Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jul 17;76(Pt 8):1311–1315. doi: 10.1107/S2056989020009512

Syntheses and crystal structures of the anhydride 4-oxa­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione and the related imide 4-(4-bromo­phen­yl)-4-aza­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione

Andrew Hulsman a, Isabel Lorenzana a, Theodore Schultz a, Breezy Squires a, Brock A Stenfors a, Mason Tolonen a, Richard J Staples b, Shannon M Biros a, William R Winchester a,*
PMCID: PMC7405554  PMID: 32844020

The Diels–Alder cyclo­addition of cyclo­hepta­triene and maleic anhydride produces the title carb­oxy­lic anhydride; reaction of this anhydride with 4-bromo­phenyl­aniline forms the corresponding tetra­cyclic imide. The anhydride features C—H⋯O hydrogen bonds in the solid state, while the imide also features C—H⋯O hydrogen bonds as well as C—H⋯π and lone pair–π inter­actions.

Keywords: crystal structure, C-H⋯O hydrogen bond, C-H⋯π inter­action, lone pair–π inter­action, bi­cyclo­[2.2.2]octene

Abstract

The syntheses and crystal structures of the two title compounds, C11H10O3 (I) and C17H14BrNO2 (II), both containing the bi­cyclo­[2.2.2]octene ring system, are reported here [the structure of I has been reported previously: White & Goh (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England]. The bond lengths and angles of the bi­cyclo­[2.2.2]octene ring system are similar for both structures. The imide functional group of II features carbonyl C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The five-membered imide ring is nearly planar, and it is positioned exo relative to the alkene bridgehead carbon atoms of the bi­cyclo­[2.2.2]octene ring system. Non-covalent inter­actions present in the crystal structure of II include a number of C—H⋯O inter­actions. The extended structure of II also features C—H⋯O hydrogen bonds as well as C—H⋯π and lone pair–π inter­actions, which combine together to create supra­molecular sheets.

Chemical context  

Cyclo­hepta­triene, a, exhibits valence isomerism with norcaradiene, b, in solution (Fig. 1). The norcaradiene isomer readily reacts with maleic anhydride, c, to form the unique tricyclic anhydride, I (White & Goh, 2014). This reaction has been known since 1939 (Kohler et al., 1939), but the structure of the major product was not determined until 1953, when it was elucidated that the product contained a cyclo­propane ring (Alder & Jacobs, 1953). The combination of a rigid tricyclic structure with alkene, anhydride and cyclo­propane functional groups makes this structure inter­esting as a scaffold for drug design because of the ability to specifically place groups in mol­ecular space and thus design mol­ecules to inter­act selectively with protein active sites.graphic file with name e-76-01311-scheme1.jpg

Figure 1.

Figure 1

Valence isomerism of cyclo­hepta­triene a with norcaradiene b, then the Diels–Alder reaction with maleic anhydride c to give the title anhydride I.

In a high-throughput screen of 356,000 compounds for activity against vaccinia and cowpox viruses, Bailey et al. (2007) discovered anti­viral activity of imide derivatives related to I, including e (tecovirimat, C19H15F3N2O3; Fig. 2). SAR studies showed that this derivative was the most active of the entire library, and its mode of action was to inhibit extracellular virus formation. Inter­estingly, hydrogenation of the alkene had little effect on the activity of the compound. Tecoviramat has been approved as a treatment for smallpox, and the United States has created a stockpile of two million doses stored at the US Strategic National Stockpile (Hughes, 2019).

Figure 2.

Figure 2

Synthesis of the smallpox anti­viral compound Tecovirimat, and the title imide II, which both use anhydride I as the starting material.

Substituted anilines, such as p-bromo­aniline f, have also been reacted with the anhydride I to form imides that show insecticidal activity (Fig. 2, Brechbuhler & Petitpierre, 1975). A wide range of imides were synthesized, including compound II, and were shown to protect crops by inhibiting the growth of lepidoptera. Finally, we note that all of these imide derivatives will undergo a retro-Diels–Alder cyclo­addition to form cyclo­hepta­triene and a substituted male­imide. Structural investigations have shown that there is an increase in the length of the C—C bonds that are involved in the retro-Diels–Alder reaction relative to the other C—C bonds in the mol­ecule (Birney et al., 2002; Pool et al., 2000). Herein we report the syntheses and crystal structures of the anhydride I and imide II. The structure of the anhydride was previously reported as a Private Communication to the CSD (refcode HOKRIK; White & Goh, 2014).

Structural commentary  

The structure of the title anhydride I was solved in the monoclinic space group P21/n with two mol­ecules in the asymmetric unit. The atom labeling scheme (starting with C1 and C1a for the two mol­ecules) is shown in Fig. 3. This structure is quite similar with respect to the bond lengths and angles described below for the imide II. The bond lengths of the carbonyl groups of the anhydride are shorter than the imide, as expected, with C1=O1 = 1.1943 (18), C2=O2 = 1.1904 (17), C1—O3 = 1.3868 (17) and C2—O3 = 1.3978 (16) Å. The corresponding data for the C1a mol­ecule are 1.1913 (17), 1.1871 (18), 1.3855 (17) and 1.3905 (18) Å, respectively. The configurations of the stereogenic centres in the arbitrarily chosen asymmetric mol­ecules are: C3 S, C4 R, C5 R, C8 S, C9 S, C10 R and C3a R, C4a S, C5a S, C8a R, C9a R, C10a S: crystal symmetry generates a racemic mixture in the bulk.

Figure 3.

Figure 3

The mol­ecular structure of the anhydride I, with the atom-labeling scheme for both crystallographically unique mol­ecules. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.

The structure of the imide II was solved in the monoclinic space group P21/n, and its atom labeling scheme is shown in Fig. 4. The imide functional group of this structure has C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The O—C—N bond angles of the imide functional group are 123.98 (17) and 123.97 (17)°. The aromatic ring, C12–C17, is oriented nearly perpendicular to the plane containing the atoms of the imide functional group with a C1—N1—C12—C17 torsion angle of 65.0 (2)°. The five-membered ring that contains the imide functional group (–C1—N1—C2—C4—C3–) is close to planar with a Cremer–Pople τ value of 2.8 (Cremer & Pople, 1975). When considering the bi­cyclo­[2.2.2]octene ring system (C3–C10), both C11 and the atoms of the imide functional group are oriented exo relative to the bridgehead alkene carbon atoms C6–C7. The length of the C6=C7 double bond is 1.324 (3) Å, and the cyclo­propyl ring C9–C11 has C—C—C bond angles ranging from 59.89 (13)–60.14 (14)°. The stereogenic centres in the asymmetric mol­ecule of II are C3 R, C4 S, C5 S, C8 R, C9 R and C10 S; again, crystal symmetry generates a racemic mixture.

Figure 4.

Figure 4

The mol­ecular structure of the imide II, with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.

Supra­molecular features  

The extended structure of the anhydride I is dominated by C—H⋯O hydrogen bonds (Sutor, 1962, 1963; Steiner, 1996) involving both carbonyl groups as acceptors (Table 1, Fig. 5). The DA distances range from 3.1897 (16) to 3.4882 (17) Å with D—H⋯A angles ranging from 119 to 159°; the C9 bond is likely very weak based on its H⋯A distance of 2.73 Å. Combined together, these inter­actions create supra­molecular sheets that lie in the ab plane.

Table 1. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 1.00 2.64 3.4882 (17) 143
C3—H3⋯O2A ii 1.00 2.54 3.2487 (17) 128
C4—H4⋯O2A ii 1.00 2.43 3.1897 (16) 133
C7—H7⋯O1A iii 0.95 2.56 3.4652 (18) 159
C8A—H8A⋯O1A iv 1.00 2.59 3.2521 (17) 123
C9—H9⋯O3v 1.00 2.73 3.3409 (17) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 5.

Figure 5

Depiction of the C—H⋯O hydrogen bonds (blue, dashed lines) present in the crystal of anhydride I, using a ball-and-stick model. For clarity, only those hydrogen atoms involved in an inter­action are shown. Symmetry codes: (i) −x + 2, −y + 1, −z; (ii) x + 1, y, z; (iii) −x + 1, −y + 1, −z; (iv) −x + 1, −y + 2, −z; (v) x, y + 1, z.

In the crystal of the imide II, the mol­ecules are linked by C—H⋯O hydrogen bonds as well as C—H⋯π and C—Br⋯π inter­actions (Table 2, Fig. 6). The C—H⋯O hydrogen bond is between C17—H17 of the aromatic ring and O2 of an imide carbonyl group. This hydrogen bond has a D⋯A distance of 3.175 (2) Å with a D—H⋯A angle of 139°. The C—H⋯π inter­action is between C3—H3, which is α to the carbonyl group C1(O1), and the aromatic ring C12–C17. This inter­action has a H⋯Cg distance of 3.801 (2) Å (where Cg is the centroid of the C12–C17 ring), with a C—H⋯Cg angle of 165°. The aromatic ring C12–C17 bears an electron-withdrawing bromine atom, and accepts a lone pair(LP)–π inter­action from the bromine atom of a nearby mol­ecule (Mooibroek, et al., 2008). This LP–π inter­action has a Br⋯Cg distance of 3.5854 (8) Å with a C15—Br1⋯Cg angle of 87.43 (6)°. Dimers of imide II are formed via the Br⋯π inter­actions, and these dimers are linked into supra­molecular sheets that lie along (010) by the C—H⋯O and C—H⋯π inter­actions (Fig. 7).

Table 2. Hydrogen-bond geometry (Å, °) for II .

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.95 2.40 3.175 (2) 139
C3—H3⋯Cg1ii 1.00 2.83 3.801 (2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 6.

Figure 6

Non-covalent inter­actions present in the crystal of imide II, using a ball-and-stick model. Only those hydrogen atoms involved in an inter­action are shown for clarity. C—H⋯O hydrogen bonds are shown with purple, dashed lines, while C—H⋯π and C—Br⋯π inter­actions are shown with green, dashed lines. Symmetry codes: (i) x, y − 1, z; (ii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic.

Figure 7.

Figure 7

A view of the packing in the crystal of imide II, as viewed down the b axis. C—H⋯O hydrogen bonds are shown with purple, dashed lines, while C—H⋯π and C—Br⋯π inter­actions are shown with green, dashed lines. For clarity, only those hydrogen atoms involved in a non-covalent inter­action are shown.

Database survey  

The structure of the anhydride I has been deposited in the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016) as a Private Communication from White & Goh (2014, refcode HOKRIK). The acquisition temperature for this data set was 130 K, versus 173 K for the structure reported here. Other than this, the structures are nearly identical. A search of the CSD for structures containing the same bi­cyclo­[2.2.2]octene ring system bearing a cyclic anhydride shows 52 hits (including HOKRIK). Of these, an inter­esting structure is FAXPAV (Coxon et al., 1986), which bears a very complex fused-ring system in the place of the cyclo­propane ring on anhydride I.

A search of the CSD for structures containing a bi­cyclo[2.2.2]octene ring system fused to a cyclic imide resulted in 125 structures related to imide II. Structure COZMAH (Wu et al., 2014) also bears a p-bromo­benzene ring bonded to the imide nitro­gen atom, but is derivatized with two esters and an indole ring on the octene portion of the ring system. The structure of tecovirimat (e, Fig. 2) has been deposited as SOKVIY (Bailey et al., 2007). Finally, structure HARNEV bears two cyclic imide groups on either side of the octene ring system (Song et al., 2012).

Synthesis and crystallization  

Synthesis of the anhydride (I):

Cyclo­hepta­triene (1.38 g, 15 mmol) and maleic anhydride (1.37 g, 14 mmol) were added to an oven-dried round-bottom flask containing 10 ml of xylene and the mixture was refluxed for 1.5 h. Approximately half of the xylenes were distilled off via short-path distillation and the reaction mixture was left to cool at room temperature. The round-bottom flask was fitted with a stopper and left to recrystallize for 48 h to afford large, cream-colored needles. The product was recrystallized once more by dissolving in 8 ml of xylene: after a week at room temperature, the pure product I was obtained in the form of large colorless crystals (1.13 g, 40%, m.p. = 372–374 K). 1H NMR (400 MHz, chloro­form-d) δ 5.88 (dd, J = 4.8, 3.2 Hz, 2H), 3.46 (dh, J = 6.6, 2.1 Hz, 2H), 3.23 (dd, J = 2.1, 1.6 Hz, 2H), 1.17–1.04 (m, 4H). 13C NMR (101 MHz, chloro­form-d) δ 172.45, 128.55, 45.88, 33.65, 9.56, 5.24.

Synthesis of the imide (II):

Compound I (0.28 g, 1.47 mmol) and p-bromo­aniline (0.25 g, 1.45 mmol) were added to a vial containing 5 ml of xylene and the mixture was refluxed for 5 min. The mixture was then cooled to room temperature and left for 5 days in a sealed vial. The precipitate was recrystallized from ethanol solution to yield colorless needle-like crystals of II (0.27 g, 52% yield, m.p. = 465–467 K). 1H NMR (400 MHz, chloro­form-d) δ 7.54 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 5.84 (dd, J = 4.7, 3.4 Hz, 1H), 3.48 (s, 1H), 3.12 (s, 1H), 1.14 (s, 1H), 0.38–0.21 (m, 1H). 13C NMR (101 MHz, chloro­form-d) δ 177.42, 132.34, 130.88, 128.11, 127.92, 122.47, 45.40, 33.90, 9.97, 4.80.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For both structures, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.95–1.00 Å with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C11H10O3 C17H14BrNO2
M r 190.19 344.20
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 11.3538 (3), 7.4062 (2), 20.5398 (5) 12.49907 (16), 6.41302 (8), 17.8772 (2)
β (°) 92.6226 (15) 99.8083 (6)
V3) 1725.35 (8) 1412.04 (3)
Z 8 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.88 4.00
Crystal size (mm) 0.53 × 0.32 × 0.22 0.42 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.675, 0.754 0.578, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 13466, 3353, 3070 23789, 2683, 2441
R int 0.028 0.039
(sin θ/λ)max−1) 0.618 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.116, 1.06 0.027, 0.072, 1.04
No. of reflections 3353 2683
No. of parameters 253 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.40 0.56, −0.48

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) and CrystalMaker (Palmer, 2007).

Supplementary Material

Crystal structure: contains datablock(s) global, II, I. DOI: 10.1107/S2056989020009512/hb7931sup1.cif

e-76-01311-sup1.cif (890.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020009512/hb7931Isup3.hkl

e-76-01311-Isup3.hkl (184.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020009512/hb7931IIsup4.hkl

e-76-01311-IIsup4.hkl (147.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020009512/hb7931Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020009512/hb7931IIsup5.cml

CCDC references: 2015807, 2015806

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Pfizer, Inc. for the donation of the Varian INOVA 400 F T NMR spectrometer. We thank the MSU Chemistry Department for purchasing/upgrading the CCD-based X-ray diffractometers, and the National Science Foundation for support from the MRI program to purchase the Rigaku Synergy S. Diffractometer (MSU).

supplementary crystallographic information

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Crystal data

C11H10O3 F(000) = 800
Mr = 190.19 Dx = 1.464 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 11.3538 (3) Å Cell parameters from 8934 reflections
b = 7.4062 (2) Å θ = 3.9–72.4°
c = 20.5398 (5) Å µ = 0.88 mm1
β = 92.6226 (15)° T = 173 K
V = 1725.35 (8) Å3 Chunk, colourless
Z = 8 0.53 × 0.32 × 0.22 mm

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Data collection

Bruker APEXII CCD diffractometer 3070 reflections with I > 2σ(I)
φ and ω scans Rint = 0.028
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 72.4°, θmin = 4.3°
Tmin = 0.675, Tmax = 0.754 h = −14→13
13466 measured reflections k = −9→9
3353 independent reflections l = −25→25

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.5724P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3353 reflections Δρmax = 0.22 e Å3
253 parameters Δρmin = −0.40 e Å3
0 restraints

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.92952 (11) 0.22515 (15) 0.01539 (5) 0.0378 (3)
O2 0.91944 (10) 0.21601 (15) 0.23113 (5) 0.0354 (3)
O3 0.92868 (9) 0.18344 (13) 0.12312 (5) 0.0287 (2)
C1 0.92625 (12) 0.29232 (19) 0.06814 (7) 0.0249 (3)
C2 0.92145 (12) 0.28818 (19) 0.17941 (7) 0.0243 (3)
C3 0.92092 (11) 0.48779 (18) 0.08716 (6) 0.0212 (3)
H3 0.9931 0.5521 0.0734 0.025*
C4 0.91806 (11) 0.48510 (18) 0.16185 (6) 0.0206 (3)
H4 0.9892 0.5477 0.1814 0.025*
C5 0.80361 (12) 0.57992 (19) 0.18403 (6) 0.0240 (3)
H5 0.7976 0.5761 0.2324 0.029*
C6 0.70138 (12) 0.4864 (2) 0.14922 (7) 0.0284 (3)
H6 0.6400 0.4300 0.1717 0.034*
C7 0.70364 (12) 0.4889 (2) 0.08459 (8) 0.0288 (3)
H7 0.6438 0.4348 0.0573 0.035*
C8 0.80824 (12) 0.58391 (19) 0.05799 (6) 0.0245 (3)
H8 0.8054 0.5833 0.0093 0.029*
C9 0.81906 (12) 0.77608 (19) 0.08545 (7) 0.0259 (3)
H9 0.8782 0.8575 0.0659 0.031*
C10 0.81589 (12) 0.77348 (19) 0.15890 (7) 0.0255 (3)
H10 0.8732 0.8536 0.1835 0.031*
C11 0.71901 (13) 0.8646 (2) 0.11912 (8) 0.0317 (3)
H11C 0.7163 0.9982 0.1197 0.038*
H11D 0.6410 0.8046 0.1159 0.038*
O1A 0.45014 (10) 0.77462 (14) 0.02985 (5) 0.0328 (3)
O2A 0.12278 (10) 0.77025 (15) 0.13936 (6) 0.0386 (3)
O3A 0.28206 (9) 0.73501 (13) 0.08039 (5) 0.0313 (3)
C1A 0.36811 (12) 0.84253 (19) 0.05447 (6) 0.0241 (3)
C2A 0.19782 (12) 0.8398 (2) 0.10974 (7) 0.0270 (3)
C3A 0.34016 (11) 1.03897 (17) 0.06434 (6) 0.0206 (3)
H3A 0.3307 1.1025 0.0215 0.025*
C4A 0.22267 (11) 1.03737 (18) 0.09904 (6) 0.0219 (3)
H4A 0.1585 1.0939 0.0710 0.026*
C5A 0.23788 (12) 1.13775 (19) 0.16575 (6) 0.0239 (3)
H5A 0.1634 1.1373 0.1899 0.029*
C6A 0.33646 (12) 1.04165 (19) 0.20315 (6) 0.0254 (3)
H6A 0.3267 0.9881 0.2446 0.031*
C7A 0.43832 (12) 1.03759 (19) 0.17356 (6) 0.0240 (3)
H7A 0.5066 0.9791 0.1919 0.029*
C8A 0.43686 (11) 1.13289 (18) 0.10893 (6) 0.0216 (3)
H8A 0.5158 1.1289 0.0893 0.026*
C9A 0.39235 (12) 1.32691 (19) 0.11555 (7) 0.0250 (3)
H9A 0.4001 1.4080 0.0771 0.030*
C10A 0.27558 (12) 1.32973 (19) 0.14820 (7) 0.0260 (3)
H10A 0.2131 1.4120 0.1293 0.031*
C11A 0.38257 (13) 1.4167 (2) 0.18102 (7) 0.0307 (3)
H11A 0.4195 1.3554 0.2196 0.037*
H11B 0.3854 1.5503 0.1826 0.037*

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0524 (7) 0.0336 (6) 0.0279 (6) 0.0065 (5) 0.0060 (5) −0.0079 (4)
O2 0.0469 (7) 0.0310 (6) 0.0285 (5) −0.0024 (5) 0.0018 (5) 0.0078 (4)
O3 0.0367 (6) 0.0208 (5) 0.0286 (5) 0.0005 (4) 0.0026 (4) −0.0004 (4)
C1 0.0235 (6) 0.0260 (7) 0.0255 (7) 0.0018 (5) 0.0032 (5) −0.0010 (5)
C2 0.0223 (6) 0.0261 (7) 0.0246 (7) −0.0028 (5) 0.0009 (5) 0.0001 (5)
C3 0.0198 (6) 0.0226 (6) 0.0212 (6) −0.0012 (5) 0.0027 (5) −0.0005 (5)
C4 0.0186 (6) 0.0226 (6) 0.0205 (6) −0.0031 (5) 0.0007 (5) −0.0005 (5)
C5 0.0220 (6) 0.0265 (7) 0.0238 (6) −0.0006 (5) 0.0050 (5) −0.0031 (5)
C6 0.0192 (6) 0.0274 (7) 0.0391 (8) −0.0028 (5) 0.0066 (6) −0.0035 (6)
C7 0.0210 (7) 0.0274 (7) 0.0375 (8) −0.0006 (5) −0.0039 (6) −0.0077 (6)
C8 0.0253 (7) 0.0258 (7) 0.0220 (6) 0.0028 (5) −0.0025 (5) −0.0014 (5)
C9 0.0263 (7) 0.0232 (7) 0.0281 (7) 0.0024 (5) −0.0008 (5) 0.0013 (5)
C10 0.0245 (7) 0.0241 (7) 0.0279 (7) 0.0000 (5) 0.0004 (5) −0.0051 (5)
C11 0.0281 (7) 0.0269 (7) 0.0398 (8) 0.0063 (6) −0.0011 (6) −0.0046 (6)
O1A 0.0345 (6) 0.0312 (5) 0.0329 (5) 0.0046 (4) 0.0041 (4) −0.0083 (4)
O2A 0.0344 (6) 0.0365 (6) 0.0454 (7) −0.0156 (5) 0.0066 (5) 0.0019 (5)
O3A 0.0321 (6) 0.0218 (5) 0.0399 (6) −0.0027 (4) 0.0022 (4) −0.0014 (4)
C1A 0.0268 (7) 0.0251 (7) 0.0201 (6) −0.0015 (5) −0.0031 (5) −0.0024 (5)
C2A 0.0242 (7) 0.0278 (7) 0.0287 (7) −0.0053 (5) −0.0024 (5) −0.0007 (6)
C3A 0.0226 (6) 0.0217 (6) 0.0175 (6) 0.0003 (5) 0.0003 (5) 0.0014 (5)
C4A 0.0188 (6) 0.0245 (7) 0.0221 (6) −0.0008 (5) −0.0009 (5) 0.0019 (5)
C5A 0.0211 (6) 0.0275 (7) 0.0236 (6) −0.0012 (5) 0.0050 (5) −0.0008 (5)
C6A 0.0284 (7) 0.0299 (7) 0.0180 (6) −0.0031 (6) 0.0009 (5) 0.0014 (5)
C7A 0.0237 (6) 0.0266 (7) 0.0215 (6) 0.0004 (5) −0.0031 (5) −0.0011 (5)
C8A 0.0194 (6) 0.0239 (7) 0.0218 (6) −0.0021 (5) 0.0031 (5) −0.0018 (5)
C9A 0.0260 (7) 0.0225 (7) 0.0267 (7) −0.0031 (5) 0.0046 (5) −0.0005 (5)
C10A 0.0261 (7) 0.0239 (7) 0.0282 (7) 0.0029 (5) 0.0043 (5) −0.0021 (5)
C11A 0.0328 (8) 0.0265 (7) 0.0330 (8) −0.0023 (6) 0.0037 (6) −0.0070 (6)

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Geometric parameters (Å, º)

O1—C1 1.1943 (18) O1A—C1A 1.1913 (17)
O2—C2 1.1904 (17) O2A—C2A 1.1871 (18)
O3—C1 1.3868 (17) O3A—C1A 1.3855 (17)
O3—C2 1.3978 (16) O3A—C2A 1.3905 (18)
C1—C3 1.5014 (18) C1A—C3A 1.5048 (18)
C2—C4 1.5024 (18) C2A—C4A 1.5080 (19)
C3—H3 1.0000 C3A—H3A 1.0000
C3—C4 1.5360 (17) C3A—C4A 1.5409 (17)
C3—C8 1.5596 (18) C3A—C8A 1.5607 (17)
C4—H4 1.0000 C4A—H4A 1.0000
C4—C5 1.5631 (17) C4A—C5A 1.5616 (18)
C5—H5 1.0000 C5A—H5A 1.0000
C5—C6 1.5040 (19) C5A—C6A 1.5068 (19)
C5—C10 1.5321 (19) C5A—C10A 1.5326 (19)
C6—H6 0.9500 C6A—H6A 0.9500
C6—C7 1.329 (2) C6A—C7A 1.3312 (19)
C7—H7 0.9500 C7A—H7A 0.9500
C7—C8 1.504 (2) C7A—C8A 1.5028 (18)
C8—H8 1.0000 C8A—H8A 1.0000
C8—C9 1.5337 (19) C8A—C9A 1.5313 (19)
C9—H9 1.0000 C9A—H9A 1.0000
C9—C10 1.5110 (19) C9A—C10A 1.5131 (18)
C9—C11 1.5066 (19) C9A—C11A 1.5091 (19)
C10—H10 1.0000 C10A—H10A 1.0000
C10—C11 1.500 (2) C10A—C11A 1.507 (2)
C11—H11C 0.9900 C11A—H11A 0.9900
C11—H11D 0.9900 C11A—H11B 0.9900
C1—O3—C2 110.55 (11) C1A—O3A—C2A 110.90 (11)
O1—C1—O3 119.75 (13) O1A—C1A—O3A 119.95 (13)
O1—C1—C3 129.86 (13) O1A—C1A—C3A 129.73 (13)
O3—C1—C3 110.39 (11) O3A—C1A—C3A 110.31 (11)
O2—C2—O3 119.55 (13) O2A—C2A—O3A 120.26 (14)
O2—C2—C4 130.45 (13) O2A—C2A—C4A 129.74 (14)
O3—C2—C4 110.00 (11) O3A—C2A—C4A 109.97 (11)
C1—C3—H3 110.1 C1A—C3A—H3A 110.6
C1—C3—C4 104.49 (10) C1A—C3A—C4A 104.31 (11)
C1—C3—C8 112.48 (11) C1A—C3A—C8A 111.28 (11)
C4—C3—H3 110.1 C4A—C3A—H3A 110.6
C4—C3—C8 109.58 (10) C4A—C3A—C8A 109.43 (10)
C8—C3—H3 110.1 C8A—C3A—H3A 110.6
C2—C4—C3 104.53 (10) C2A—C4A—C3A 104.27 (11)
C2—C4—H4 110.0 C2A—C4A—H4A 110.7
C2—C4—C5 112.25 (11) C2A—C4A—C5A 110.36 (11)
C3—C4—H4 110.0 C3A—C4A—H4A 110.7
C3—C4—C5 109.95 (10) C3A—C4A—C5A 109.80 (10)
C5—C4—H4 110.0 C5A—C4A—H4A 110.7
C4—C5—H5 111.9 C4A—C5A—H5A 111.8
C6—C5—C4 106.76 (11) C6A—C5A—C4A 105.79 (10)
C6—C5—H5 111.9 C6A—C5A—H5A 111.8
C6—C5—C10 110.54 (12) C6A—C5A—C10A 110.44 (11)
C10—C5—C4 103.44 (10) C10A—C5A—C4A 104.84 (10)
C10—C5—H5 111.9 C10A—C5A—H5A 111.8
C5—C6—H6 122.6 C5A—C6A—H6A 122.6
C7—C6—C5 114.75 (12) C7A—C6A—C5A 114.74 (12)
C7—C6—H6 122.6 C7A—C6A—H6A 122.6
C6—C7—H7 122.6 C6A—C7A—H7A 122.6
C6—C7—C8 114.89 (12) C6A—C7A—C8A 114.71 (12)
C8—C7—H7 122.6 C8A—C7A—H7A 122.6
C3—C8—H8 111.8 C3A—C8A—H8A 111.7
C7—C8—C3 107.11 (11) C7A—C8A—C3A 106.74 (10)
C7—C8—H8 111.8 C7A—C8A—H8A 111.7
C7—C8—C9 110.60 (11) C7A—C8A—C9A 110.65 (11)
C9—C8—C3 103.41 (10) C9A—C8A—C3A 104.13 (10)
C9—C8—H8 111.8 C9A—C8A—H8A 111.7
C8—C9—H9 117.1 C8A—C9A—H9A 116.9
C10—C9—C8 110.50 (11) C10A—C9A—C8A 110.59 (11)
C10—C9—H9 117.1 C10A—C9A—H9A 116.9
C11—C9—C8 121.54 (12) C11A—C9A—C8A 122.06 (12)
C11—C9—H9 117.1 C11A—C9A—H9A 116.9
C11—C9—C10 59.62 (9) C11A—C9A—C10A 59.82 (9)
C5—C10—H10 116.9 C5A—C10A—H10A 117.1
C9—C10—C5 110.79 (11) C9A—C10A—C5A 110.56 (11)
C9—C10—H10 116.9 C9A—C10A—H10A 117.1
C11—C10—C5 121.90 (12) C11A—C10A—C5A 121.31 (12)
C11—C10—C9 60.05 (9) C11A—C10A—C9A 59.96 (9)
C11—C10—H10 116.9 C11A—C10A—H10A 117.1
C9—C11—H11C 117.7 C9A—C11A—H11A 117.7
C9—C11—H11D 117.7 C9A—C11A—H11B 117.7
C10—C11—C9 60.33 (9) C10A—C11A—C9A 60.22 (9)
C10—C11—H11C 117.7 C10A—C11A—H11A 117.7
C10—C11—H11D 117.7 C10A—C11A—H11B 117.7
H11C—C11—H11D 114.9 H11A—C11A—H11B 114.9

4-Oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 1.00 2.64 3.4882 (17) 143
C3—H3···O2Aii 1.00 2.54 3.2487 (17) 128
C4—H4···O2Aii 1.00 2.43 3.1897 (16) 133
C7—H7···O1Aiii 0.95 2.56 3.4652 (18) 159
C8A—H8A···O1Aiv 1.00 2.59 3.2521 (17) 123
C9—H9···O3v 1.00 2.73 3.3409 (17) 119

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z; (v) x, y+1, z.

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Crystal data

C17H14BrNO2 F(000) = 696
Mr = 344.20 Dx = 1.619 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 12.49907 (16) Å Cell parameters from 9902 reflections
b = 6.41302 (8) Å θ = 4.7–70.1°
c = 17.8772 (2) Å µ = 4.00 mm1
β = 99.8083 (6)° T = 173 K
V = 1412.04 (3) Å3 Needle, colourless
Z = 4 0.42 × 0.12 × 0.04 mm

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Data collection

Bruker APEXII CCD diffractometer 2441 reflections with I > 2σ(I)
φ and ω scans Rint = 0.039
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 70.2°, θmin = 4.0°
Tmin = 0.578, Tmax = 0.753 h = −15→15
23789 measured reflections k = −7→7
2683 independent reflections l = −21→21

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.033P)2 + 1.1866P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
2683 reflections Δρmax = 0.56 e Å3
190 parameters Δρmin = −0.48 e Å3
0 restraints

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.63472 (2) −0.24792 (4) 0.56752 (2) 0.03728 (10)
O1 0.18672 (12) −0.1467 (3) 0.72460 (9) 0.0360 (4)
O2 0.19184 (11) 0.3903 (2) 0.55825 (8) 0.0307 (3)
N1 0.21210 (12) 0.1061 (2) 0.63812 (8) 0.0204 (3)
C1 0.16094 (14) 0.0182 (3) 0.69397 (10) 0.0237 (4)
C2 0.16488 (15) 0.2941 (3) 0.61018 (11) 0.0218 (4)
C3 0.07071 (14) 0.1617 (3) 0.70770 (10) 0.0233 (4)
H3 0.0846 0.2102 0.7616 0.028*
C4 0.07607 (14) 0.3487 (3) 0.65452 (10) 0.0229 (4)
H4 0.0962 0.4777 0.6851 0.028*
C5 −0.03628 (15) 0.3789 (3) 0.60269 (11) 0.0257 (4)
H5 −0.0355 0.4979 0.5667 0.031*
C6 −0.06246 (15) 0.1766 (3) 0.56169 (11) 0.0288 (4)
H6 −0.0753 0.1670 0.5079 0.035*
C7 −0.06639 (15) 0.0122 (3) 0.60590 (12) 0.0280 (4)
H7 −0.0819 −0.1243 0.5864 0.034*
C8 −0.04426 (14) 0.0588 (3) 0.68951 (11) 0.0258 (4)
H8 −0.0490 −0.0694 0.7206 0.031*
C9 −0.12081 (16) 0.2311 (3) 0.70832 (12) 0.0285 (4)
H9 −0.1212 0.2589 0.7633 0.034*
C10 −0.11491 (16) 0.4179 (3) 0.65832 (12) 0.0300 (4)
H10 −0.1116 0.5579 0.6832 0.036*
C11 −0.21970 (16) 0.2988 (4) 0.65312 (14) 0.0348 (5)
H11A −0.2427 0.2114 0.6076 0.042*
H11B −0.2797 0.3652 0.6741 0.042*
C12 0.31028 (14) 0.0235 (3) 0.61886 (10) 0.0209 (4)
C13 0.40447 (15) 0.1405 (3) 0.63508 (11) 0.0262 (4)
H13 0.4030 0.2752 0.6569 0.031*
C14 0.50106 (16) 0.0594 (3) 0.61918 (11) 0.0296 (4)
H14 0.5662 0.1383 0.6299 0.035*
C15 0.50157 (15) −0.1369 (3) 0.58771 (10) 0.0254 (4)
C16 0.40808 (18) −0.2541 (3) 0.57108 (11) 0.0284 (4)
H16 0.4098 −0.3887 0.5491 0.034*
C17 0.31120 (15) −0.1728 (3) 0.58690 (11) 0.0253 (4)
H17 0.2461 −0.2516 0.5758 0.030*

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03088 (14) 0.04690 (17) 0.03609 (15) 0.01410 (9) 0.01146 (10) −0.00083 (10)
O1 0.0294 (7) 0.0422 (9) 0.0382 (8) 0.0087 (6) 0.0107 (6) 0.0211 (7)
O2 0.0312 (7) 0.0263 (7) 0.0371 (8) 0.0002 (6) 0.0131 (6) 0.0095 (6)
N1 0.0175 (7) 0.0233 (8) 0.0205 (7) −0.0015 (6) 0.0031 (6) 0.0013 (6)
C1 0.0184 (8) 0.0322 (10) 0.0197 (8) −0.0015 (7) 0.0008 (7) 0.0046 (8)
C2 0.0201 (8) 0.0194 (8) 0.0252 (9) −0.0045 (7) 0.0019 (7) −0.0007 (7)
C3 0.0197 (8) 0.0319 (10) 0.0184 (8) −0.0016 (7) 0.0034 (7) 0.0010 (8)
C4 0.0221 (9) 0.0213 (9) 0.0257 (9) −0.0033 (7) 0.0049 (7) −0.0033 (7)
C5 0.0235 (9) 0.0243 (9) 0.0295 (9) 0.0043 (7) 0.0049 (7) 0.0054 (8)
C6 0.0211 (9) 0.0397 (11) 0.0239 (9) 0.0038 (8) −0.0010 (7) −0.0059 (9)
C7 0.0180 (8) 0.0260 (10) 0.0394 (11) −0.0015 (7) 0.0028 (8) −0.0097 (9)
C8 0.0191 (9) 0.0276 (10) 0.0315 (10) −0.0018 (7) 0.0063 (7) 0.0049 (8)
C9 0.0210 (9) 0.0346 (11) 0.0312 (10) −0.0008 (8) 0.0083 (8) −0.0033 (8)
C10 0.0241 (9) 0.0272 (10) 0.0400 (11) 0.0023 (8) 0.0093 (8) −0.0043 (9)
C11 0.0203 (10) 0.0382 (11) 0.0465 (12) 0.0036 (9) 0.0074 (9) −0.0021 (10)
C12 0.0201 (8) 0.0247 (9) 0.0180 (8) 0.0000 (7) 0.0037 (7) 0.0022 (7)
C13 0.0248 (9) 0.0266 (10) 0.0284 (9) −0.0035 (8) 0.0080 (7) −0.0061 (8)
C14 0.0215 (9) 0.0362 (11) 0.0322 (10) −0.0042 (8) 0.0082 (8) −0.0057 (9)
C15 0.0245 (9) 0.0315 (10) 0.0213 (8) 0.0084 (8) 0.0071 (7) 0.0025 (8)
C16 0.0358 (11) 0.0239 (10) 0.0253 (9) 0.0045 (8) 0.0042 (8) −0.0017 (8)
C17 0.0244 (9) 0.0246 (9) 0.0259 (9) −0.0023 (7) 0.0011 (7) 0.0013 (8)

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Geometric parameters (Å, º)

Br1—C15 1.9004 (18) C8—H8 1.0000
O1—C1 1.210 (2) C8—C9 1.536 (3)
O2—C2 1.209 (2) C9—H9 1.0000
N1—C1 1.393 (2) C9—C10 1.504 (3)
N1—C2 1.397 (2) C9—C11 1.508 (3)
N1—C12 1.432 (2) C10—H10 1.0000
C1—C3 1.508 (3) C10—C11 1.506 (3)
C2—C4 1.511 (2) C11—H11A 0.9900
C3—H3 1.0000 C11—H11B 0.9900
C3—C4 1.539 (3) C12—C13 1.384 (3)
C3—C8 1.564 (2) C12—C17 1.383 (3)
C4—H4 1.0000 C13—H13 0.9500
C4—C5 1.557 (3) C13—C14 1.388 (3)
C5—H5 1.0000 C14—H14 0.9500
C5—C6 1.499 (3) C14—C15 1.379 (3)
C5—C10 1.533 (3) C15—C16 1.379 (3)
C6—H6 0.9500 C16—H16 0.9500
C6—C7 1.324 (3) C16—C17 1.391 (3)
C7—H7 0.9500 C17—H17 0.9500
C7—C8 1.503 (3)
C1—N1—C2 112.82 (15) C9—C8—H8 111.8
C1—N1—C12 122.65 (15) C8—C9—H9 116.8
C2—N1—C12 124.12 (15) C10—C9—C8 110.33 (16)
O1—C1—N1 123.98 (17) C10—C9—H9 116.8
O1—C1—C3 127.52 (17) C10—C9—C11 59.97 (14)
N1—C1—C3 108.50 (15) C11—C9—C8 122.38 (18)
O2—C2—N1 123.97 (17) C11—C9—H9 116.8
O2—C2—C4 127.59 (17) C5—C10—H10 116.9
N1—C2—C4 108.43 (15) C9—C10—C5 110.92 (16)
C1—C3—H3 109.6 C9—C10—H10 116.9
C1—C3—C4 105.22 (14) C9—C10—C11 60.14 (14)
C1—C3—C8 113.26 (16) C11—C10—C5 121.61 (18)
C4—C3—H3 109.6 C11—C10—H10 116.9
C4—C3—C8 109.59 (15) C9—C11—H11A 117.8
C8—C3—H3 109.6 C9—C11—H11B 117.8
C2—C4—C3 104.86 (15) C10—C11—C9 59.89 (13)
C2—C4—H4 109.9 C10—C11—H11A 117.8
C2—C4—C5 112.66 (15) C10—C11—H11B 117.8
C3—C4—H4 109.9 H11A—C11—H11B 114.9
C3—C4—C5 109.55 (14) C13—C12—N1 118.82 (16)
C5—C4—H4 109.9 C17—C12—N1 120.27 (16)
C4—C5—H5 111.8 C17—C12—C13 120.88 (17)
C6—C5—C4 106.45 (15) C12—C13—H13 120.2
C6—C5—H5 111.8 C12—C13—C14 119.50 (18)
C6—C5—C10 110.37 (16) C14—C13—H13 120.2
C10—C5—C4 104.30 (15) C13—C14—H14 120.3
C10—C5—H5 111.8 C15—C14—C13 119.34 (18)
C5—C6—H6 122.4 C15—C14—H14 120.3
C7—C6—C5 115.13 (17) C14—C15—Br1 118.97 (15)
C7—C6—H6 122.4 C16—C15—Br1 119.49 (15)
C6—C7—H7 122.7 C16—C15—C14 121.54 (18)
C6—C7—C8 114.59 (18) C15—C16—H16 120.4
C8—C7—H7 122.7 C15—C16—C17 119.14 (18)
C3—C8—H8 111.8 C17—C16—H16 120.4
C7—C8—C3 107.32 (15) C12—C17—C16 119.60 (18)
C7—C8—H8 111.8 C12—C17—H17 120.2
C7—C8—C9 110.18 (16) C16—C17—H17 120.2
C9—C8—C3 103.63 (15)

4-(4-Bromophenyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C12–C17 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17···O2i 0.95 2.40 3.175 (2) 139
C3—H3···Cg1ii 1.00 2.83 3.801 (2) 165

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y+1/2, −z+3/2.

Funding Statement

This work was funded by National Science Foundation grants MRI CHE-1725699, MRI CHE-1919817, and MRI CHE-1919565.

References

  1. Alder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528–1539.
  2. Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442–1444. [DOI] [PMC free article] [PubMed]
  3. Birney, D., Lim, T. K., Koh, J. H. P., Pool, B. R. & White, J. M. (2002). J. Am. Chem. Soc. 124, 5091–5099. [DOI] [PubMed]
  4. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  5. Brechbuhler, H. U. & Petitpierre, C. (1975). US Patent 3,993,662.
  6. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  7. Coxon, J. M., O’Connell, M. J. & Steel, P. J. (1986). Acta Cryst. C42, 1773–1777.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hughes, D. L. (2019). Org. Process Res. Dev. 23, 1298–1307.
  12. Kohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057–1061.
  13. Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515.
  14. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.
  15. Pool, B. R. & White, J. M. (2000). Org. Lett. 2, 3505–3507. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.
  19. Steiner, T. (1996). Crystallogr. Rev. 6, 1–51.
  20. Sutor, D. J. (1962). Nature, 195, 68–69.
  21. Sutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.
  22. White, J. M. & Goh, R. Y. W. (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England.
  23. Wu, X., Huang, J., Guo, B., Zhao, L., Liu, Y., Chen, J. & Cao, W. (2014). Adv. Synth. Catal. 356, 3377–3382.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, II, I. DOI: 10.1107/S2056989020009512/hb7931sup1.cif

e-76-01311-sup1.cif (890.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020009512/hb7931Isup3.hkl

e-76-01311-Isup3.hkl (184.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020009512/hb7931IIsup4.hkl

e-76-01311-IIsup4.hkl (147.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020009512/hb7931Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020009512/hb7931IIsup5.cml

CCDC references: 2015807, 2015806

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES