributed quantum computing. arXiv:1810.08421 (2018).
- 92.Chakraborty, K., Rozpedeky, F., Dahlbergz, A. & Wehner, S. Distributed routing in a quantum Internet. arXiv:1907.11630v1 (2019).
- 93.Khatri S, Matyas CT, Siddiqui AU, Dowling JP. Practical figures of merit and thresholds for entanglement distribution in quantum networks. Phys. Rev. Res. 2019;1:023032. [Google Scholar]
- 94.Kozlowski, W. & Wehner, S. Towards large-scale quantum networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, Dublin, Ireland. arXiv:1909.08396 (2019).
- 95.Pathumsoot P, Matsuo T, Satoh T, Hajdusek M, Suwanna S, Van Meter R. Modeling of measurement-based quantum network coding on IBMQ devices. Phys. Rev. A. 2020;101:052301. [Google Scholar]
- 96.Pal, S., Batra, P., Paterek, T. & Mahesh, T. S. Experimental localisation of quantum entanglement through monitored classical mediator. arXiv:1909.11030v1 (2019).
- 97.Miguel-Ramiro, J. & Dur, W. Delocalized information in quantum networks. New J. Phys. 10.1088/1367-2630/ab784d (2020).
- 98.Miguel-Ramiro, J., Pirker, A. & Dur, W. Genuine quantum networks: superposed tasks and addressing. arXiv:2005.00020v1 (2020).
- 99.Pirker, A. & Dur, W. A quantum network stack and protocols for reliable entanglement-based networks. arXiv:1810.03556v1 (2018).
- 100.Shannon, K., Towe, E. & Tonguz, O. On the use of quantum entanglement in secure communications: a survey. arXiv:2003.07907 (2020).
- 101.Amoretti, M. & Carretta, S. Entanglement verification in quantum networks with tampered nodes. IEEE J. Sel. Areas Commun.. 10.1109/JSAC.2020.2967955 (2020).
- 102.Cao, Y. et al. Multi-tenant provisioning for quantum key distribution networks with heuristics and reinforcement learning: a comparative study. IEEE Trans. Netw. Serv. Manag.. 10.1109/TNSM.2020.2964003 (2020).
- 103.Cao, Y. et al. Key as a service (KaaS) over quantum key distribution (QKD)-integrated optical networks. IEEE Commun. Mag.. 10.1109/MCOM.2019.1701375 (2019).
- 104.Liu, Y. Preliminary study of connectivity for quantum key distribution network. arXiv:2004.11374v1 (2020).
- 105.Amer, O., Krawec, W. O. & Wang, B. Efficient routing for quantum key distribution networks. arXiv:2005.12404 (2020).
- 106.Chai, G. et al. Blind channel estimation for continuous-variable quantum key distribution, Quantum Eng.10.1002/que2.37 (2020).
- 107.Sun, F. Performance analysis of quantum channels, Quantum Eng.10.1002/que2.35 (2020).
- 108.Krisnanda T, et al. Probing quantum features of photosynthetic organisms. NPJ Quantum Inf. 2018;4:60. [Google Scholar]
- 109.Krisnanda T, et al. Revealing nonclassicality of inaccessible objects. Phys. Rev. Lett. 2017;119:120402. doi: 10.1103/PhysRevLett.119.120402. [DOI] [PubMed] [Google Scholar]
- 110.Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going beyond Bell’s theorem. arXiv:0712.0921 (2007).
- 111.Gyongyosi L, Imre S. Routing space exploration for scalable routing in the quantum internet. Sci. Rep. 2020 doi: 10.1038/s41598-020-68354-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett.121. arXiv:1804.09139 (2018). [DOI] [PubMed]
- 113.Gisin N, Thew R. Quantum communication. Nat. Photon. 2007;1:165–171. [Google Scholar]
- 114.Xiao YF, Gong Q. Optical microcavity: from fundamental physics to functional photonics devices. Sci. Bull. 2016;61:185–186. [Google Scholar]
- 115.Zhang W, et al. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 2017;118:220501. doi: 10.1103/PhysRevLett.118.220501. [DOI] [PubMed] [Google Scholar]
- 116.Enk SJ, Cirac JI, Zoller P. Photonic channels for quantum communication. Science. 1998;279:205–208. doi: 10.1126/science.279.5348.205. [DOI] [PubMed] [Google Scholar]
- 117.Duan LM, Lukin MD, Cirac JI, Zoller P. Long-distance quantum communication with atomic ensembles and linear optics. Nature. 2001;414:413–418. doi: 10.1038/35106500. [DOI] [PubMed] [Google Scholar]
- 118.Zhao B, Chen ZB, Chen YA, Schmiedmayer J, Pan JW. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 2007;98:240502. doi: 10.1103/PhysRevLett.98.240502. [DOI] [PubMed] [Google Scholar]
- 119.Goebel AM, Wagenknecht G, Zhang Q, Chen Y, Chen K, Schmiedmayer J, Pan JW. Multistage entanglement swapping. Phys. Rev. Lett. 2008;101:080403. doi: 10.1103/PhysRevLett.101.080403. [DOI] [PubMed] [Google Scholar]
- 120.Tittel W, Afzelius M, Chaneliere T, Cone RL, Kroll S, Moiseev SA, Sellars M. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 2009;4:244–267. [Google Scholar]
- 121.Dur W, Briegel HJ. Entanglement purification and quantum error correction. Rep. Prog. Phys. 2007;70:1381–1424. [Google Scholar]
- 122.Sheng YB, Zhou L. Distributed secure quantum machine learning. Sci. Bull. 2017;62:1025–1019. doi: 10.1016/j.scib.2017.06.007. [DOI] [PubMed] [Google Scholar]
- 123.Leung D, Oppenheim J, Winter A. Quantum network communication: the butterfly and beyond. IEEE Trans. Inf. Theory. 2010;56:3478–3490. [Google Scholar]
- 124.Kobayashi, H., Le Gall, F., Nishimura, H. & Rotteler, M. Perfect quantum network communication protocol based on classical network coding. In Proceedings of 2010 IEEE International Symposium on Information Theory (ISIT), 2686–2690 (2010).
- 125.Nagy, P. Thermodynamics of society. In Proceedings of GAMF, Vol. 12 (1995).
- 126.Katz A. Principles of Statistical Mechanics (The Information Theory Approach) London: Freeman; 1967. [Google Scholar]
- 127.Mouritsen OG. Computer Studies of Phase Transitions and Critical Phenomena. Heidelberg: Springer; 1984. [Google Scholar]
- 128.Gyongyosi, L., Imre, S. & Nguyen, H. V. A survey on quantum channel capacities. IEEE Commun. Surv. Tutorials. 10.1109/COMST.2017.2786748 (2018).
- 129.Moran MJ, Shapiro HN. Fundamentals of Engineering Thermodynamics. 3rd ed. New York: Wiley; 1996. [Google Scholar]
- 130.Callen HB. Thermodynamics and an Introduction to Thermostatistics. 2nd ed. New York: Wiley; 1985. [Google Scholar]
- 131.Alberty RA. Use of Legendre transforms in chemical thermodynamics. Pure Appl. Chem. 2001;73(8):1349–1380. doi: 10.1351/pac200173081349. [DOI] [Google Scholar]
- 132.Shavit, A. & Gutfinger, C. Thermodynamics, From Concepts to Applications 2nd ed. (CRC Press, Boca Raton, 2009) (ISBN 978-1-420-07368-3).
- 133.Nash, L. K. Elements of Statistical Thermodynamics. Principles of Chemistry 2nd ed. (Addison-Wesley, Boston, 1974) (ISBN 0-201-05229-6).
- 134.Mandl, F. Statistical Physics. Manchester Physics 2nd ed. (Wiley, New York, 2008) (ISBN 978-0-471-56658-8).
- 135.Ives, D. J. G. Chemical Thermodynamics. University Chemistry (Macdonald Technical and Scientific, 1971) (ISBN 0-356-03736-3).
- 136.Evans, D. J., Searles, D. J. & Mittag, E. Fluctuation theorem for Hamiltonian systems–Le Chatelier’s principle. Phys. Rev. E63, 051105(4) (2001). [DOI] [PubMed]
- 137.Tatsuo, H. Le Chatelier principle. In The New Palgrave: A Dictionary of Economics, Vol. 3, 155–57 (1987).
- 138.Deutsch D, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 1996;77:2818. doi: 10.1103/PhysRevLett.77.2818. [DOI] [PubMed] [Google Scholar]
- 139.Bennett CH, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996;76:722. doi: 10.1103/PhysRevLett.76.722. [DOI] [PubMed] [Google Scholar]
- 140.Bennett CH, et al. Mixed-state entanglement and quantum error correction. Phys. Rev. A. 1996;54:3824. doi: 10.1103/physreva.54.3824. [DOI] [PubMed] [Google Scholar]
- 141.Aida M, Takano C, Murata M. Oscillation model for describing network dynamics caused by asymmetric node interaction. IEICE Trans. Commun. 2018;E101.B(1):123–136. [Google Scholar]
- 142.Chung, F. R. K. Lectures on spectral graph theory. In CBMS Lecture Notes (AMS Publications, Providence, 1995).
- 143.Spielman, D. Spectral graph theory. In Combinatorial Scientific Computing (eds. Naumann, U. et al.) 495–524 (CRC, Boca Raton, 2012).
- 144.Newman, M. E. J. The graph Laplacian. In Networks: An Introduction, Section 6.13, 152–157 (Oxford University Press, 2010).
- 145.Gyongyosi, L. Services for the Quantum Internet. DSc Dissertation, Hungarian Academy of Sciences (MTA) (2020).
- 146.Lloyd S. Capacity of the noisy quantum channel. Phys. Rev. A. 1997;55:1613–1622. [Google Scholar]
- 147.Toda M, Kubo R, Saito N. Statistical Physics I: Equilibrium Statistical Mechanics. Berlin: Springer; 1992. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
This work does not have any experimental data.