Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jul 7;76(Pt 8):1209–1212. doi: 10.1107/S2056989020008841

Crystal structure analysis of ethyl 6-(4-meth­oxy­phen­yl)-1-methyl-4-methyl­sulfanyl-3-phenyl-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate

H Surya Prakash Rao a,b,*, Ramalingam Gunasundari b, Jayaraman Muthukumaran c,
PMCID: PMC7405588  PMID: 32844001

In the title compound, the dihedral angle between the fused pyrazole and pyridine rings is 1.76 (7)°. The benzene and meth­oxy phenyl rings make dihedral angles of 44.8 (5) and 63.86 (5)°, respectively, with the pyrazolo­[3,4-b] pyridine moiety. An intra­molecular short S⋯O contact [3.215 (2) Å] is observed. The crystal packing features C—H⋯π inter­actions.

Keywords: crystal structure; pyrazolo­pyridine; pyrazolo­[3,4-b]pyridine; C—H⋯π inter­actions

Abstract

In the title compound, C24H23N3O3S, the dihedral angle between the fused pyrazole and pyridine rings is 1.76 (7)°. The benzene and meth­oxy phenyl rings make dihedral angles of 44.8 (5) and 63.86 (5)°, respectively, with the pyrazolo­[3,4-b] pyridine moiety. An intra­molecular short S⋯O contact [3.215 (2) Å] is observed. The crystal packing features C—H⋯π inter­actions.

Chemical context  

Pyrazolo­pyridines, in which a group of three nitro­gen atoms is incorporated into a bicyclic heterocycle, are privileged medicinal scaffolds, often utilized in drug design and discovery regimes (Kumar et al., 2019). Owing to the possibilities of the easy synthesis of a literally unlimited number of a combinatorial library of small organic mol­ecules with a pyrazolo­pyridine scaffold, there has been enormous inter­est in these mol­ecules among medicinal chemists (Kumar et al. 2019; Pinheiro et al. 2019; Hardy, 1984). Indeed, mol­ecules with pyrazolo­pyridine in the core structure exhibit multifaceted medicinal properties such as anti-microbial, anti-viral, anti-fungal, anti-hypertensive, analgesic, anti­quorum-sensing, anti-cancer, anti-inflammatory, anti-Alzheimer’s, anti-diabetic, anti-nociceptive, anti-tuberculosis and anti-leishmanial activities (Hardy, 1984; Hawas et al., 2019; de Mello et al., 2004; El-Gohary et al., 2019; El-Gohary & Shaaban, 2018). Moreover, pyrazolo­pyridine-derived drug mol­ecules exhibit anti-cancer properties (Huang et al., 2007; Ye et al., 2009). They are inhibitors of several important proteins, namely cycline-dependent kinase1, HIV reverse transcriptase, leucine zipper kinase, protein kinase, xanthine oxidase, inter­leukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), phospho­diesterase-4, NAD(P)H oxidases (Kumar et al., 2019; Gökhan-Kelekçi et al., 2007; Fathy et al., 2015; Park et al., 2017). A recent study reported that they could be promising inhibitors against the enzyme pantothenate synthetase from Mycobacterium tuberculosis (Amaroju et al., 2017). FDA-approved drugs incorporating the pyrazolo­pyridine scaffold include cartazolate, tracazolate and etazolate (Hawas et al., 2019). Among pyrazolo­pyridines, pyrazolo­[3,4-b]pyridines are medicinally important because of the ease of combinatorial library synthesis, adherence to the Lipinski rule and favourable ADMET properties. (Chauhan & Kumar, 2013; Zhai et al., 2019). Based on the importance of pyrazolo­[3,4-b]pyridine-containing mol­ecules, we have undertaken a single-crystal X-ray diffraction study of the title compound. We have recently analyzed the solid-state structure of a pyrazolo­[3,4-b]pyridine-containing mol­ecule, ethyl 3-(4-chloro­phen­yl)-1,6-di­methyl-4-meth­ylsulfanyl-1H-pyrazolo­[3,4-b]pyridine-5-carb­ox­ylate (NUDWOB; Rao et al. 2020), but the title compound exhibits a very different conformational structure of the substituents and supra­molecular structure, as discussed here.graphic file with name e-76-01209-scheme1.jpg

Structural commentary  

In the title compound (Fig. 1), the phenyl (–C6H5) group attached to the pyrazolo­pyridine moiety exhibits a (+)anti-periplanar conformation [C12—C4—N1—N2 = 178.47 (14)°] whereas the meth­oxy­phenyl (H3COC6H4–) group exhibits a (−)anti-clinal conformation [C3—C5—C18—C23 = −114.30 (19)°]. The thio­methyl (–SCH3) group fused to the pyrazolo­pyridine unit exhibits a (+)anti-periplanar conformation [C8—S1—C7—C6 = 175.47 (15)°]. The torsion angles involving the –SCH3 group differ from those for NUDWOB (Rao et al. 2020) because of the presence of the meth­oxy­phenyl (H3COC6H4–) group. The –COOC2H5 group attached to the pyrazolo­pyridine moiety has a (+)anti-periplanar conformation [N3—C7—C6—C9 = 176.44 (16)°]. Further, the methyl group attached to the pyrazole subunit is (+)anti-periplanar [C1—N2—N1—C4 = 178.78 (17)°] and it is attached to the pyridine ring showing a (+)syn-periplanar conformation [C1—N2—C2—N3 = 1.3 (3)°]. The fused pyrazole and pyridine rings in the title compound are not exactly planar, as in NUDWOB (Rao et al. 2020), subtending a dihedral angle of 1.76 (7)°. The dihedral angle between the planes of the benzene and pyrazolo­[3,4-b]pyridine rings is 44.8 (5)° and that between the meth­oxy­phenyl and pyrazolo­[3,4-b]pyridine rings is 63.86 (5)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The short intra­molecular S⋯O inter­action is indicated by a dashed line.

Supra­molecular features  

The cohesion of the crystal packing is influenced by two weak C—H⋯π (C13—H13⋯Cg and C23—H23⋯Cg) inter­actions (Table 1, Fig. 2) with distances of 2.86 and 3.02 Å, respectively. These distances agree with those described by Nishio (2011). A short inter­molecular C⋯O carbon=bonding stabilizing inter­action [C1⋯O1(x + 1, y, z) = 3.291 (2) Å] may also exist (Fig. 2) between the electrophilic carbon atom of the methyl group connected to the electronegative nitro­gen atom of the pyrazolo ring and the nucleophilic oxygen atom of the ester group of a neighbouring mol­ecule. However, the distance between C1 and O1 is marginally higher than the carbon-bonding distances (less than 3.22 Å, the sum of the van der Waals radii of carbon and oxygen atoms) proposed by Guru Row and co-workers (Thomas et al., 2014). The distances between the methyl hydrogen atoms and the acceptor oxygen atom are C—H1A⋯O1 = 3.06, C—H1B⋯O1 = 3.04 and C—H1C⋯O1 = 3.22 Å, much longer than the hydrogen-bonding inter­actions (C—H⋯O = 2.90, 2.84 and 2.86 Å) noted by Thomas et al. (2014). Based on these observations, in addition to the C—H⋯π inter­actions, the short inter­molecular C⋯O carbon-bonding inter­action may also contribute to the cohesion of the title compound in the solid state.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and the N3/C2/C3/C5–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.85 3.455 (2) 124
C23—H23⋯Cg2ii 0.93 3.02 3.738 (2) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the weak inter­molecular C13—H13⋯Cg(N1/N2/C2–C4), C23—H13⋯Cg(N3/C2/C3/C5–C7) and C1⋯O1 inter­actions in the title compound.

Database survey  

A similarity search of the Cambridge Structural Database (CSD, Version 5.40, update of March 2020; Groom et al., 2016) was performed. The title compound, along with related structures obtained from the database search could be used for further structure-based virtual screening, ligand-based virtual screening, pharmacophore-based virtual screening and drug repurposing against various drug target proteins. The mol­ecules showing strong binding affinity towards drug target proteins might be considered potential lead candidates. In this study, the CSD search found five mol­ecules that are similar to title compound, namely FIZLEI (ethyl 2,7-di­amino-3,4-di­cyano-5-phenyl­pyrazolo­[1,5-a]pyridine-6-carboxyl­ate; Naik et al., 2019), ALAFID [7-(2-meth­oxy­phen­yl)-2-phenyl­pyrazolo[1,5-a]pyridine; Wu et al., 2016], DAWKAQ [2-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridin-3-yl(phen­yl)methanone; Ravi et al., 2017], NADPIU [3-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridine; Wu et al., 2016] and NUDWOB [ethyl 3-(4-chloro­phen­yl)-1,6-dimethyl-4-(methyl­sulfan­yl)-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate; Rao et al., 2020]. The geometrical parameters of the –COOCH2CH3 substituent in the title compound are comparable with those reported for FIZLEI and NUDWOB. The bond distances for the thio­methyl and aryl moieties in the title compound are comparable with those of NUDWOB. Moreover, the bond lengths in the pyrazolo[3,4-b]pyridine unit of the title compound are comparable with those in NUDWOB, FIZLEI, ALAFID, DAWKAQ and NADPIU. The pyrazolo­[3,4-b]pyridine moiety (N1–N3/C2–C4/C5–C7) of the title compound is approximately planar, as is also observed for NUDWOB, FIZLEI, ALAFID, DAWKAQ and NADPIU. In the title compound, a short intra­molecular S⋯O contact of 3.215 (2) Å occurs, but this is not observed in FIZLEI, ALAFID, DAWKAQ, NADPIU and NUDWOB. Moreover, the inter­action distance [3.291 (2) Å] of the short inter­molecular C⋯O contact in the title compound is comparable with the C⋯O inter­action [3.424 (2) Å] in the structure of NUDWOB. Furthermore, as in the title compound, C—H⋯π inter­actions are observed in the crystal structures of ALAFID, DAWKAQ and NADPIU. The inter­action distance of these related structures ranges from 2.89 to 3.23 Å, comparable with the C—H⋯π inter­actions observed in the title compound.

Synthesis and crystallization  

To a solution of 1-methyl-3-phenyl-1H-pyrazol-5-amine (100 mg, 0.57 mmol) and ethyl 2-(4-meth­oxy­benzo­yl)-3,3-bis­(methyl­thio)­acrylate (188 mg, 0.57 mmol) in toluene (3 mL), a catalytic amount of TFA (tri­fluoro­acetic acid) 30 mol % in toluene (3 mL) was added under an N2 atmosphere. The reaction mixture was refluxed for 24 h in an oil bath, the progress of the reaction being monitored by TLC using a mixture of hexane and ethyl acetate (9.9:0.1). After completion of the reaction, the mixture was loaded on a silica gel column (100–200 mesh, 15 cm × 1 cm) and eluted with increasing amounts of ethyl acetate in hexa­nes (1% to 5%) to obtain 186 mg (yield = 75%) of ethyl 6-(4-meth­oxy­phen­yl)-1-methyl-4-(methyl­thio)-3-phenyl-1H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate as a colourless crystalline solid; m.p. 406 K; R f = 0.3 cm (hexa­ne: ethyl acetate 9.9:0.1). A sample suitable for single-crystal X-ray analysis was obtained by recrystallization from 2 mL of dry methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and included in the final cycles of refinement using a riding model with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C24H23N3O3S
M r 433.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 298
a, b, c (Å) 10.1911 (4), 10.7274 (6), 11.7692 (6)
α, β, γ (°) 98.550 (5), 105.632 (4), 111.015 (4)
V3) 1112.75 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.75 × 0.44 × 0.42
 
Data collection
Diffractometer Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.959, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13297, 5161, 3672
R int 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.168, 1.06
No. of reflections 5161
No. of parameters 284
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.26

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020008841/dx2029sup1.cif

e-76-01209-sup1.cif (459.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020008841/dx2029Isup2.hkl

e-76-01209-Isup2.hkl (410.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020008841/dx2029Isup3.cml

CCDC reference: 2005976

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSPRao thanks DST–FIST Single Crystal XRD facility at Department of Chemistry, Pondicherry University for the diffraction data. RG thanks the Department of Chemistry for facilities, and the UGC and CSIR for a fellowship. JM thanks Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey and Dr Amit Kumar Singh (Sharda University, India) for support.

supplementary crystallographic information

Crystal data

C24H23N3O3S Z = 2
Mr = 433.51 F(000) = 456
Triclinic, P1 Dx = 1.294 Mg m3
a = 10.1911 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7274 (6) Å Cell parameters from 3586 reflections
c = 11.7692 (6) Å θ = 3.8–29.1°
α = 98.550 (5)° µ = 0.18 mm1
β = 105.632 (4)° T = 298 K
γ = 111.015 (4)° Block, colorless
V = 1112.75 (10) Å3 0.75 × 0.44 × 0.42 mm

Data collection

Agilent Xcalibur, Eos diffractometer 5161 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3672 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1 Rint = 0.026
ω scans θmax = 29.2°, θmin = 3.8°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −13→12
Tmin = 0.959, Tmax = 1.000 k = −13→14
13297 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
5161 reflections (Δ/σ)max < 0.001
284 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.67085 (6) 0.56012 (6) 0.41095 (5) 0.0647 (2)
O2 0.38290 (15) 0.56954 (14) 0.22189 (15) 0.0618 (4)
N3 0.72006 (14) 0.40967 (14) 0.23884 (14) 0.0456 (4)
O3 −0.16778 (14) 0.10375 (17) −0.27340 (14) 0.0716 (4)
O1 0.26375 (16) 0.36781 (15) 0.25921 (15) 0.0716 (4)
N2 0.74888 (15) 0.26571 (16) 0.08007 (15) 0.0507 (4)
N1 0.66463 (15) 0.17775 (16) −0.03455 (15) 0.0524 (4)
C6 0.46748 (17) 0.39796 (17) 0.18528 (16) 0.0426 (4)
C18 0.25937 (17) 0.25136 (17) −0.01408 (15) 0.0403 (4)
C5 0.41691 (17) 0.30623 (16) 0.07038 (15) 0.0397 (4)
C23 0.2031 (2) 0.33918 (19) −0.06467 (18) 0.0509 (4)
H23 0.262169 0.434277 −0.040467 0.061*
C19 0.16737 (17) 0.11066 (18) −0.05037 (16) 0.0450 (4)
H19 0.203616 0.050794 −0.017572 0.054*
C4 0.52914 (18) 0.17844 (18) −0.06206 (17) 0.0440 (4)
C3 0.52331 (17) 0.26645 (16) 0.03830 (16) 0.0403 (4)
C12 0.41458 (18) 0.09398 (18) −0.18366 (16) 0.0443 (4)
C21 −0.02998 (18) 0.1451 (2) −0.18636 (17) 0.0507 (4)
C20 0.02258 (18) 0.05683 (19) −0.13439 (16) 0.0491 (4)
H20 −0.038626 −0.037581 −0.155630 0.059*
C7 0.61907 (18) 0.44751 (18) 0.26597 (17) 0.0451 (4)
C17 0.3250 (2) 0.1467 (2) −0.25396 (17) 0.0518 (4)
H17 0.335347 0.236158 −0.223765 0.062*
C22 0.0606 (2) 0.2860 (2) −0.15032 (19) 0.0575 (5)
H22 0.024819 0.345484 −0.184333 0.069*
C1 0.9027 (2) 0.2863 (3) 0.1384 (2) 0.0737 (6)
H1A 0.954270 0.370449 0.204079 0.110*
H1B 0.952102 0.292919 0.079218 0.110*
H1C 0.903503 0.209297 0.170462 0.110*
C2 0.66831 (17) 0.32140 (18) 0.12734 (17) 0.0435 (4)
C16 0.2213 (2) 0.0669 (2) −0.36804 (19) 0.0632 (5)
H16 0.161631 0.102596 −0.414423 0.076*
C13 0.3980 (2) −0.0386 (2) −0.23167 (19) 0.0583 (5)
H13 0.458611 −0.074552 −0.186802 0.070*
C9 0.35959 (19) 0.44074 (19) 0.22766 (17) 0.0477 (4)
C10 0.2937 (3) 0.6327 (2) 0.2651 (3) 0.0740 (7)
H10A 0.202428 0.560492 0.264182 0.089*
H10B 0.265806 0.685559 0.210502 0.089*
C15 0.2054 (3) −0.0656 (2) −0.4137 (2) 0.0716 (6)
H15 0.135537 −0.119091 −0.490858 0.086*
C8 0.8584 (2) 0.5829 (3) 0.4825 (2) 0.0821 (7)
H8A 0.859059 0.495191 0.489817 0.123*
H8B 0.900377 0.646868 0.562541 0.123*
H8C 0.917043 0.619009 0.433710 0.123*
C11 0.3801 (3) 0.7253 (3) 0.3911 (3) 0.0868 (8)
H11A 0.402829 0.671847 0.445827 0.130*
H11B 0.321725 0.769022 0.416900 0.130*
H11C 0.471812 0.795051 0.392304 0.130*
C24 −0.2684 (2) −0.0390 (3) −0.3089 (3) 0.0881 (8)
H24A −0.228284 −0.093559 −0.348676 0.132*
H24B −0.363754 −0.052474 −0.364364 0.132*
H24C −0.280979 −0.067455 −0.237465 0.132*
C14 0.2926 (3) −0.1182 (2) −0.3453 (2) 0.0756 (7)
H14 0.280866 −0.208232 −0.375564 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0602 (3) 0.0687 (4) 0.0507 (3) 0.0333 (3) −0.0005 (2) −0.0037 (3)
O2 0.0566 (7) 0.0531 (8) 0.0840 (11) 0.0294 (6) 0.0309 (7) 0.0137 (7)
N3 0.0379 (7) 0.0429 (8) 0.0482 (9) 0.0157 (6) 0.0063 (6) 0.0105 (7)
O3 0.0436 (7) 0.0890 (11) 0.0611 (10) 0.0256 (7) −0.0054 (7) 0.0109 (8)
O1 0.0659 (9) 0.0703 (10) 0.0955 (12) 0.0307 (7) 0.0459 (9) 0.0313 (9)
N2 0.0348 (7) 0.0594 (9) 0.0538 (10) 0.0211 (6) 0.0110 (7) 0.0093 (8)
N1 0.0436 (8) 0.0610 (10) 0.0527 (10) 0.0239 (7) 0.0166 (7) 0.0112 (8)
C6 0.0380 (8) 0.0409 (9) 0.0459 (10) 0.0173 (7) 0.0096 (7) 0.0109 (8)
C18 0.0347 (8) 0.0456 (9) 0.0397 (9) 0.0177 (7) 0.0101 (7) 0.0123 (7)
C5 0.0366 (8) 0.0395 (8) 0.0419 (9) 0.0163 (6) 0.0099 (7) 0.0144 (7)
C23 0.0478 (9) 0.0459 (10) 0.0541 (11) 0.0218 (8) 0.0078 (8) 0.0129 (8)
C19 0.0405 (9) 0.0471 (9) 0.0474 (10) 0.0181 (7) 0.0137 (8) 0.0167 (8)
C4 0.0400 (8) 0.0466 (9) 0.0459 (10) 0.0178 (7) 0.0155 (7) 0.0141 (8)
C3 0.0359 (8) 0.0391 (8) 0.0440 (10) 0.0155 (6) 0.0101 (7) 0.0137 (7)
C12 0.0414 (8) 0.0489 (10) 0.0404 (10) 0.0150 (7) 0.0174 (7) 0.0098 (8)
C21 0.0370 (9) 0.0682 (12) 0.0419 (10) 0.0220 (8) 0.0081 (8) 0.0120 (9)
C20 0.0388 (9) 0.0520 (10) 0.0486 (11) 0.0124 (7) 0.0131 (8) 0.0130 (8)
C7 0.0411 (8) 0.0406 (9) 0.0452 (10) 0.0154 (7) 0.0059 (7) 0.0097 (7)
C17 0.0512 (10) 0.0547 (11) 0.0459 (11) 0.0210 (8) 0.0145 (8) 0.0111 (9)
C22 0.0532 (10) 0.0623 (12) 0.0574 (12) 0.0329 (9) 0.0073 (9) 0.0182 (10)
C1 0.0404 (10) 0.0916 (16) 0.0792 (16) 0.0328 (10) 0.0088 (10) 0.0052 (13)
C2 0.0370 (8) 0.0442 (9) 0.0484 (10) 0.0180 (7) 0.0112 (7) 0.0149 (8)
C16 0.0566 (11) 0.0755 (14) 0.0472 (12) 0.0219 (10) 0.0108 (9) 0.0167 (11)
C13 0.0737 (12) 0.0529 (11) 0.0523 (12) 0.0292 (9) 0.0241 (10) 0.0152 (9)
C9 0.0413 (9) 0.0508 (10) 0.0460 (10) 0.0199 (7) 0.0098 (8) 0.0077 (8)
C10 0.0638 (13) 0.0697 (14) 0.1010 (19) 0.0400 (11) 0.0353 (13) 0.0147 (13)
C15 0.0773 (14) 0.0637 (14) 0.0447 (12) 0.0073 (11) 0.0135 (11) 0.0049 (10)
C8 0.0566 (12) 0.0955 (18) 0.0603 (15) 0.0251 (12) −0.0075 (11) −0.0043 (13)
C11 0.1061 (19) 0.0984 (19) 0.0812 (19) 0.0613 (16) 0.0479 (16) 0.0204 (16)
C24 0.0442 (11) 0.1039 (19) 0.0718 (17) 0.0056 (11) −0.0057 (11) 0.0133 (15)
C14 0.1098 (18) 0.0521 (12) 0.0520 (13) 0.0261 (12) 0.0237 (13) 0.0066 (10)

Geometric parameters (Å, º)

S1—C7 1.7590 (19) C12—C17 1.392 (3)
S1—C8 1.777 (2) C21—C22 1.383 (3)
O2—C9 1.331 (2) C21—C20 1.385 (3)
O2—C10 1.460 (2) C20—H20 0.9300
N3—C7 1.328 (2) C17—C16 1.378 (3)
N3—C2 1.340 (2) C17—H17 0.9300
O3—C21 1.364 (2) C22—H22 0.9300
O3—C24 1.423 (3) C1—H1A 0.9600
O1—O1 0.000 (4) C1—H1B 0.9600
O1—C9 1.199 (2) C1—H1C 0.9600
N2—C2 1.356 (2) C16—C15 1.377 (3)
N2—N1 1.365 (2) C16—H16 0.9300
N2—C1 1.450 (2) C13—C14 1.378 (3)
N1—C4 1.334 (2) C13—H13 0.9300
C6—C5 1.388 (2) C10—C11 1.481 (3)
C6—C7 1.429 (2) C10—H10A 0.9700
C6—C9 1.503 (2) C10—H10B 0.9700
C18—C19 1.385 (2) C15—C14 1.366 (4)
C18—C23 1.393 (2) C15—H15 0.9300
C18—C5 1.483 (2) C8—H8A 0.9600
C5—C3 1.416 (2) C8—H8B 0.9600
C23—C22 1.377 (3) C8—H8C 0.9600
C23—H23 0.9300 C11—H11A 0.9600
C19—C20 1.386 (2) C11—H11B 0.9600
C19—H19 0.9300 C11—H11C 0.9600
C4—C3 1.427 (2) C24—H24A 0.9600
C4—C12 1.479 (2) C24—H24B 0.9600
C3—C2 1.409 (2) C24—H24C 0.9600
C12—C13 1.381 (3) C14—H14 0.9300
C7—S1—C8 102.08 (11) H1A—C1—H1B 109.5
C9—O2—C10 118.64 (16) N2—C1—H1C 109.5
C7—N3—C2 114.13 (14) H1A—C1—H1C 109.5
C21—O3—C24 117.99 (17) H1B—C1—H1C 109.5
C2—N2—N1 111.38 (13) N3—C2—N2 125.09 (15)
C2—N2—C1 127.81 (17) N3—C2—C3 128.10 (15)
N1—N2—C1 120.77 (16) N2—C2—C3 106.80 (15)
C4—N1—N2 106.91 (14) C15—C16—C17 120.3 (2)
C5—C6—C7 120.93 (15) C15—C16—H16 119.9
C5—C6—C9 119.54 (14) C17—C16—H16 119.9
C7—C6—C9 119.47 (16) C14—C13—C12 120.77 (19)
C19—C18—C23 118.28 (15) C14—C13—H13 119.6
C19—C18—C5 120.91 (14) C12—C13—H13 119.6
C23—C18—C5 120.70 (15) O1—C9—O2 124.91 (16)
C6—C5—C3 116.49 (14) O1—C9—O2 124.91 (16)
C6—C5—C18 121.92 (14) O1—C9—C6 124.73 (17)
C3—C5—C18 121.59 (15) O1—C9—C6 124.73 (17)
C22—C23—C18 120.38 (17) O2—C9—C6 110.33 (15)
C22—C23—H23 119.8 O2—C10—C11 110.43 (19)
C18—C23—H23 119.8 O2—C10—H10A 109.6
C18—C19—C20 121.62 (15) C11—C10—H10A 109.6
C18—C19—H19 119.2 O2—C10—H10B 109.6
C20—C19—H19 119.2 C11—C10—H10B 109.6
N1—C4—C3 110.06 (15) H10A—C10—H10B 108.1
N1—C4—C12 118.69 (16) C14—C15—C16 119.8 (2)
C3—C4—C12 131.25 (14) C14—C15—H15 120.1
C2—C3—C5 116.67 (15) C16—C15—H15 120.1
C2—C3—C4 104.82 (14) S1—C8—H8A 109.5
C5—C3—C4 138.47 (15) S1—C8—H8B 109.5
C13—C12—C17 118.49 (17) H8A—C8—H8B 109.5
C13—C12—C4 120.04 (16) S1—C8—H8C 109.5
C17—C12—C4 121.44 (16) H8A—C8—H8C 109.5
O3—C21—C22 115.77 (17) H8B—C8—H8C 109.5
O3—C21—C20 124.66 (17) C10—C11—H11A 109.5
C22—C21—C20 119.56 (16) C10—C11—H11B 109.5
C21—C20—C19 119.30 (17) H11A—C11—H11B 109.5
C21—C20—H20 120.4 C10—C11—H11C 109.5
C19—C20—H20 120.4 H11A—C11—H11C 109.5
N3—C7—C6 123.66 (17) H11B—C11—H11C 109.5
N3—C7—S1 118.89 (13) O3—C24—H24A 109.5
C6—C7—S1 117.42 (13) O3—C24—H24B 109.5
C16—C17—C12 120.30 (19) H24A—C24—H24B 109.5
C16—C17—H17 119.9 O3—C24—H24C 109.5
C12—C17—H17 119.9 H24A—C24—H24C 109.5
C23—C22—C21 120.80 (17) H24B—C24—H24C 109.5
C23—C22—H22 119.6 C15—C14—C13 120.3 (2)
C21—C22—H22 119.6 C15—C14—H14 119.8
N2—C1—H1A 109.5 C13—C14—H14 119.8
N2—C1—H1B 109.5
C2—N2—N1—C4 0.92 (19) C5—C6—C7—S1 −178.50 (13)
C1—N2—N1—C4 178.78 (17) C9—C6—C7—S1 −1.3 (2)
C7—C6—C5—C3 −0.5 (2) C8—S1—C7—N3 −2.36 (18)
C9—C6—C5—C3 −177.72 (15) C8—S1—C7—C6 175.47 (15)
C7—C6—C5—C18 178.87 (14) C13—C12—C17—C16 0.8 (3)
C9—C6—C5—C18 1.6 (2) C4—C12—C17—C16 178.66 (16)
C19—C18—C5—C6 −117.54 (18) C18—C23—C22—C21 0.9 (3)
C23—C18—C5—C6 66.4 (2) O3—C21—C22—C23 −178.79 (18)
C19—C18—C5—C3 61.8 (2) C20—C21—C22—C23 0.9 (3)
C23—C18—C5—C3 −114.30 (19) C7—N3—C2—N2 −178.44 (16)
C19—C18—C23—C22 −1.3 (3) C7—N3—C2—C3 0.3 (2)
C5—C18—C23—C22 174.93 (17) N1—N2—C2—N3 178.93 (15)
C23—C18—C19—C20 −0.2 (3) C1—N2—C2—N3 1.3 (3)
C5—C18—C19—C20 −176.43 (16) N1—N2—C2—C3 0.00 (19)
N2—N1—C4—C3 −1.47 (18) C1—N2—C2—C3 −177.67 (18)
N2—N1—C4—C12 178.47 (14) C5—C3—C2—N3 −1.5 (3)
C6—C5—C3—C2 1.5 (2) C4—C3—C2—N3 −179.75 (16)
C18—C5—C3—C2 −177.89 (14) C5—C3—C2—N2 177.41 (14)
C6—C5—C3—C4 178.94 (18) C4—C3—C2—N2 −0.86 (17)
C18—C5—C3—C4 −0.4 (3) C12—C17—C16—C15 −0.2 (3)
N1—C4—C3—C2 1.46 (18) C17—C12—C13—C14 −1.6 (3)
C12—C4—C3—C2 −178.47 (17) C4—C12—C13—C14 −179.45 (18)
N1—C4—C3—C5 −176.19 (19) O1—O1—C9—O2 0.00 (13)
C12—C4—C3—C5 3.9 (3) O1—O1—C9—C6 0.00 (9)
N1—C4—C12—C13 42.4 (2) C10—O2—C9—O1 4.7 (3)
C3—C4—C12—C13 −137.69 (19) C10—O2—C9—O1 4.7 (3)
N1—C4—C12—C17 −135.43 (18) C10—O2—C9—C6 −177.05 (17)
C3—C4—C12—C17 44.5 (3) C5—C6—C9—O1 73.3 (2)
C24—O3—C21—C22 −176.7 (2) C7—C6—C9—O1 −104.0 (2)
C24—O3—C21—C20 3.6 (3) C5—C6—C9—O1 73.3 (2)
O3—C21—C20—C19 177.29 (17) C7—C6—C9—O1 −104.0 (2)
C22—C21—C20—C19 −2.4 (3) C5—C6—C9—O2 −104.97 (18)
C18—C19—C20—C21 2.1 (3) C7—C6—C9—O2 77.8 (2)
C2—N3—C7—C6 0.9 (2) C9—O2—C10—C11 99.1 (2)
C2—N3—C7—S1 178.58 (12) C17—C16—C15—C14 0.3 (3)
C5—C6—C7—N3 −0.8 (3) C16—C15—C14—C13 −1.0 (4)
C9—C6—C7—N3 176.44 (16) C12—C13—C14—C15 1.7 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and the N3/C2/C3/C5–C7 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C13—H13···Cg1i 0.93 2.85 3.455 (2) 124
C23—H23···Cg2ii 0.93 3.02 3.738 (2) 136

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Amaroju, S., Kalaga, M. N., Srinivasarao, S., Napiórkowska, A., Augustynowicz-Kopeć, E., Murugesan, S., Chander, S., Krishnan, R. & Chandra Sekhar, K. V. G. (2017). New J. Chem. 41, 347–357.
  3. Chauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657–5668. [DOI] [PubMed]
  4. El-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1–13. [DOI] [PubMed]
  5. El-Gohary, N. S. & Shaaban, M. I. (2018). Eur. J. Med. Chem. 152, 126–136. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4–12.
  8. Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343–409. New York: Academic Press.
  11. Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466–2487.
  12. Huang, S., Lin, R., Yu, Y., Lu, Y., Connolly, P. J., Chiu, G., Li, S., Emanuel, S. L. & Middleton, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 1243–1245. [DOI] [PubMed]
  13. Kumar, S. V., Muthusubramanian, S. & Perumal, S. (2019). Org. Prep. Proced. Int. 51, 1–89.
  14. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  15. Mello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427–5432. [DOI] [PubMed]
  16. Naik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). Chemistry Select, 4, 285–297.
  17. Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13878–13900.
  18. Park, C. M., Jadhav, V. B., Song, J. H., Lee, S., Won, H. Y., Choi, S. U. & Son, Y. H. (2017). Bull. Korean Chem. Soc. 38, 595–602.
  19. Pinheiro, L. C. S., Feitosa, L. M., Gandi, M. O., Silveira, F. F. & Boechat, N. (2019). Molecules, 24, 4095.
  20. Rao, H. S. P., Gunasundari, R. & Muthukumaran, J. (2020). Acta Cryst. E76, 443–445. [DOI] [PMC free article] [PubMed]
  21. Ravi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513–2522.
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  24. Thomas, S. P., Pavan, M. S. & Guru Row, T. N. (2014). Chem. Commun. 50, 49–51. [DOI] [PubMed]
  25. Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288–300.
  26. Ye, Q., Cao, J., Zhou, X., Lv, D., He, Q., Yang, B. & Hu, Y. (2009). Bioorg. Med. Chem. 17, 4763–4772. [DOI] [PubMed]
  27. Zhai, M., Liu, S., Gao, M., Wang, L., Sun, J., Du, J., Guan, Q., Bao, K., Zuo, D., Wu, Y. & Zhang, W. (2019). Eur. J. Med. Chem. 168, 426–435. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020008841/dx2029sup1.cif

e-76-01209-sup1.cif (459.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020008841/dx2029Isup2.hkl

e-76-01209-Isup2.hkl (410.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020008841/dx2029Isup3.cml

CCDC reference: 2005976

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES