Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jul 21;76(Pt 8):1320–1324. doi: 10.1107/S2056989020009421

Crystal structure, Hirshfeld surface analysis and DFT studies of (E)-2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol

Md Serajul Haque Faizi a, Emine Berrin Cinar b, Alev Sema Aydin b, Erbil Agar c, Necmi Dege b, Ashraf Mashrai d,*
PMCID: PMC7405573  PMID: 32844022

In the title Schiff base compound, the hy­droxy group forms a intra­molecular hydrogen bond to the imine N atom generating an S(6) ring motif. The 3-chloro­benzene ring is inclined to the phenol ring by 9.38 (11)°. The configuration about the C=N bond is E.

Keywords: crystal structure, 3-chloro-4-methyl­aniline, 2-hy­droxy-5-methyl­benzaldehyde, Schiff base

Abstract

The title compound, C15H14ClNO, was synthesized by condensation reaction of 2-hy­droxy-5-methyl­benzaldehyde and 3-chloro-4-methyl­aniline, and crystallizes in the monoclinic space group P21/c. The 3-chloro­benzene ring is inclined to the phenol ring by 9.38 (11)°. The configuration about the C=N bond is E and an intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are from H⋯H (43.8%) and C⋯H/H⋯C (26.7%) inter­actions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure and the HOMO–LUMO energy gap is provided.

Chemical context  

Schiff bases contain the azomethine moiety (–RCH=N–R′) and are prepared by condensation reactions between amines and active carbonyl compounds. Schiff bases are employed as catalyst carriers (Grigoras et al., 2001), thermo-stable mater­ials (Vančo et al., 2004), metal–cation complexing agents and in biological systems (Taggi et al., 2002). Schiff bases show biological activities including anti­bacterial, anti­fungal, anti­cancer, anti­viral and herbicidal activities (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999; Siddiqui et al., 2006). Moreover, Schiff base ligands are potentially capable of forming stable complexes by coordination of metal ions with their nitro­gen atoms as donors (Ebrahimipour et al., 2012). They are important for their photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems, optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018), fluorescence sensors (Faizi et al., 2016; Mukherjee et al., 2018; Kumar et al., 2017, 2018) and non-linear optical properties (Faizi et al., 2020). We report herein on the synthesis (from 2-hy­droxy-5-methyl­benzaldehyde and 3-chloro-4-methyl­aniline), crystal structure, Hirshfeld surface analysis and DFT computational calculations of the title compound, (I). The results of calculations by density functional theory (DFT) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.graphic file with name e-76-01320-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (I) is shown in Fig. 1. An intra­molecular O—H⋯N hydrogen bond is observed (Table 1 and Fig. 1). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group, which displays a C9—C8— N1—C5 torsion angle of −177.49 (18)°, contributes to the general non-planarity of the mol­ecule. The chloro­benzene ring (C2–C7) is inclined by 9.38 (11)° to the phenol ring (C9–C14). The configuration of the C7=N1 bond of this Schiff base is E, and the intra­molecular O1—H1⋯N1 hydrogen bond forms an S(6) ring motif (Fig. 1 a and Table 1). The C14—O1 distance [1.354 (2) Å] is close to normal values reported for single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006). The N1—C8 bond is short at 1.281 (3) Å, indicating the existence of an imine bond, while the long C8—C9 bond [1.446 (3) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Wozniak et al., 1995; Pizzala et al., 2000). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017).

Figure 1.

Figure 1

The mol­ecular structure of the title compound (I), showing the atom labelling and the inter­molecular O—H⋯N hydrogen bond as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.79 (4) 1.89 (3) 2.625 (3) 153 (3)
C1—H1C⋯Cl1 0.96 2.91 3.072 (3) 91
C1—H1A⋯N1i 0.96 2.86 3.734 (3) 152
C1—H1CCg1ii 0.96 2.92 3.617 (2) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal packing of (I), the mol­ecules are linked by C1—H1A⋯N1 [H1A⋯N1(−x + 1, −y + 1, −z + 1) = 2.86 Å] inter­actions, forming sheets propagating along the a-axis direction (Fig. 2 a). Weak C—H⋯π inter­actions [C1—H1CCg1(−x, −y + 2, −z) = 2.92 Å] are observed (Table 1 and Fig. 2 b). Notably, weak π–π stacking inter­actions between chloro­benzene rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.7890 (2) Å, where Cg1 is the centroid of the C2–C7 ring] along the a axis lead to the formation of a three-dimensional network.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of title compound (I) showing (a) the C1—H1CCg1 inter­actions and (b) the most important inter­actions as dashed lines.

Hirshfeld surface analysis  

The inter­molecular inter­actions were investigated qu­anti­tatively and visualized with Crystal Explorer 17.5 (Turner et al., 2017; Spackman et al., 2009). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The d norm (ad) and shape index (e) surface mappings are shown in Fig. 3. The most important red spots on the d norm surface represent O1⋯Cl1 inter­actions (Fig. 3 b) and C1—H1CCg1 inter­actions (Fig. 3 c). Some additional inter­actions indicated by light-red spots are corresponding to contacts around phenolic and chloro­benzene rings (Fig. 3 d). The red and blue triangles are absent on the shape-index surface, which indicates there are no strong π–π stacking inter­actions in the crystal structure.

Figure 3.

Figure 3

A view of the three-dimensional Hirshfeld surface for (I), plotted over (a)–(d) d norm and (e) shape-index.

Analysis of the two-dimensional fingerprint plots (Fig. 4 af) indicates that the H⋯H (43.8%) inter­actions are the major factor in the crystal packing with C⋯H/H⋯C (26.7%) inter­actions making the next highest contribution. The percentage contributions of other weak inter­actions are: Cl⋯H/H⋯Cl (12.4%), O⋯H/H⋯O (6.6%) and N⋯H/H⋯N (3.8%).

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot for the title compound and (b)–(f) those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and N⋯H/H⋯N contacts, respectively.

DFT calculations  

The optimized structure in the gas phase of compound (I) was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity (Fukui, 1982; Khan et al., 2015). The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework, E HOMO and E LUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), electrophilicity (ω), softness (σ) and fraction of electron transferred (ΔN). These data are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5. The HOMO and LUMO are localized in the plane extending from the whole 2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol ring. The energy band gap [ΔE = E LUMO − E HOMO] of the mol­ecule is 4.0023 eV, the frontier mol­ecular orbital energies E HOMO and E LUMO being −5.9865 eV and −1.9842 eV, respectively. The dipole moment of (I) is estimated to be 4.30 Debye.

Table 2. Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °).

Parameter X-ray B3LYP/6–311G(d,p)
O1—C14 1.354 (2) 1.354
C7—Cl1 1.735 (2) 1.735
N1—C8 1.281 (3) 1.281
C8—C9 1.446 (3) 1.446
N1—C5 1.418 (3) 1.418
C2—C7 1.385 (3) 1.385
C13—C14—C9 119.36 (19) 119.4
C9—C8—N1 121.82 (19) 121.8
C8—N1—C5 122.08 (19) 122.1

Table 3. Calculated mol­ecular energies for (I).

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −31841.0844
E HOMO (eV) −5.9865
E LUMO (eV) −1.9842
Gap, ΔE (eV) 4.0023
Dipole moment, μ (Debye) 4.30
Ionization potential, I (eV) 5.9865
Electron affinity, A 1.9842
Electronegativity, χ 3.985
Hardness, η 2.001
Electrophilicity index, ω 3.968
Softness, σ 0.250
Fraction of electron transferred, ΔN 0.754

Figure 5.

Figure 5

Mol­ecular orbitals showing the HOMO–LUMO electronic transition in the title compound.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave 13 hits for the 2-{[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol moiety. Out of 13, only a few are very closely related to the title compound. In (E)-4-meth­oxy-2-{[(4-methyl­phen­yl)imino]­meth­yl}phenol (DUPGOL; Koşar et al., 2010), the methyl group is replaced by a meth­oxy group and the dihedral angle between the benzene rings is 5.46 (2)°. In 2-[(E)-(5-chloro-2-methyl­phen­yl)imino­meth­yl]-4-methyl­phenol (AFILAE; Zheng, 2013), the dihedral angle between the planes of the chloro­phenyl and methyl­phenol rings is 35.0 (3)°. In 2-{(E)-[(3-chloro-4-meth­yl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (TERTUI; Atalay et al., 2017), the dihedral angle between the benzene rings is 8.3 (2)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In 2-{(E)-[(3-iodo-4-methyl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (XEBCOY; Pekdemir et al., 2012), the dihedral angle between the two benzene rings is 12.4 (2)°. For 4-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile (XIGNEI; Chiang et al., 2013), a complex with zinc is reported. In N-(5-hy­droxy­salicyl­idene)-2,4,6-tri­methyl­aniline (ZIKNOW; Tenon et al., 1995), the angle between the planes of the benzene rings is 74.5 (1)° and chlorine is absent.

Synthesis and crystallization  

The title compound was prepared by refluxing mixed solutions of 2-hy­droxy-5-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 3-chloro-4-methyl­aniline (35.4 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 383–386 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The hy­droxy H atom was located in a difference-Fourier map and its positional parameters were refined freely with U iso(H) = 1.5U eq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (meth­yl) or 0.93 Å (aromatic), and U iso(H) = 1.2U eq(C) for aromatic H atoms or U iso(H) = 1.5U eq(C) for methyl H atoms.

Table 4. Experimental details.

Crystal data
Chemical formula C15H14ClNO
M r 259.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.0534 (5), 6.3764 (3), 25.3657 (16)
β (°) 96.392 (5)
V3) 1294.47 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.65 × 0.37 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.885, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 7752, 2414, 1801
R int 0.040
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.137, 1.03
No. of reflections 2414
No. of parameters 169
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.26

Computer programs: X-AREA and X-SHAPE (Stoe & Cie, 2002), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and XP in SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020009421/vm2236sup1.cif

e-76-01320-sup1.cif (397.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020009421/vm2236Isup2.hkl

e-76-01320-Isup2.hkl (193.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020009421/vm2236Isup3.cml

CCDC reference: 2015356

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Langat Singh College, B. R. Bihar University India, is thanked for the use of laboratory facilities.

supplementary crystallographic information

Crystal data

C15H14ClNO F(000) = 544
Mr = 259.72 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.0534 (5) Å Cell parameters from 9569 reflections
b = 6.3764 (3) Å θ = 1.6–30.3°
c = 25.3657 (16) Å µ = 0.28 mm1
β = 96.392 (5)° T = 296 K
V = 1294.47 (13) Å3 Stick, orange
Z = 4 0.65 × 0.37 × 0.21 mm

Data collection

Stoe IPDS 2 diffractometer 2414 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1801 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.040
Detector resolution: 6.67 pixels mm-1 θmax = 25.5°, θmin = 1.6°
rotation method scans h = −9→9
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −7→7
Tmin = 0.885, Tmax = 0.958 l = −30→30
7752 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.059P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2414 reflections Δρmax = 0.22 e Å3
169 parameters Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.74526 (10) 0.21146 (12) 0.56404 (2) 0.0820 (3)
O1 0.3423 (3) 0.0128 (3) 0.32974 (7) 0.0729 (5)
N1 0.5050 (2) 0.3352 (3) 0.37421 (7) 0.0546 (4)
C9 0.3492 (2) 0.3538 (3) 0.28875 (8) 0.0495 (5)
C5 0.6021 (3) 0.4244 (3) 0.41869 (8) 0.0517 (5)
C10 0.2953 (3) 0.4790 (3) 0.24498 (8) 0.0532 (5)
H10 0.333321 0.616621 0.244352 0.064*
C6 0.6276 (3) 0.2994 (3) 0.46336 (8) 0.0558 (5)
H6 0.582700 0.164970 0.462883 0.067*
C8 0.4537 (3) 0.4436 (3) 0.33310 (8) 0.0540 (5)
H8 0.484407 0.583899 0.331729 0.065*
C7 0.7199 (3) 0.3742 (4) 0.50893 (8) 0.0560 (5)
C14 0.2942 (3) 0.1445 (3) 0.28904 (8) 0.0537 (5)
C11 0.1881 (3) 0.4072 (3) 0.20271 (8) 0.0544 (5)
C2 0.7902 (3) 0.5727 (4) 0.51180 (8) 0.0569 (5)
C3 0.7630 (3) 0.6946 (4) 0.46627 (9) 0.0624 (6)
H3 0.808124 0.828887 0.466715 0.075*
C4 0.6720 (3) 0.6247 (4) 0.42059 (9) 0.0606 (6)
H4 0.657040 0.711090 0.390901 0.073*
C12 0.1343 (3) 0.1995 (4) 0.20491 (9) 0.0603 (5)
H12 0.061070 0.146941 0.177099 0.072*
C13 0.1860 (3) 0.0705 (4) 0.24686 (9) 0.0618 (6)
H13 0.148288 −0.067273 0.246965 0.074*
C15 0.1266 (3) 0.5478 (4) 0.15702 (9) 0.0699 (7)
H15A 0.110835 0.687133 0.169929 0.105*
H15B 0.022293 0.495293 0.140088 0.105*
H15C 0.207326 0.550746 0.131900 0.105*
C1 0.8890 (3) 0.6569 (4) 0.56097 (9) 0.0722 (7)
H1A 0.817191 0.672248 0.588488 0.108*
H1B 0.935229 0.790941 0.553389 0.108*
H1C 0.977895 0.561373 0.572449 0.108*
H1 0.399 (4) 0.082 (5) 0.3505 (14) 0.099 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1001 (5) 0.0819 (5) 0.0596 (4) 0.0149 (4) −0.0115 (3) 0.0193 (3)
O1 0.0944 (13) 0.0595 (10) 0.0617 (10) −0.0062 (9) −0.0051 (9) 0.0144 (8)
N1 0.0546 (10) 0.0596 (11) 0.0481 (9) 0.0028 (8) −0.0013 (7) 0.0010 (8)
C9 0.0467 (11) 0.0521 (11) 0.0489 (11) 0.0015 (9) 0.0018 (8) 0.0018 (8)
C5 0.0497 (11) 0.0586 (12) 0.0458 (10) 0.0081 (9) 0.0014 (8) 0.0017 (8)
C10 0.0564 (12) 0.0506 (11) 0.0514 (11) −0.0007 (9) 0.0007 (9) 0.0043 (9)
C6 0.0575 (12) 0.0535 (12) 0.0553 (11) 0.0105 (10) 0.0008 (9) 0.0040 (9)
C8 0.0542 (12) 0.0529 (12) 0.0528 (11) 0.0025 (9) −0.0034 (9) 0.0023 (9)
C7 0.0569 (12) 0.0617 (13) 0.0481 (11) 0.0185 (10) −0.0001 (9) 0.0050 (9)
C14 0.0601 (13) 0.0513 (11) 0.0496 (11) 0.0027 (10) 0.0062 (9) 0.0060 (9)
C11 0.0532 (12) 0.0616 (12) 0.0477 (11) 0.0017 (10) 0.0021 (9) 0.0008 (9)
C2 0.0531 (12) 0.0654 (14) 0.0510 (11) 0.0124 (10) 0.0010 (9) −0.0064 (10)
C3 0.0648 (14) 0.0625 (14) 0.0583 (13) −0.0030 (11) 0.0000 (10) −0.0016 (10)
C4 0.0646 (13) 0.0642 (13) 0.0515 (11) −0.0047 (11) −0.0003 (10) 0.0060 (10)
C12 0.0586 (12) 0.0700 (14) 0.0507 (11) −0.0053 (11) −0.0003 (9) −0.0081 (10)
C13 0.0692 (14) 0.0540 (12) 0.0621 (13) −0.0097 (11) 0.0067 (11) −0.0030 (10)
C15 0.0756 (16) 0.0780 (17) 0.0524 (12) 0.0013 (13) −0.0093 (11) 0.0077 (11)
C1 0.0725 (15) 0.0864 (18) 0.0545 (13) 0.0117 (13) −0.0067 (11) −0.0140 (12)

Geometric parameters (Å, º)

Cl1—C7 1.735 (2) C11—C12 1.397 (3)
O1—C14 1.354 (2) C11—C15 1.505 (3)
O1—H1 0.79 (4) C2—C3 1.389 (3)
N1—C8 1.281 (3) C2—C1 1.502 (3)
N1—C5 1.418 (3) C3—C4 1.374 (3)
C9—C10 1.397 (3) C3—H3 0.9300
C9—C14 1.406 (3) C4—H4 0.9300
C9—C8 1.446 (3) C12—C13 1.372 (3)
C5—C6 1.382 (3) C12—H12 0.9300
C5—C4 1.394 (3) C13—H13 0.9300
C10—C11 1.378 (3) C15—H15A 0.9600
C10—H10 0.9300 C15—H15B 0.9600
C6—C7 1.388 (3) C15—H15C 0.9600
C6—H6 0.9300 C1—H1A 0.9600
C8—H8 0.9300 C1—H1B 0.9600
C7—C2 1.385 (3) C1—H1C 0.9600
C14—C13 1.385 (3)
C14—O1—H1 105 (2) C7—C2—C1 123.1 (2)
C8—N1—C5 122.08 (19) C3—C2—C1 120.7 (2)
C10—C9—C14 118.46 (18) C4—C3—C2 122.6 (2)
C10—C9—C8 119.64 (19) C4—C3—H3 118.7
C14—C9—C8 121.86 (18) C2—C3—H3 118.7
C6—C5—C4 118.5 (2) C3—C4—C5 120.1 (2)
C6—C5—N1 116.1 (2) C3—C4—H4 120.0
C4—C5—N1 125.41 (19) C5—C4—H4 120.0
C11—C10—C9 122.7 (2) C13—C12—C11 122.0 (2)
C11—C10—H10 118.6 C13—C12—H12 119.0
C9—C10—H10 118.6 C11—C12—H12 119.0
C5—C6—C7 120.1 (2) C12—C13—C14 120.4 (2)
C5—C6—H6 119.9 C12—C13—H13 119.8
C7—C6—H6 119.9 C14—C13—H13 119.8
N1—C8—C9 121.82 (19) C11—C15—H15A 109.5
N1—C8—H8 119.1 C11—C15—H15B 109.5
C9—C8—H8 119.1 H15A—C15—H15B 109.5
C2—C7—C6 122.4 (2) C11—C15—H15C 109.5
C2—C7—Cl1 119.58 (17) H15A—C15—H15C 109.5
C6—C7—Cl1 118.04 (18) H15B—C15—H15C 109.5
O1—C14—C13 118.7 (2) C2—C1—H1A 109.5
O1—C14—C9 121.97 (19) C2—C1—H1B 109.5
C13—C14—C9 119.36 (19) H1A—C1—H1B 109.5
C10—C11—C12 117.03 (19) C2—C1—H1C 109.5
C10—C11—C15 121.7 (2) H1A—C1—H1C 109.5
C12—C11—C15 121.2 (2) H1B—C1—H1C 109.5
C7—C2—C3 116.2 (2)
C8—N1—C5—C6 170.44 (19) C9—C10—C11—C15 177.6 (2)
C8—N1—C5—C4 −9.5 (3) C6—C7—C2—C3 0.1 (3)
C14—C9—C10—C11 1.3 (3) Cl1—C7—C2—C3 −179.31 (17)
C8—C9—C10—C11 −176.3 (2) C6—C7—C2—C1 179.4 (2)
C4—C5—C6—C7 0.4 (3) Cl1—C7—C2—C1 0.0 (3)
N1—C5—C6—C7 −179.51 (18) C7—C2—C3—C4 −0.1 (3)
C5—N1—C8—C9 −177.49 (18) C1—C2—C3—C4 −179.4 (2)
C10—C9—C8—N1 179.5 (2) C2—C3—C4—C5 0.2 (4)
C14—C9—C8—N1 2.0 (3) C6—C5—C4—C3 −0.4 (3)
C5—C6—C7—C2 −0.3 (3) N1—C5—C4—C3 179.5 (2)
C5—C6—C7—Cl1 179.12 (16) C10—C11—C12—C13 −0.6 (3)
C10—C9—C14—O1 179.3 (2) C15—C11—C12—C13 −178.4 (2)
C8—C9—C14—O1 −3.1 (3) C11—C12—C13—C14 0.4 (4)
C10—C9—C14—C13 −1.5 (3) O1—C14—C13—C12 179.9 (2)
C8—C9—C14—C13 176.1 (2) C9—C14—C13—C12 0.6 (3)
C9—C10—C11—C12 −0.3 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.79 (4) 1.89 (3) 2.625 (3) 153 (3)
C1—H1C···Cl1 0.96 2.91 3.072 (3) 91
C1—H1A···N1i 0.96 2.86 3.734 (3) 152
C1—H1C···Cg1ii 0.96 2.92 3.617 (2) 131

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z.

Funding Statement

This work was funded by University Grants Commission grant . Université Sidi Mohamed Ben Abdallah (Morocco) grant . University of Science and Technology, Ibb Branch (Yemen) grant .

References

  1. Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Chiang, H.-W., Su, Y.-T. & Wu, J.-Y. (2013). Dalton Trans. 42, 15169–15182. [DOI] [PubMed]
  4. Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.
  5. Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.
  6. Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38–40. [DOI] [PMC free article] [PubMed]
  7. Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
  8. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
  9. Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464.
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.
  12. Fukui, K. (1982). Science, 218, 747–754. [DOI] [PubMed]
  13. Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. [DOI] [PubMed]
  16. Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.
  17. Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812.
  18. Koşar, B., Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o469. [DOI] [PMC free article] [PubMed]
  19. Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
  20. Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.
  21. Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.
  22. Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.
  23. Pekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148. [DOI] [PMC free article] [PubMed]
  24. Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Siddiqui, J. I., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211. [DOI] [PMC free article] [PubMed]
  29. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
  30. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  31. Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  32. Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. [DOI] [PubMed]
  33. Tenon, J. A., Carles, M. & Aycard, J.-P. (1995). Acta Cryst. C51, 2603–2606. [DOI] [PubMed]
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  35. Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161. [DOI] [PubMed]
  36. Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85.
  37. Zheng, Y.-F. (2013). Acta Cryst. E69, o1349. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020009421/vm2236sup1.cif

e-76-01320-sup1.cif (397.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020009421/vm2236Isup2.hkl

e-76-01320-Isup2.hkl (193.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020009421/vm2236Isup3.cml

CCDC reference: 2015356

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES