Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jul 10;76(Pt 8):1255–1259. doi: 10.1107/S2056989020008956

A solid solution of ethyl and d 3-methyl 2-[(4-meth­yl­pyridin-2-yl)amino]-4-(pyridin-2-yl)thia­zole-5-carboxyl­ate

Andreas Beuchel a, Richard Goddard b, Peter Imming a, Rüdiger W Seidel a,*
PMCID: PMC7405567  PMID: 32844009

The crystal structure of a solid solution of ethyl and d 3-methyl 2-[(4-methyl­pyridin-2-yl)amino]-4-(pyridin-2-yl)thia­zole-5-carboxyl­ate is reported.

Keywords: 2-amino­thia­zole, Hantzsch reaction, heterocycle, solid solution, hydrogen bonding, crystal structure

Abstract

The synthesis of ethyl 2-[(4-methyl­pyridin-2-yl)amino)-4-(pyridin-2-yl)thia­zole- 5-carboxyl­ate via the Hantzsch reaction and partial in situ transesterification during recrystallization from methanol-d 4 to the d 3-methyl ester, resulting in the title solid solution, ethyl 2-[(4-methyl­pyridin-2-yl)amino)-4-(pyridin-2-yl)thia­zole-5-carboxyl­ate–d 3-methyl 2-[(4-methyl­pyridin-2-yl)amino)-4-(pyridin-2-yl)thia­zole-5-carboxyl­ate (0.88/0.12), 0.88C17H16N4O2S·0.12C16D3H11N4O2S, is reported. The refined ratio of ethyl to d 3-methyl ester in the crystal is 0.880 (6):0.120 (6). The pyridine ring is significantly twisted out of the plane of the approximately planar picoline thia­zole ester moiety. N—H⋯N hydrogen bonds between the secondary amino group and the pyridine nitro­gen atom of an adjacent symmetry-related mol­ecule link the mol­ecules into polymeric hydrogen-bonded zigzag tapes extending by glide symmetry in the [001] direction. There is structural evidence for intra­molecular N⋯S chalcogen bonding and inter­molecular weak C—H⋯O hydrogen bonds between adjacent zigzag tapes.

Chemical context  

N,4-Diaryl-2-amino­thia­zoles were investigated based on a hit in a screening of 200,000 compounds for anti­leishmanial properties (Bhuniya et al., 2015). Growth inhibition of other microorganisms by this compound class such as plasmodia (Paquet et al., 2012) and mycobacteria (Kesicki et al., 2016) have been reported. A 2-amino­thia­zole cluster of active compounds was discovered and formed the basis of an extensive structure–activity relationship study (Meissner et al., 2013). Makam & Kannan (2014) reported a series of 2-amino­thia­zoles with a wide range of substituents at the 2-, 4- and 5-positions of the central 1,3-thia­zole ring and evaluated the inhibitory potential against Mycobacterium tuberculosis, H37Rv. Apart from desirable pharmacological effects, 2-amino­thia­zoles are also known to be cytotoxic (Meissner et al., 2013). Substitution in the 5-position is a promising approach to reduce the toxicity of this compound class through hindrance of metabolic oxidation reactions in this ring position. Various synthetic routes to substituted 2-amino­thia­zoles have been described (Khalifa, 2018). The Hantzsch reaction using α-haloketones and thio­urea derivatives in polar solvents is a common method (Hantzsch & Weber, 1887; Wang, 2010). Using this method, we prepared ethyl 2-[(4-meth­yl­pyridin-2-yl)amino]-4-(pyridin-2-yl)thia­zole-5-carb­oxy­l­ate (3) from ethyl 2-bromo-3-oxo-3-(pyridin-2-yl)propano­ate hydro­bromide (1) and 1-(4-methyl­pyridin-2-yl)thio­urea (2) in ethanol (Fig. 1) in our ongoing optimization of compounds that inhibit the growth of Mycobacterium abscessus.graphic file with name e-76-01255-scheme1.jpg

Figure 1.

Figure 1

Chemical synthesis of 2-amino­thia­zole 3 from α-bromo­ketone 1 and 1-(4-methyl­pyridin-2-yl)thio­urea (2).

Structural commentary  

Inspection of the difference electron-density map after initial refinement of the structure representing the anti­cipated compound 3 against the data clearly revealed unexpected negative residual electron density around C19, the methyl C atom of the ethyl ester group (Fig. 2, top), indicating that too much electron density was assigned to this site in the model. Taking the crystallization conditions (see section 5) into account, we concluded that partial in situ transesterification, as depicted in Fig. 3, had occurred. Methanol is known to have the strongest replacing power in transesterification reactions (Otera, 1993). After modelling the structure as a solid solution of 3 and the corresponding d 3-methyl ester 4, the negative residual electron density around C19 disappeared (Fig. 2, bottom) and the R 1 factor dropped slightly from 0.0394 to 0.0383. Refinement of the occupancies yielded a ratio of 0.880 (6):0.120 (6) for 3 and 4 in the crystal. The presence of both 3 and 4 in the sample was subsequently confirmed by high-resolution mass spectrometry (see supporting information).

Figure 2.

Figure 2

F obsF calc electron-density maps (isosurface level 0.18 e Å−3). Positive and negative residual electron density shown respectively as green and red mesh. Top: after initial structure refinement as ethyl ester 3. Bottom: after refinement as solid solution of ethyl (3) and d 3-methyl ester (4). The pictures were generated with ShelXle (Hübschle et al., 2011).

Figure 3.

Figure 3

In situ transesterification reaction of 3 to 4 in the crystallization solvent methanol-d 4.

Fig. 4 shows the individual mol­ecular structures of 3 and 4 that make up the solid solution. Selected geometric parameters are listed in Table 1. Bond lengths and angles of the central 1,3-thia­zole five-membered heterocyclic ring are as expected (Eicher et al., 2013). The thia­zole S atom and the pivot C6 atom of the picoline moiety as well as the pivot C2 atom of the thia­zole ring and the picoline nitro­gen atom N1 exhibit a synperiplanar conformation, as revealed by the respective torsion angles in Table 1. The thia­zole ring and picoline six-membered ring are nearly coplanar to one another with a dihedral angle between the respective mean planes of 3.2 (6)°. The intra­molecular S1⋯N1 distance is 2.646 (1) Å and corresponding C5—S1⋯N1 angle is 162.70 (4)°. The arrangement can structurally be regarded as a chalcogen bond between the lone pair of the picoline N atom and the σ hole at the S atom opposite to the C5—S1 bond (Scilabra et al., 2019; Vogel et al., 2019). The plane of the carboxyl­ate unit is tilted out of the thia­zole mean plane by 4.9 (2)°, whereas the mean plane of the pyridine ring appended to C4 is tilted out of the latter plane by 68.06 (4)°. This significant twist between the thia­zole and pyridine rings should weaken the conjugation of π electrons in the mol­ecule. Indeed, the related N-(4-(pyridin-3-yl)-1,3-thia­zol-2-yl)pyridin-2-amine, for example, exhibits a virtually planar mol­ecular structure in the crystal (CSD refcode: XOVJAV; Makam & Kannan, 2014). The twist between the pyridine ring and the thia­zole ring in 3 and 4 can be ascribed to involvement of the pyridine N atom in inter­molecular hydrogen bonding (see Section 3) and steric clashes with the neighbouring carboxyl­ate substituent, which appears to be preferentially conjugated to the thia­zole ring.

Figure 4.

Figure 4

Mol­ecular structures of 3 (top) and 4 (bottom) in the crystal of the solid solution. Displacement ellipsoids are drawn at the 50% probability level. H and D atoms are represented by small spheres of arbitrary radii. Rotational disorder of the methyl group of C11 is not shown for clarity.

Table 1. Selected geometric parameters (Å, °).

C2—N3 1.3241 (13) C5—S1 1.7364 (11)
C2—N2 1.3653 (13) C6—N2 1.3874 (13)
C2—S1 1.7330 (11) O1—C17 1.3368 (15)
C4—N3 1.3678 (14) O1—C18 1.4475 (14)
C4—C5 1.3697 (15) C17—O2 1.2122 (15)
C4—C12 1.4852 (15) C18—C19 1.531 (2)
       
N3—C2—N2 119.44 (10) N3—C4—C5 115.58 (9)
N3—C2—S1 115.59 (8) C4—C5—S1 110.42 (8)
N2—C2—S1 124.96 (8)    

Supra­molecular features  

The supra­molecular structure of the solid solution of 3 and 4 is dominated by hydrogen bonds of the N—H⋯N type between the secondary amino group and the pyridine N atom. As shown for the major component 3 in Fig. 5, this results in polymeric hydrogen-bonded zigzag tapes extending in the [001] direction through glide symmetry. The geometric parameters (Table 2) are within the ranges expected for strong hydrogen bonds (Thakuria et al., 2017). Mol­ecules in adjacent tapes are linked through two short C—H⋯O contacts between the α-CH groups of the picoline ring and the formal C=O groups of the carboxyl­ate moieties, forming approximately planar dimeric picoline thia­zole ester units (Fig. 6). The corresponding geometric parameters (Table 2) support the inter­pretation that these are weak hydrogen bonds (Thakuria et al., 2017).

Figure 5.

Figure 5

Hydrogen-bonded zigzag tape of the mol­ecules in the solid solution of 3 and 4, shown only for the major component 3 for clarity, viewed approximately along the b-axis direction towards the origin. Carbon-bound H atoms are omitted for clarity. Symmetry code: (i) x, −y + Inline graphic, z − Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4i 0.87 (1) 2.10 (1) 2.9553 (14) 169 (1)
C10—H10⋯O2ii 0.95 2.47 3.3863 (16) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 6.

Figure 6

C—H⋯O hydrogen-bonded association of two adjacent mol­ecules in the solid solution of 3 and 4, shown only for the major component 3 for clarity. For the sake of clarity, rotational disorder of the methyl groups is also not shown. Symmetry code: (ii) −x + 2, −y + 1, −z + 1.

Database survey  

A search of the Cambridge Structural Database (CSD; Groom et al., 2016) in June 2020 via WebCSD (Thomas et al., 2010) revealed 15 metal-free crystal structures of 2-amino­thia­zoles with N-bonded heteroaromatic substituents containing a nitro­gen atom in the 2-position, all of which adopt planar mol­ecular conformations with intra­molecular N⋯S distances of 2.70 (4) Å (mean value), despite different crystal environments. These include structures of the tyrosine kinase inhib­itor dasatinib and nine of its solvates (Roy et al., 2012; Sarceviča et al., 2016) as well as thia­zovivin, a small-mol­ecule tool for stem-cell research (Ries et al., 2013). The most related, the above-mentioned XOVJAV exhibits nearly planar N—H⋯N hydrogen-bonded dimers in the crystal structure. In contrast, in 41 crystal structures of 2-amino­thia­zoles with variously substituted N-phenyl groups, the two moieties are randomly orientated to one another. So far, few 5-substituted N-4-diaryl 2-amino­thia­zoles have been structurally characterized, viz. ANTZOB (Declercq et al., 1981), QAWDAT (Schantl & Lagoja, 1998), VAZNEQ (Shao et al., 2006), TIHKOL (Dridi & El Efrit, 2007), XIVCAJ and XIVCEN (Prevost et al., 2018). As far as we are able to ascertain, there are no published crystal structures of related 5-carboxyl­ate N-4-diaryl 2-amino­thia­zoles, and just two for 5-carboxyl­ate N,N-4-triaryl-2-amino­thia­zoles, NIBDEJ (Souldozi et al., 2013) and USAQIQ (Heydari et al., 2016), in which the formal C=O group adopts an orientation anti­periplanar to the adjacent thia­zole C—S bond, in contrast to 3 and 4.

Synthesis and crystallization  

Syntheses of the starting materials can be found in the literature, as indicated. Solvents were of reagent grade and distilled before use. The melting point (uncorrected) was determined on a Boetius melting-point apparatus (VEB Kombinat NAGEMA, Dresden, GDR). 1H and 13C NMR spectra were recorded at room temperature on an Agilent Technologies VNMRS 400 NMR spectrometer. The residual solvent signals of DMSO-d6 (δ1H = 2.50 ppm, δ13C = 39.51 ppm) were used to reference the spectra (abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, td = triplet of doublets, m = multiplet). The mass spectrum was recorded on a Q ExactiveTM Plus Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany), using methanol as solvent.

Compound 3 was synthesized in analogy to a procedure described by Hung et al. (2014): 0.18 g (0.66 mmol) of ethyl 2-bromo-3-oxo-3-(pyridin-2-yl)propano­ate hydro­bromide (1; Combs et al., 2014) were added to a stirred solution of 0.11 g (0.66 mmol) 1-(4-methyl­pyridin-2-yl)thio­urea (2; Gallardo-Godoy et al., 2011) in 10 mL of ethanol. The reaction mixture was heated to reflux for 16 h and then allowed to cool to room temperature. After evaporation of the solvent, the residue was taken up in 20 mL of 10% aqueous K2CO3 and extracted with 3 × 5 mL of ethyl acetate. The combined organic phases were washed with 2 × 5 mL of brine, dried over MgSO4, filtered and stripped of solvent under vacuum. Recrystallization from ethyl acetate yielded 43 mg (0.126 mmol, 19%) of 3. M.p. 483 K. 1H NMR (400 MHz, DMSO-d 6): δ 11.87 (s, 1H, NH), 8.59 (m, 1H, 6-pyridine), 8.26 (d, 1H, 6-picoline), 7.84 (td, 1H, 4-pyridine), 7.65 (d, 1H, 3-pyridine), 7.39 (m, 1H, 5-pyridine), 6.88 (s, 1H, 3-picoline), 6.86 (m, J = 5.3 Hz, 1H, 5-picoline), 4.11 (q, J = 7.1 Hz, 2H, CH2 ester), 2.29 (s, 3H, CH3 picoline), 1.12 (t, J = 7.1 Hz, 3H, CH3 ester) ppm. 13C NMR (101 MHz, DMSO-d 6) δ = 162.2, 161.3, 155.5, 153.8, 151.5, 149.6, 149.1, 146.6, 136.4, 124.7, 123.8, 118.9, 115.2, 111.64, 60.72, 21.14, 14.5 ppm.

Crystals of the title solid solution of 3 and 4 suitable for X-ray analysis were obtained from a solution of 3 in methanol-d 4 upon standing at room temperature for a couple of weeks. HRMS (ESI+): calculated for C17H17N4O2S (3) [M + H]+: m/z 341.10667, found: 341.10679; calculated for C16H12D3N4O2S (4) [M + H]+: m/z 330.10985, found: 330.11005 The ESI mass spectrum is shown in the supporting information.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The ratio of the occupancies of the ethyl group belonging to 3 and the d 3-methyl ester group belonging to 4 was refined by means of a free variable, resulting in 0.880 (6):0.120 (6). Carbon-bound H and D atoms were placed at geometrically calculated positions with Caromatic—H = 0.95 Å, Cmethyl­ene—H = 0.99 Å and Cmeth­yl—H/D = 0.98 Å and refined with U iso(H) = 1.2 U eq(C) (1.5 for methyl groups). The methyl­ene H atoms (belonging to 3) attached to C18 were included in the split model refined for the solid solution, but the parent C18 was not. The torsion angle of the methyl group of C19 was initially determined through a circular difference-Fourier synthesis and subsequently refined while maintaining the tetra­hedral angles. The methyl group of C11 was treated as idealized disordered methyl group. Refinement of the ratio of occupancies by means of a free variable yielded 0.21 (4):0.79 (4). The amino H atom was located in a difference-Fourier map and refined semi-freely with the N—H distance restrained to a target value of 0.88 (2) Å and U iso(H) = 1.2U eq(N). The amino group was treated as non-deuterated only in agreement with the mass spectrum in methanol, although partial H/D exchange during the crystallization from methanol-d 4 cannot be ruled out.

Table 3. Experimental details.

Crystal data
Chemical formula 0.88C17H16N4O2S·0.12C16D3H11N4O2S
M r 339.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.1379 (12), 14.7534 (19), 12.1904 (16)
β (°) 94.399 (2)
V3) 1638.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.09 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Bruker, 2012)
T min, T max 0.985, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 44689, 5630, 4522
R int 0.051
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.100, 1.04
No. of reflections 5630
No. of parameters 224
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.22

Computer programs: APEX3 (Bruker, 2017) and SAINT (Bruker, 2004), SHELXT2014/4 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2018), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020008956/zl2790sup1.cif

e-76-01255-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 3and4. DOI: 10.1107/S2056989020008956/zl27903and4sup2.hkl

e-76-01255-3and4sup2.hkl (447.9KB, hkl)

ESI mass spectrum. DOI: 10.1107/S2056989020008956/zl2790sup3.pdf

e-76-01255-sup3.pdf (7.7KB, pdf)

CCDC reference: 2013452

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank Dirk Kampen (Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany) for recording the mass spectrum. Professor Christian W. Lehmann is gratefully acknowledged for his support of this research.

supplementary crystallographic information

Crystal data

0.88C17H16N4O2S·0.12C16D3H11N4O2S F(000) = 708.2
Mr = 339.08 Dx = 1.374 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.1379 (12) Å Cell parameters from 9660 reflections
b = 14.7534 (19) Å θ = 2.8–31.8°
c = 12.1904 (16) Å µ = 0.22 mm1
β = 94.399 (2)° T = 100 K
V = 1638.6 (4) Å3 Plate, colourless
Z = 4 0.09 × 0.06 × 0.02 mm

Data collection

Bruker Kappa Mach3 APEXII diffractometer 5630 independent reflections
Radiation source: Incoatec IµS 4522 reflections with I > 2σ(I)
Incoatec Helios mirrors monochromator Rint = 0.051
Detector resolution: 66.67 pixels mm-1 θmax = 32.0°, θmin = 3.0°
φ– and ω–scans h = −13→13
Absorption correction: gaussian (SADABS; Bruker, 2012) k = −21→21
Tmin = 0.985, Tmax = 0.997 l = −18→18
44689 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.6165P] where P = (Fo2 + 2Fc2)/3
5630 reflections (Δ/σ)max = 0.001
224 parameters Δρmax = 0.46 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C2 0.59057 (12) 0.34576 (7) 0.35409 (9) 0.01513 (19)
C4 0.46550 (11) 0.34523 (7) 0.50197 (9) 0.01489 (19)
C5 0.58680 (12) 0.39179 (7) 0.54400 (9) 0.01575 (19)
C6 0.73603 (12) 0.35354 (8) 0.19499 (9) 0.0167 (2)
C7 0.74804 (12) 0.33176 (8) 0.08384 (9) 0.0180 (2)
H7 0.673642 0.297799 0.043611 0.022*
C8 0.87112 (13) 0.36105 (8) 0.03440 (10) 0.0205 (2)
C9 0.97523 (14) 0.41284 (9) 0.09736 (11) 0.0245 (2)
H9 1.059591 0.435434 0.065460 0.029*
C10 0.95399 (13) 0.43066 (9) 0.20600 (11) 0.0237 (2)
H10 1.025698 0.465559 0.247758 0.028*
C11 0.89674 (15) 0.33555 (9) −0.08237 (10) 0.0265 (3)
H11A 0.994097 0.356530 −0.099652 0.040* 0.213 (18)
H11B 0.821645 0.364006 −0.132801 0.040* 0.213 (18)
H11C 0.891132 0.269531 −0.090548 0.040* 0.213 (18)
H11D 0.810486 0.303514 −0.115682 0.040* 0.787 (18)
H11E 0.982938 0.296039 −0.082533 0.040* 0.787 (18)
H11F 0.913451 0.390514 −0.124786 0.040* 0.787 (18)
C12 0.33298 (12) 0.32273 (8) 0.55988 (8) 0.0156 (2)
C13 0.20035 (12) 0.36487 (8) 0.52774 (10) 0.0193 (2)
H13 0.191964 0.404257 0.465922 0.023*
C14 0.08061 (13) 0.34797 (9) 0.58819 (11) 0.0236 (2)
H14 −0.010565 0.377382 0.570229 0.028*
C15 0.09633 (13) 0.28763 (9) 0.67492 (10) 0.0237 (2)
H15 0.016194 0.275033 0.717791 0.028*
C16 0.23115 (13) 0.24566 (10) 0.69849 (10) 0.0244 (3)
H16 0.240167 0.202767 0.756738 0.029*
O1 0.51067 (10) 0.42378 (7) 0.71754 (7) 0.02527 (19) 0.880 (6)
C17 0.62170 (13) 0.43211 (8) 0.65294 (9) 0.0190 (2) 0.880 (6)
C18 0.53174 (16) 0.45723 (10) 0.82926 (10) 0.0290 (3) 0.880 (6)
H18A 0.536392 0.524271 0.829953 0.035* 0.880 (6)
H18B 0.623956 0.433108 0.866076 0.035* 0.880 (6)
C19 0.39913 (19) 0.42398 (11) 0.88747 (12) 0.0289 (4) 0.880 (6)
H19A 0.308801 0.447409 0.849093 0.043* 0.880 (6)
H19B 0.406760 0.445679 0.963673 0.043* 0.880 (6)
H19C 0.396954 0.357569 0.886890 0.043* 0.880 (6)
O1' 0.51067 (10) 0.42378 (7) 0.71754 (7) 0.02527 (19) 0.120 (6)
C17' 0.62170 (13) 0.43211 (8) 0.65294 (9) 0.0190 (2) 0.120 (6)
C18' 0.53174 (16) 0.45723 (10) 0.82926 (10) 0.0290 (3) 0.120 (6)
D18A 0.442345 0.446863 0.867031 0.044* 0.120 (6)
D18B 0.614053 0.425167 0.868235 0.044* 0.120 (6)
D18C 0.553091 0.522305 0.828159 0.044* 0.120 (6)
S1 0.71130 (3) 0.40479 (2) 0.44447 (2) 0.01604 (7)
N1 0.83635 (11) 0.40094 (7) 0.25585 (8) 0.02034 (19)
N2 0.61495 (10) 0.32512 (7) 0.24785 (8) 0.01741 (18)
H2 0.5448 (15) 0.2970 (10) 0.2099 (12) 0.021*
N3 0.46710 (10) 0.31919 (7) 0.39439 (7) 0.01658 (18)
N4 0.34941 (10) 0.26282 (7) 0.64283 (8) 0.0204 (2)
O2 0.73781 (11) 0.46826 (7) 0.68069 (8) 0.0327 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0145 (4) 0.0163 (5) 0.0143 (4) −0.0014 (4) −0.0002 (4) −0.0009 (4)
C4 0.0143 (4) 0.0169 (5) 0.0133 (4) 0.0013 (4) −0.0004 (3) −0.0002 (4)
C5 0.0161 (5) 0.0170 (5) 0.0138 (4) 0.0002 (4) −0.0010 (4) −0.0004 (4)
C6 0.0156 (5) 0.0171 (5) 0.0177 (5) −0.0009 (4) 0.0033 (4) 0.0013 (4)
C7 0.0189 (5) 0.0181 (5) 0.0172 (5) −0.0007 (4) 0.0040 (4) 0.0005 (4)
C8 0.0232 (5) 0.0176 (5) 0.0216 (5) 0.0015 (4) 0.0083 (4) 0.0037 (4)
C9 0.0212 (5) 0.0245 (6) 0.0288 (6) −0.0028 (5) 0.0090 (5) 0.0054 (5)
C10 0.0188 (5) 0.0257 (6) 0.0267 (6) −0.0062 (4) 0.0029 (4) 0.0020 (5)
C11 0.0333 (7) 0.0258 (6) 0.0220 (6) 0.0011 (5) 0.0132 (5) 0.0024 (5)
C12 0.0145 (4) 0.0195 (5) 0.0126 (4) −0.0001 (4) −0.0002 (3) −0.0032 (4)
C13 0.0164 (5) 0.0204 (5) 0.0206 (5) −0.0001 (4) −0.0024 (4) −0.0006 (4)
C14 0.0135 (5) 0.0274 (6) 0.0294 (6) 0.0015 (4) −0.0011 (4) −0.0049 (5)
C15 0.0151 (5) 0.0375 (7) 0.0188 (5) −0.0027 (5) 0.0033 (4) −0.0052 (5)
C16 0.0178 (5) 0.0406 (7) 0.0150 (5) −0.0010 (5) 0.0016 (4) 0.0049 (5)
O1 0.0238 (4) 0.0370 (5) 0.0146 (4) 0.0024 (4) −0.0008 (3) −0.0088 (3)
C17 0.0231 (5) 0.0182 (5) 0.0151 (5) 0.0010 (4) −0.0038 (4) −0.0011 (4)
C18 0.0384 (7) 0.0324 (7) 0.0153 (5) 0.0078 (6) −0.0040 (5) −0.0080 (5)
C19 0.0403 (9) 0.0292 (8) 0.0178 (7) 0.0047 (6) 0.0062 (6) −0.0039 (5)
O1' 0.0238 (4) 0.0370 (5) 0.0146 (4) 0.0024 (4) −0.0008 (3) −0.0088 (3)
C17' 0.0231 (5) 0.0182 (5) 0.0151 (5) 0.0010 (4) −0.0038 (4) −0.0011 (4)
C18' 0.0384 (7) 0.0324 (7) 0.0153 (5) 0.0078 (6) −0.0040 (5) −0.0080 (5)
S1 0.01480 (12) 0.01736 (13) 0.01559 (12) −0.00301 (9) −0.00120 (9) −0.00039 (9)
N1 0.0182 (4) 0.0222 (5) 0.0207 (5) −0.0045 (4) 0.0023 (4) 0.0004 (4)
N2 0.0158 (4) 0.0225 (5) 0.0143 (4) −0.0051 (4) 0.0028 (3) −0.0026 (3)
N3 0.0147 (4) 0.0220 (5) 0.0130 (4) −0.0026 (3) 0.0011 (3) −0.0018 (3)
N4 0.0153 (4) 0.0313 (5) 0.0146 (4) 0.0019 (4) 0.0014 (3) 0.0038 (4)
O2 0.0337 (5) 0.0416 (6) 0.0217 (4) −0.0163 (4) −0.0050 (4) −0.0051 (4)

Geometric parameters (Å, º)

C2—N3 1.3241 (13) C12—N4 1.3427 (14)
C2—N2 1.3653 (13) C12—C13 1.3914 (15)
C2—S1 1.7330 (11) C13—C14 1.3879 (16)
C4—N3 1.3678 (14) C13—H13 0.9500
C4—C5 1.3697 (15) C14—C15 1.3812 (19)
C4—C12 1.4852 (15) C14—H14 0.9500
C5—C17' 1.4677 (15) C15—C16 1.3891 (17)
C5—C17 1.4677 (15) C15—H15 0.9500
C5—S1 1.7364 (11) C16—N4 1.3434 (14)
C6—N1 1.3324 (15) C16—H16 0.9500
C6—N2 1.3874 (13) O1—C17 1.3368 (15)
C6—C7 1.4050 (15) O1—C18 1.4475 (14)
C7—C8 1.3852 (15) C17—O2 1.2122 (15)
C7—H7 0.9500 C18—C19 1.531 (2)
C8—C9 1.4021 (18) C18—H18A 0.9900
C8—C11 1.5080 (16) C18—H18B 0.9900
C9—C10 1.3785 (18) C19—H19A 0.9800
C9—H9 0.9500 C19—H19B 0.9800
C10—N1 1.3481 (15) C19—H19C 0.9800
C10—H10 0.9500 O1'—C17' 1.3368 (15)
C11—H11A 0.9800 O1'—C18' 1.4475 (14)
C11—H11B 0.9800 C17'—O2 1.2122 (15)
C11—H11C 0.9800 C18'—D18A 0.9800
C11—H11D 0.9800 C18'—D18B 0.9800
C11—H11E 0.9800 C18'—D18C 0.9800
C11—H11F 0.9800 N2—H2 0.867 (12)
N3—C2—N2 119.44 (10) N4—C12—C4 117.19 (9)
N3—C2—S1 115.59 (8) C13—C12—C4 119.38 (10)
N2—C2—S1 124.96 (8) C14—C13—C12 118.38 (11)
N3—C4—C5 115.58 (9) C14—C13—H13 120.8
N3—C4—C12 117.52 (9) C12—C13—H13 120.8
C5—C4—C12 126.88 (10) C15—C14—C13 118.84 (11)
C4—C5—C17' 130.93 (10) C15—C14—H14 120.6
C4—C5—C17 130.93 (10) C13—C14—H14 120.6
C4—C5—S1 110.42 (8) C14—C15—C16 118.95 (11)
C17'—C5—S1 118.62 (8) C14—C15—H15 120.5
C17—C5—S1 118.62 (8) C16—C15—H15 120.5
N1—C6—N2 116.05 (10) N4—C16—C15 123.13 (12)
N1—C6—C7 123.77 (10) N4—C16—H16 118.4
N2—C6—C7 120.19 (10) C15—C16—H16 118.4
C8—C7—C6 118.31 (11) C17—O1—C18 118.08 (10)
C8—C7—H7 120.8 O2—C17—O1 124.31 (11)
C6—C7—H7 120.8 O2—C17—C5 123.75 (11)
C7—C8—C9 118.12 (11) O1—C17—C5 111.94 (10)
C7—C8—C11 121.52 (11) O1—C18—C19 105.90 (11)
C9—C8—C11 120.31 (11) O1—C18—H18A 110.6
C10—C9—C8 119.35 (11) C19—C18—H18A 110.6
C10—C9—H9 120.3 O1—C18—H18B 110.6
C8—C9—H9 120.3 C19—C18—H18B 110.6
N1—C10—C9 123.16 (12) H18A—C18—H18B 108.7
N1—C10—H10 118.4 C18—C19—H19A 109.5
C9—C10—H10 118.4 C18—C19—H19B 109.5
C8—C11—H11A 109.5 H19A—C19—H19B 109.5
C8—C11—H11B 109.5 C18—C19—H19C 109.5
H11A—C11—H11B 109.5 H19A—C19—H19C 109.5
C8—C11—H11C 109.5 H19B—C19—H19C 109.5
H11A—C11—H11C 109.5 C17'—O1'—C18' 118.08 (10)
H11B—C11—H11C 109.5 O2—C17'—O1' 124.31 (11)
C8—C11—H11D 109.5 O2—C17'—C5 123.75 (11)
H11A—C11—H11D 141.1 O1'—C17'—C5 111.94 (10)
H11B—C11—H11D 56.3 O1'—C18'—D18A 109.5
H11C—C11—H11D 56.3 O1'—C18'—D18B 109.5
C8—C11—H11E 109.5 D18A—C18'—D18B 109.5
H11A—C11—H11E 56.3 O1'—C18'—D18C 109.5
H11B—C11—H11E 141.1 D18A—C18'—D18C 109.5
H11C—C11—H11E 56.3 D18B—C18'—D18C 109.5
H11D—C11—H11E 109.5 C2—S1—C5 88.25 (5)
C8—C11—H11F 109.5 C6—N1—C10 117.26 (10)
H11A—C11—H11F 56.3 C2—N2—C6 124.55 (10)
H11B—C11—H11F 56.3 C2—N2—H2 116.4 (10)
H11C—C11—H11F 141.1 C6—N2—H2 118.7 (10)
H11D—C11—H11F 109.5 C2—N3—C4 110.16 (9)
H11E—C11—H11F 109.5 C12—N4—C16 117.17 (10)
N4—C12—C13 123.42 (10)
N3—C4—C5—C17' 178.00 (11) S1—C5—C17—O1 174.38 (8)
C12—C4—C5—C17' −0.3 (2) C17—O1—C18—C19 −170.48 (11)
N3—C4—C5—C17 178.00 (11) C18'—O1'—C17'—O2 −2.22 (18)
C12—C4—C5—C17 −0.3 (2) C18'—O1'—C17'—C5 177.51 (10)
N3—C4—C5—S1 0.17 (13) C4—C5—C17'—O2 176.43 (13)
C12—C4—C5—S1 −178.13 (9) S1—C5—C17'—O2 −5.89 (16)
N1—C6—C7—C8 0.05 (18) C4—C5—C17'—O1' −3.30 (18)
N2—C6—C7—C8 −179.65 (10) S1—C5—C17'—O1' 174.38 (8)
C6—C7—C8—C9 −1.58 (17) N3—C2—S1—C5 0.50 (9)
C6—C7—C8—C11 176.13 (11) N2—C2—S1—C5 −178.93 (10)
C7—C8—C9—C10 1.73 (18) C4—C5—S1—C2 −0.36 (9)
C11—C8—C9—C10 −176.02 (12) C17'—C5—S1—C2 −178.49 (9)
C8—C9—C10—N1 −0.3 (2) C17—C5—S1—C2 −178.49 (9)
N3—C4—C12—N4 113.71 (12) N2—C6—N1—C10 −178.95 (11)
C5—C4—C12—N4 −68.02 (15) C7—C6—N1—C10 1.34 (18)
N3—C4—C12—C13 −67.32 (14) C9—C10—N1—C6 −1.20 (19)
C5—C4—C12—C13 110.95 (13) N3—C2—N2—C6 176.27 (10)
N4—C12—C13—C14 3.63 (17) S1—C2—N2—C6 −4.31 (17)
C4—C12—C13—C14 −175.28 (10) N1—C6—N2—C2 2.92 (17)
C12—C13—C14—C15 −2.39 (18) C7—C6—N2—C2 −177.36 (11)
C13—C14—C15—C16 −0.24 (19) N2—C2—N3—C4 178.98 (10)
C14—C15—C16—N4 2.0 (2) S1—C2—N3—C4 −0.49 (13)
C18—O1—C17—O2 −2.22 (18) C5—C4—N3—C2 0.20 (14)
C18—O1—C17—C5 177.51 (10) C12—C4—N3—C2 178.66 (10)
C4—C5—C17—O2 176.43 (13) C13—C12—N4—C16 −1.93 (17)
S1—C5—C17—O2 −5.89 (16) C4—C12—N4—C16 176.99 (11)
C4—C5—C17—O1 −3.30 (18) C15—C16—N4—C12 −0.95 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N4i 0.87 (1) 2.10 (1) 2.9553 (14) 169 (1)
C10—H10···O2ii 0.95 2.47 3.3863 (16) 162

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant .

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bhuniya, D., Mukkavilli, R., Shivahare, R., Launay, D., Dere, R. T., Deshpande, A., Verma, A., Vishwakarma, P., Moger, M., Pradhan, A., Pati, H., Gopinath, V. S., Gupta, S., Puri, S. K. & Martin, D. (2015). Eur. J. Med. Chem. 102, 582–593. [DOI] [PubMed]
  3. Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Combs, A. P., Sparks, R. B., Maduskuie, T. P. Jr & Rodgers, J. D. (2014). PCT Int. Appl. WO 2014/143768 A1.
  8. Declercq, J. P., Germain, G., Touillaux, R., Van Meerssche, M., Henriet, M. & Ghosez, L. (1981). Acta Cryst. B37, 1296–1299.
  9. Dridi, K. & El Efrit, M. L. (2007). Acta Cryst. E63, o3632.
  10. Eicher, T., Hauptmann, S. & Speicher, A. (2013). The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications. 3rd ed. Weinheim: Wiley-VCH.
  11. Gallardo-Godoy, A., Gever, J., Fife, K. L., Silber, B. M., Prusiner, S. B. & Renslo, A. R. (2011). J. Med. Chem. 54, 1010–1021. [DOI] [PMC free article] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hantzsch, A. & Weber, J. H. (1887). Ber. Dtsch. Chem. Ges. 20, 3118–3132.
  14. Heydari, R., Shahrekipour, F., Graiff, C. & Tahamipour, B. (2016). J. Chem. Res. 40, 326–330.
  15. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  16. Hung, D., Serrano-Wu, M., Grant, S. & Kawate, T. (2014). PCT Int. Appl. WO 2014/159938 A1.
  17. Kesicki, E. A., Bailey, M. A., Ovechkina, Y., Early, J. V., Alling, T., Bowman, J., Zuniga, E. S., Dalai, S., Kumar, N., Masquelin, T., Hipskind, P. A., Odingo, J. O. & Parish, T. (2016). PLoS One, 11, e0155209. [DOI] [PMC free article] [PubMed]
  18. Khalifa, M. E. (2018). Acta Chim. Slov. 65, 1–22. [PubMed]
  19. Makam, P. & Kannan, T. (2014). Eur. J. Med. Chem. 87, 643–656. [DOI] [PubMed]
  20. Meissner, A., Boshoff, H. I., Vasan, M., Duckworth, B. P., Barry, C. E. III & Aldrich, C. A. (2013). Bioorg. Med. Chem. 21, 6385–6397. [DOI] [PMC free article] [PubMed]
  21. Otera, J. (1993). Chem. Rev. 93, 1449–1470.
  22. Paquet, T., Gordon, R., Waterson, D., Witty, M. J. & Chibale, K. (2012). Future Med. Chem. 4, 2265–2277. [DOI] [PubMed]
  23. Prevost, J. R. C., Kozlova, A., Es Saadi, B., Yildiz, E., Modaffari, S., Lambert, D. M., Pochet, L., Wouters, J., Dolušić, E. & Frédérick, R. (2018). Tetrahedron Lett. 59, 4315–4319.
  24. Ries, O., Granitzka, M., Stalke, D. & Ducho, C. (2013). Synth. Commun. 43, 2876–2882.
  25. Roy, S., Quiñones, R. & Matzger, A. J. (2012). Cryst. Growth Des. 12, 2122–2126. [DOI] [PMC free article] [PubMed]
  26. Sarceviča, I., Grante, I., Belyakov, S., Rekis, T., Bērziņš, K., Actiņš, A. & Orola, L. (2016). J. Pharm. Sci. 105, 1489–1495. [DOI] [PubMed]
  27. Schantl, J. G. & Lagoja, I. M. (1998). Synth. Commun. 28, 1451–1462.
  28. Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324. [DOI] [PubMed]
  29. Shao, L., Zhou, X. & Fang, J.-X. (2006). Acta Cryst. E62, o91–o93.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Souldozi, A., Shojaei, S. H. R., Ramazani, A., Ślepokura, K. & Lis, T. (2013). Chin. J. Struct. Chem. 32, 82–88.
  33. Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.
  34. Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366. [DOI] [PMC free article] [PubMed]
  35. Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891. [DOI] [PubMed]
  36. Wang, Z. (2010). Hantzsch Thiazole Synthesis. In Comprehensive Organic Name Reactions and Reagents, pp. 1330–1334.
  37. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020008956/zl2790sup1.cif

e-76-01255-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) 3and4. DOI: 10.1107/S2056989020008956/zl27903and4sup2.hkl

e-76-01255-3and4sup2.hkl (447.9KB, hkl)

ESI mass spectrum. DOI: 10.1107/S2056989020008956/zl2790sup3.pdf

e-76-01255-sup3.pdf (7.7KB, pdf)

CCDC reference: 2013452

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES