Skip to main content
PLOS One logoLink to PLOS One
. 2020 Aug 7;15(8):e0236515. doi: 10.1371/journal.pone.0236515

Heterogeneity of synonymous substitution rates in the Xenopus frog genome

Quintin Lau 1,*, Takeshi Igawa 2, Hajime Ogino 2, Yukako Katsura 3, Toshimichi Ikemura 4, Yoko Satta 1
Editor: Marc Robinson-Rechavi5
PMCID: PMC7413554  PMID: 32764757

Abstract

With the increasing availability of high quality genomic data, there is opportunity to deeply explore the genealogical relationships of different gene loci between closely related species. In this study, we utilized genomes of Xenopus laevis (XLA, a tetraploid species with (L) and (S) sub-genomes) and X. tropicalis (XTR, a diploid species) to investigate whether synonymous substitution rates among orthologous or homoeologous genes displayed any heterogeneity. From over 1500 orthologous/homoeologous genes collected, we calculated proportion of synonymous substitutions between genomes/sub-genomes (k) and found variation within and between chromosomes. Within most chromosomes, we identified higher k with distance from the centromere, likely attributed to higher substitution rates and recombination in these regions. Using maximum likelihood methods, we identified further evidence supporting rate heterogeneity, and estimated species divergence times and ancestral population sizes. Estimated species divergence times (XLA.L-XLA.S: ~25.5 mya; XLA-XTR: ~33.0 mya) were slightly younger compared to a past study, attributed to consideration of population size in our study. Meanwhile, we found very large estimated population size in the ancestral populations of the two species (NA = 2.55 x 106). Local hybridization and population structure, which have not yet been well elucidated in frogs, may be a contributing factor to these possible large population sizes.

Introduction

In comparisons between closely related species, it is well considered that different loci within a genome have different genealogical relationships. For example, many studies have compared several loci in humans with the three great ape species and showed that a majority (46.6–58.5% of loci) support the closest relationship between humans and chimpanzees; meanwhile, other loci support closer genealogical relationships between humans and gorillas or chimpanzees and gorillas [13]. Such variation in genealogical relationships between different gene loci can be attributed to large ancestral population size and short duration of successive speciation; this large ancestral population size can sometimes be resulting from heterogeneity of mutation rates among loci. With the increase in available genomic data, there is potential to explore these genealogical relationships in any species groups, with particular reference to investigating heterogeneity of mutation rates.

Such inconsistency of species genealogy with gene genealogy among loci has also been explored in anuran frogs, where different genealogies were explored among four lineages: Silurana, Xenopus, Pipa, and Hymenochirus [4]. It is generally accepted that Silurana and Xenopus form a clade, and this genealogy was confirmed to have the strongest statistical support following Bayesian analysis [4]. Indeed, revalidation of Xenopus topology and taxonomy [5] classifies Silurana as a subgenus within Xenopus, which includes X. tropicalis. Based on recently published genomic data, the common ancestor of X. laevis and X. tropicalis is estimated to have diverged ~48 mya [6]. In addition, X. laevis is a tetraploid species, comprised of (L) and (S) sub-genomes that diverged ~34 mya and hybridized ~17 mya, while X. tropicalis remained a diploid species [6]. We are interested in how this kind of species history is reflected in the genome, especially through demographic history of these species. However, to accurately know the demographic history of these species, we must first ascertain the extent of mutation rate heterogeneity.

One of the first studies to investigate synonymous substitution rates (equivalent to mutation rate, according to neutral theory) in amphibian genes was based on singular nuclear DNA sequences [7], including c-myc, slug, and tyrosinase precursor gene, in different anuran lineages (summarized in Table 1). Using more comprehensive genomic sequence data, a more accurate average synonymous substitution rate among over 8000 orthologous genes in X. laevis and X. tropicalis (identified using BLASTP followed by synteny agreement using BAC-FISH) was reported to be 3.0 to 3.2 x10-9 substitutions/site/year [6]. However, further details have yet to be reported, in relation to the range and variation of synonymous divergence. Thus, in this study we further examine the publically available Xenopus genomes to investigate whether there is synonymous substitution rate heterogeneity in specific genomic regions or chromosomes.

Table 1. Summary of synonymous substitution rates estimated in Anuran frogs in previous studies.

Synonymous substitution rate (x10-9 substitutions/site/year) Species Gene (s) Nucleotide length Reference
0.92–1.53 Three lineages of Eleutherodactylus c-myc ~1340 bp [7]
1.03 (0.68–1.42) Xenopus tropicalis* –Xenopus laevis slug 798 bp [7]
1.69 (1.14–2.45) Boophis xerophilus–Micrixalus fuscus tyrosinase precursor gene exon 1 ~500 bp [7]
3.35 (2.43–4.52) Aglyptodactylus madagascariensis–Fejervarya syhadrensis tyrosinase precursor gene exon 1 ~500 bp [7]
3.0† X. tropicalis—X. laevis 8806 homoeologous genes from genome unspecified [6]
3.2# X. laevis L–X. laevis S

*Silurana tropicalis now referred to as Xenopus tropicalis; based on Ks/2T whereby T is 48 mya† and 34# mya for divergence between X. laevis- X. tropicalis and X. laevis L–X. laevis S, respectively.

Materials and methods

Data collection and calculation of synonymous substitutions

Three Xenopus genomes/sub-genomes were downloaded from Xenbase (http://www.xenbase.org/, RRID:SCR_003280): (i) XTR: Xenopus tropicalis (v9.1 genome assembly), (ii) XLA.L: Xenopus laevis (v9.1 genome assembly) L sub-genome, and (iii) XLA.S: X. laevis S sub-genome. Genomes were aligned using Synteny Mapping and Analysis Program (SyMAP) v 4.2 [8] and genomic locations for all orthologs between genomes of the two species or homoeologs between sub-genomes were compiled; the full data is available on the XenOrtho database (https://sites.google.com/view/xenorthodb/xenortho-db). A total of 1742 orthologous/homoeologous genes that had annotations in all three genomes/sub-genomes were collated, and we then excluded genes with overlapping annotations and genes with orthologs or homoeologs across different chromosomes; finally we obtained a set of 1598 orthologous loci from the three entire genomes and sub-genomes (54–4509 bp per gene, total 875911 bp).

Geneious® 11.1.5 (https://www.geneious.com) was used to extract sequences for the 1598 orthologous/homoeologous genes, using annotated gene names as search queries. Next, coding sequences (CDS) from the three genomes were aligned and gaps were excluded. For each genome pair combination (XTR-XLA.L, XTR-XLA.S, and XLA.L-XLA.S), we calculated the number (d) and proportion (k = d/L) of synonymous substitutions, whereby total length (L) of synonymous sites was calculated using MEGA-X-CC [9] with Nei-Gojobori method and Jukes Cantor correction for multiple hits. These parameters (d and k) were calculated and collated separately for each chromosome.

Maximum likelihood estimates of X and Y

Using the number of synonymous substitutions (d) and length (L), we utilized a maximum likelihood method that takes into account rate heterogeneity (α) across loci and is based on a discrete gamma model by Yang [10]. α < 1 is indicative of high heterogeneity, while infinitely large α denotes constant substitution rate or no heterogeneity. Before ML estimations, we first confirmed that d fits with a negative binomial distribution using fitdistrplus package implemented in R [11]. Then, we calculated maximum likelihood (ML) estimates of α with assumption of X = 0; then α, d, and L were used for ML estimates of X = 4NA and Y = 2μt, whereby NA represents ancestral population size, t represents divergence time of two species compared, g represents generation time, and μ represents mutation rate (synonymous substitution rate) per site per year. We calculated X and Y for two α values: infinitely large α, and α values that gave best ML estimates of X and Y. This was conducted independently for each chromosome, and also for all chromosomes collated together (‘genome-wide’). We then calculated NA and t assuming a generation time of 1 year and μ = 2.05 x 10−9 substitutions/site/year; this synonymous substitution rate is calculated based on data by Session et al. [6] (T* = 0.0308 = T×μ, where T is ~15 mya, the time of pseudogenisation = assumed time of allotetraploidization, and μ is synonymous substitution rate).

Statistical analyses

All statistical tests were conducted in R [11] or GraphPad Prism version 8.1.1 (GraphPad Software, La Jolla, CA, USA; www.graphpad.com). Within each of the three pairwise comparisons (XTR-XLA.L, XTR-XLA.S, and XLA.L-XLA.S), we used Analysis of Variance (ANOVA) test in R to determine if there are differences in proportion of synonymous substitutions (k) between chromosomes; Tukey multiple comparisons of means (95% confidence interval) was also implemented in R to identify which specific chromosomes are different to each other. To analyze whether there are changes in k (or K) within each chromosome, we performed the partial F-test using ANOVA command in R to compare linear [lm(W~Z)] and quadratic [lm(W~Z+ I (Z^2)] models of k (represented by Z) in relation to chromosome position (W).

Results and discussion

Synonymous divergence between and within chromosomes

We have utilized publically available genomic data from X. laevis and X. tropicalis to identify heterogeneity in the proportion of synonymous substitutions (k). Genome-wide mean k between genes was lower in the pairwise comparison of XLA.L and XLA.S sub-genomes (k = 0.183 ± 0.043, median = 0.184) compared to inter-species comparisons (k = 0.227 ± 0.055 or 0.235 ± 0.056, median = 0.224 or 0.232) (Table 2). This is expected, since X. tropicalis and X. laevis diverged ~48 mya whereas the two X. laevis sub-genomes diverged ~34 mya [6], and this additional time allowed for increased accumulation of synonymous substitutions. Overall, the k values in our study are slightly lower than those previously estimated from genomic data (median XTR-XLT Ks = 0.286, XLA.L-XLA.S Ks = 0.218) [6]. This might be attributed to the different approaches in extraction of orthologous/homoeologous genes; our approach utilized alignment of synteny blocks, which could be more conservative and focused on single copy orthologs whilst avoiding paralogs and orthologs located on different chromosomes.

Table 2. Proportion of synonymous substitutions (k = d/L) calculated from pairwise comparisons of the three Xenopus genomes/sub-genomes.

Chromosome # genes Proportion of synonymous substitutions, k = d/L[mean±s.d.]
XLA.L-XLA.S XTR-XLA.L XTR-XLA.S
Genome-wide 1596 0.183 ± 0.043 0.227 ± 0.055 0.235 ± 0.056
1 299 0.179 ± 0.043 0.218 ± 0.051 0.228 ± 0.053
2 187 0.184 ± 0.041 0.224 ± 0.049 0.232 ± 0.048
3 206 0.181 ± 0.037 0.217 ± 0.046 0.219 ± 0.048
4 185 0.181 ± 0.041 0.222 ± 0.056 0.232 ± 0.058
5 164 0.184 ± 0.044 0.238 ± 0.061 0.244 ± 0.056
6 148 0.178 ± 0.043 0.230 ± 0.056 0.235 ± 0.057
7 109 0.185 ± 0.043 0.233 ± 0.053 0.238 ± 0.051
8 122 0.190 ± 0.047 0.223 ± 0.059 0.237 ± 0.061
9 102 - 0.230 ± 0.058 0.239 ± 0.062
10 74 - 0.276 ± 0.053 0.279 ± 0.056
9_10 196 0.190 ± 0.050 - -

When we investigated k between each chromosome (i.e. at the inter-chromosomal level), there were no significant differences when comparing the X.laevis sub-genomes (Table 2, Fig 1A). However, when comparing either XLA.L or XLA.S with XTR, we found that k was higher in orthologs located in chromosome 10 (XTR10) relative to all other chromosomes (p < 0.0001, Table 2, Fig 1B and 1C). In addition, orthologs had higher divergence in chromosome 5 compared to chromosome 3 (p < 0.001, Table 2, Fig 1B and 1C). The significantly higher k in XTR10 when comparing XLA to XTR could be related to the dynamic fusion of chromosomes 9 and 10 in X. laevis [12], which we discuss later in this section.

Fig 1. Boxplots depicting proportion of synonymous substitutions (k) for each chromosome.

Fig 1

Between (A) X. laevis L (XLA.L) and S (XLA.S) sub-genomes, (B) X. tropicalis (XTR) and XLA.L, and (C) XTR and XLA.S. **p < 0.01, ***p < 0.0001 (adjusted p-values from Tukey multiple comparisons of means).

Next, we examined intra-chromosomal divergence between XLA.L-XLA.S and XLA-XTR and found variation in k between certain chromosomes. In chromosomes 1–7, a non-linear relationship, whereby k increases with distance from the centromere (Fig 2A and S1 Fig), was confirmed by partial F-test, irrespective of the sub-genome (XLA.S, XLA.L, or XTR) used for chromosome location (Pr(F) < 0.001, S1 Table). This intra-chromosomal heterogeneity suggests that recombination is more prominent with distance from the centromere, and supports the finding that recombinations and local synonymous substitutions are positively correlated [13, 14]. Furthermore, when we investigated CG composition in full genome data at each chromosome, we found higher CG composition towards the telomeres (S2 Fig). This tendency of higher CG (that is, potentially higher CpG methylation) may explain the higher synonymous substitution rates away from the centromere. While an association between GC content and recombination rate has not been demonstrated in amphibians to date, a positive correlation has been identified in many other species [1517]. The presence of transposable elements (TEs) may also contribute to heterogeneity in substitution rates within a chromosome. In Drosophila melanogaster, TEs tended to be accumulated in the proximal region (i.e. near centromere) of autosomes [18]; transposon density was also found to be negatively correlated with recombination rate in this species [19]. Moreover, a study in X. tropicalis found that frequency of TEs was negatively correlated with GC content [20], but chromosomal location of only specific transposons have been mapped in X. laevis [6]. Based on these previous studies, there may be a lower frequency of TEs in the distal parts of the Xenopus chromosomes along with high CG content, which may be related to high recombination rates.

Fig 2. Relationship patterns between proportion of synonymous substitutions (k) and chromosome location.

Fig 2

Representative figures displaying different relationship patterns for each genome pair combination (XTR-XLA.L in red, XTR-XLA.S in green, and XLA.L-XLA.S in blue). (A) Chromosome 1 (e.g. XTR1) showed a common non-linear relationship between k and location. This higher k in distal parts of the chromosome was also seen in chromosomes 2 to 7, irrespective of the genome used for location in the x-axis (S1 Fig). (B, C) Chromosome 8 showed contrasting patterns based on the genome used for location reference: (B) XTR8 (S1 Fig) and XLA8L showed higher k in the distal part of chromosome, while (C) XLA8S had no marked relationship between k and location, likely due to intra-chromosomal rearrangements [6]. (D) In XTR9, k increased distally with location, while (E) it decreased in XTR10; (F) in the homoeologous XLA9_10, k decreased with location. Centromere positions are indicated by dotted vertical line and estimated based on position of frog centromeric repeat 1 (Fcr1) [21] or centromeric markers from X. tropicalis [22]. Full results are shown in S1 Fig.

Exceptional cases were observed in chromosomes 8, 9, and 10. In chromosome 8, k varied depending on the genome used as reference for location. When we used XTR or XLA.L genomes as references, the relation between k and location was non-linear (Fig 2B, Pr(F) < 0.01), much like in chromosomes 1–7. However, when XLA.S was used, there was no bi-directional increase in k away from the centromere (Fig 2C, Pr(F) = 0.08–0.293). This is likely attributed to the chromosomal rearrangements and increased deletions previously reported in the S genome [6]; specifically, there is an inversion in the p-arm of XLA8S as well as homoeologous identity between the XLA8S p-arm and XLA8L q-arm (S3A Fig). We note that XLA3S also has chromosomal rearrangements but instead has a non-linear relation between k and location; this may be attributed to a lower degree of rearrangement and/or inversion being mainly limited to the q-arm of XLA3 (S3B Fig).

XTR-XLA and XLA.L-XLA.S intra-chromosomal examination of chromosomes 9 and 10 revealed contrasting relationships between k and chromosome location. The relationship between k and location was opposite between XTR9 and XTR10: k (XTR-XLA) increased with location in XTR9 (Fig 2D) but decreased with location in XTR10 (Fig 2E). Within the homoeologous XLA9_10, higher k in all pairwise genome comparisons was observed in the p-arm (Fig 2F and S1 Fig), which is predominantly equivalent to XTR10 based on cytogenetic mapping of chromosomes (S3C Fig); k then decreases distally in the q-arm of XLA9_10, which is mostly orthologous to XTR9 [6]. Chromosomes 9 and 10 probably fused sometime between the divergence of X. laevis with X. tropicalis (~48 mya) and the divergence of Xenopus (L) with Xenopus (S) (~34 mya). It seems possible that homoeologous XLA9_10 chromosome, when compared to chromosomes 1–8, had a shorter amount of time for intrachromosomal recombination or accumulation of substitutions away from the centromere. The fusion of chromosomes 9 and 10 in XLA may have also impacted on mutation and recombination within XLA9_10. In addition, it may also be possible that different chromosomes experienced high recombination and mutation rates, while others could be under greater evolutionary constraint. For example in birds, synonymous substitution rates were higher in microchromosomes compared to macrochromosomes [23]. While Xenopus frogs do not have microchromosomes, our finding of a higher proportion of synonymous substitutions in XTR10 (Fig 1) could support that recombination rates differ between and within anuran chromosomes.

Estimation of ancestral population size and species divergence time

Among all pairwise genome comparisons across the ten chromosomes, maximum likelihood estimates of α ranged from α = 14.9–41.8 (S2 Table) with an assumption of no ancestral polymorphism. Using these initial α values, we estimated X and Y again and sometimes found that a smaller or larger α gave better ML estimates (S2 Table); these were subsequently used. ML estimates of X = 4 and Y = 2μt were significantly different (p < 0.001) when using an infinitely large α (i.e. no rate heterogeneity) compared to using α with best ML estimates (Fig 3); this provides evidence that some rate heterogeneity is present in the Xenopus genome. Using the α values with best ML estimates, we calculated species divergence time and ancestral population size.

Fig 3. Best maximum likelihood estimates of X = 4 and Y = 2μt.

Fig 3

Estimates were used to calculate ancestral population size and species divergence time, respectively (in ancestor of XLA-XTR or XLA.S-XLA.L). These estimates were significantly different compared to those using infinitely large α (**p < 0.0001, t-test). Line bars represent mean ± s.d.; each point represents each chromosome, with genome-wide results indicated by dark circles.

Firstly, chi-square tests for all chromosomes showed no significant differences between observed synonymous divergence against a negative binomial distribution (all p > 0.01; S3 Table). The only exception was when data from all chromosomes were compiled (chi-square p-value < 0.01), likely due to intra-chromosomal variation, and thus genome-wide estimates were subsequently not conducted.

The estimated species divergence time of t = 38.7–47.0 mya (XLA.S-XLA.L, range among chromosomes) and t = 44.8–64.3 mya (XTR-XLA) (S2 Table) is older than the previous estimates (using genomic data) of 34 and 48 mya, respectively [6], but similar to some other studies. For example, based on mitochondrial DNA, the common ancestor of Xenopus frogs was dated back to 31.8–54.6 mya [24]. In addition, the divergence time between Xenopus and Silurana (based on DNA, morphology, and fossil calibration) was estimated to be 27–51 mya [25]. Furthermore, simple molecular clock estimates date the X. laevisX. tropicalis divergence and genome duplication in X laevis at around 50 and 40 mya, respectively [26].

The slight discrepancies in t could be attributed to the past assumption that divergence of sequence is equivalent to species divergence time, but actually NA can influence divergence time of sequences. Our study using a maximum likelihood approach has accounted for the impact of potentially large NA on estimations of divergence time and substitution rate. From the ML estimates, we also calculated an ancestral population size of NA = 0.88–2.58 x 106 (XLA.S-XLA.L, range among chromosomes) and NA = 0.96–4.02 x 106 (XTR-XLA) (S2 Table). This is an unexpectedly large estimated population size, considering that it is comparable to that of fruitflies (Ne = 2–7 x 106), and at least one order of magnitude higher than lizards and bony fish [27]. In extant humans, the estimated effective population is much lower at below 104 [28, 29].

Even though naturally-occurring species hybridization is restricted to a few Xenopus spp. (including X. laevis and excluding X. tropicalis) [30, 31], it seems possible that population structure and local hybridization may have contributed to a large estimated population size. Indeed, the hybridization of X. laevis (L) and (S) genomes as well as the fusion of chromosomes 9 and 10 and various intrachromosomal recombinations may have contributed to high population size estimations. Recently, there is emerging evidence supporting that hybridization may have an important role in adaptation [3234].

The seemingly large population size is based on our large ML estimates of X, which is dependent on both population size and mutation rate. Therefore, high mutation rate may be contributive to the large X estimate. We briefly examined variation in μ using the ML estimates of Y = 2μt and constant species divergence time (48 mya and 34 mya for divergence times of X. laevis—X. tropicalis and X. laevis L–X. laevis S, respectively [6]) and found that μ varied between chromosomes (1.85–2.59 and 2.10–2.59 x10-9 substitutions/site/year, respectively). However, no clear increase was evident, supporting that large population size instead of mutation rate more likely contributed to the large ML estimates of X. Future investigation of genomic sequences of other Xenopus spp. as well as X. tropicalis or X. laevis sub-populations will aid in elucidating the mechanisms behind these large estimations. Indeed, the Xenopus topology and taxonomy validated using morphological and molecular analyses (mitochondrial and nuclear genes) [5], with a large diversity of polyploidy and high number of independent polyploidization events, could be further explored using genomics. Moreover, genomic studies of other species within the sub-genus Silurana, including X. mellotropicalis and X. epitropicalis [35], will be important to further understand the relationship between chromosomal rearrangements and mutation rates before and after polyploidization.

Conclusions

Using available genome data, we have demonstrated the presence of synonymous substitution rate heterogeneity within Xenopus frogs at the inter- and intra-chromosomal level. We found that chromosome 10 had higher k compared to other chromosomes, as well as peculiar intra-chromosomal patterns, likely related to the fusion of chromosomes 9 and 10 in X. laevis. Within most other chromosomes, we identified a pattern of higher k at both the distal and proximal ends of the chromosomes, and this may be caused by more frequent recombination and elevated mutation rates in these regions. In addition, maximum likelihood estimations provided additional evidence of rate heterogeneity across all chromosomes. Our estimated species divergence times are a little different to that of a previous study, possible because our approach has accounted for ancestral population size. Our study is one of the first to estimate ancestral population size in Xenopus frogs, which we found to be surprisingly high. This large population size may be attributed to hybridization and population structure and thus warrants further investigation to validate our findings.

Supporting information

S1 Fig. Relationship between proportion of synonymous substitutions (k) and location within each chromosome, for each genome pair combination (XTR-XLA.L in red, XTR-XLA.S in green, and XLA.L-XLA.S in blue).

Representative plots are presented in Fig 2. Centromere locations (vertical dotted line) are based on [15, 16].

(DOCX)

S2 Fig. Frequency of CG dinucleotides along each chromosome based on whole genome data of Xenopus tropicalis and X. laevis L and S.

Y-axes represent CG composition in 1Mb sliding windows with a 100kb step on the chromosomes, X-axes represent chromosome locations (x1000000). The dinucleotide composition was computed using a batch-learning self-organizing map (BLSOM) program (Abe et al. 2003). The BLSOM program can be obtained from UNTROD, Inc. (y_wada@nagahama-i-bio.ac.jp).

(DOCX)

S3 Fig

Unique patterns observed between proportion of synonymous substitutions k and location within (A) chromosome 8, (B) chromosome 3 (normal pattern), and (C) chromosome 9/10 could be attributed to chromosomal rearrangements previously identified using cytogenetic mapping by Session et al. [5].

(DOCX)

S1 Table. Quadratic regression analyses of relationship between W = chromosome location and Z = proportion of synonymous substitutions (k).

Partial F-test was used to compare two models: linear [lm(W~Z)] and quadratic [lm(W~Z + I (Z^2)]. Values presented are significance probabilities associated with the F values, Pr(F), and were calculated independently for each pairwise comparison of genomes: XLA.L-XLA.S (blue), XTR-XLA.L (red), and XTR-XLA.S (green). Values with Pr(F) < 0.01 (in bold) significantly support a quadratic model.

(DOCX)

S2 Table. Maximum likelihood estimates and calculations of rate heterogeneity (α), ancestral population size (NA), and divergence time (t).

Although chromosome 9_10 is homoeologous in XLA.L and XLA.S, we separated estimations to chromosome 9 or 10 based on location in XTR.

(DOCX)

S3 Table. Chi-square p-values following fitting observed data (synonymous difference) against the distribution 'nbinom' by maximum likelihood.

(DOCX)

Acknowledgments

We thank Akira Sasaki for assistance with statistical analyses, and Naoyuki Takahata for critical feedback on the manuscript. We acknowledge the Xenopus Community in Japan (XCIJ) and National Bio-Resource Project (NBRP) for the XenOrtho database.

Data Availability

All relevant data are within the paper and its Supporting Information files.

Funding Statement

QL was supported by Goho Life Sciences International Fund.

References

  • 1.Satta Y, Klein J, Takahata N. DNA archives and our nearest relative: The trichotomy problem revisited. Mol Phylogenet Evol. 2000;14: 259–275. 10.1006/mpev.2000.0704 [DOI] [PubMed] [Google Scholar]
  • 2.O’hUigin C, Satta Y, Takahata N, Klein J. Contribution of homoplasy and of ancestral polymorphism to the evolution of genes in anthropoid primates. Mol Biol Evol. 2002;19: 1501–1513. 10.1093/oxfordjournals.molbev.a004213 [DOI] [PubMed] [Google Scholar]
  • 3.Chen F-C, Li W-H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet. 2001;68: 444–456. 10.1086/318206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bewick AJ, Chain FJJ, Heled J, Evans BJ. The Pipid Root. Syst Biol. 2012;61: 913–926. 10.1093/sysbio/sys039 [DOI] [PubMed] [Google Scholar]
  • 5.Evans BJ, Carter TF, Greenbaum E, Gvodík V, Kelley DB, McLaughlin PJ, et al. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One. 2015;10: e0142823 10.1371/journal.pone.0142823 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538: 336–343. 10.1038/nature19840 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Crawford AJ. Relative rates of nucleotide substitution in frogs. J Mol Evol. 2003;57: 636–641. 10.1007/s00239-003-2513-7 [DOI] [PubMed] [Google Scholar]
  • 8.Soderlund C, Bomhoff M, Nelson WM. SyMAP v3.4: A turnkey synteny system with application to plant genomes. Nucleic Acids Res. 2011;39: e68 10.1093/nar/gkr123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35: 1547–1549. 10.1093/molbev/msy096 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol. 1994;39: 306–314. 10.1007/BF00160154 [DOI] [PubMed] [Google Scholar]
  • 11.R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria, Austria; 2016. Available: https://www.r-project.org
  • 12.Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity (Edinb). 2013;111: 430–436. 10.1038/hdy.2013.65 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hellmann I, Ebersberger I, Ptak SE, Pääbo S, Przeworski M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am J Hum Genet. 2003;72: 1527–1535. 10.1086/375657 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Spencer CCA, Deloukas P, Hunt S, Mullikin J, Myers S, Silverman B, et al. The influence of recombination on human genetic diversity. PLoS Genet. 2006;2: e148 10.1371/journal.pgen.0020148 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Fang L, Ye J, Li N, Zhang Y, Li SG, Wong GKS, et al. Positive correlation between recombination rate and nucleotide diversity is shown under domestication selection in the chicken genome. Chinese Sci Bull. 2008;53: 746–750. 10.1007/s11434-008-0159-y [DOI] [Google Scholar]
  • 16.Fullerton SM, Carvalho AB, Clark AG. Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol. 2001;18: 1139–1142jen. 10.1093/oxfordjournals.molbev.a003886 [DOI] [PubMed] [Google Scholar]
  • 17.Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004;14: 528–538. 10.1101/gr.1970304 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Charlesworth B, Lapid A, Canada D. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet Res. 1992;60: 115–130. 10.1017/s0016672300030809 [DOI] [PubMed] [Google Scholar]
  • 19.Rizzon C, Marais G, Gouy M, Biémont C. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res. 2002;12: 400–407. 10.1101/gr.210802 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Shen JJ, Dushoff J, Bewick AJ, Chain FJJ, Evans BJ. Genomic dynamics of transposable elements in the Western clawed frog (Silurana tropicalis). Genome Biol Evol. 2013;5: 998–1009. 10.1093/gbe/evt065 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Edwards NS, Murray AW. Identification of Xenopus CENP-A and an associated centromeric DNA repeat. Mol Biol Cell. 2005;16: 1800–1810. 10.1091/mbc.e04-09-0788 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CYJ, et al. Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn. 2009;238: 1398–1346. 10.1002/dvdy.21965 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Axelsson E, Webster MT, Smith NGC, Burt DW, Ellegren H. Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. Genome Res. 2005;15: 120–125. 10.1101/gr.3021305 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. A mitochondrial DNA phylogeny of African clawed frogs: Phylogeography and implications for polyploid evolution. Mol Phylogenet Evol. 2004;33: 197–213. 10.1016/j.ympev.2004.04.018 [DOI] [PubMed] [Google Scholar]
  • 25.Cannatella D. Xenopus in space and time: fossils, node calibrations, tip-dating, and paleobiogeography. Cytogenet Genome Res. 2015;145: 283–301. 10.1159/000438910 [DOI] [PubMed] [Google Scholar]
  • 26.Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS. Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol. 2007;5: 31 10.1186/1741-7007-5-31 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nei M, Graur D. Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology. 1984. pp. 73–118. 10.1007/978-1-4615-6974-9_3 [DOI] [Google Scholar]
  • 28.Takahata N. Allelic genealogy and human evolution. Mol Biol Evol. 1993;10: 2–22. 10.1093/oxfordjournals.molbev.a039995 [DOI] [PubMed] [Google Scholar]
  • 29.Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 2007;17: 520–526. 10.1101/gr.6023607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Furman BLS, Cauret CMS, Colby GA, John Measey G, Evans BJ. Limited genomic consequences of hybridization between two African clawed frogs, Xenopus gilli and X. laevis (Anura: Pipidae). Sci Rep. 2017;7: 1091 10.1038/s41598-017-01104-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Fischer WJ, Koch WA, Elepfandt A. Sympatry and hybridization between the clawed frogs Xenopus laevis laevis and Xenopus muelleri (Pipidae). J Zool. 2000;252: 99–107. 10.1017/S0952836900009110 [DOI] [Google Scholar]
  • 32.Chen C, Pfennig KS. Female toads engaging in adaptive hybridization prefer high-quality heterospecifics as mates. Science. 2020;367: 1377–1379. 10.1126/science.aaz5109 [DOI] [PubMed] [Google Scholar]
  • 33.Oziolor EM, Reid NM, Yair S, Lee KM, VerPloeg SG, Bruns PC, et al. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science. 2019;364: 455–457. 10.1126/science.aav4155 [DOI] [PubMed] [Google Scholar]
  • 34.Jones MR, Scott Mills L, Alves PC, Callahan CM, Alves JM, Lafferty DJR, et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science. 2018; 10.1126/science.aar5273 [DOI] [PubMed] [Google Scholar]
  • 35.Knytl M, Smolík O, Kubíčková S, Tlapáková T, Evans BJ, Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS One. 2017; 10.1371/journal.pone.0177087 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Marc Robinson-Rechavi

25 May 2020

PONE-D-20-12594

Heterogeneity of synonymous substitution rates in the Xenopus frog genome

PLOS ONE

Dear Dr. Lau,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Both reviewers raise important points about the writing, consistency, and references.

Please submit your revised manuscript by Jul 09 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Marc Robinson-Rechavi

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Partly

Reviewer #2: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: I Don't Know

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The proposed manuscript shows important piece of work and supplements Xenopus phylogeny.

1) I suggest some improvements of the discussion section which seems to be little bit poor. Authors are mainly focused on the study Session et al. (2016) but there are a lot of other important phylogenetic studies which authors should take into account and discussed. e.g., Evans et al. (2004) estimated divergent times including common ancestor of S. tropicalis and X. laevis. Cannatella (2015) estimated divergence times based on fossil calibration. New re-validation of the Xenopus topology and taxonomy was done by Evans et al. (2015) including downgrading "Silurana" from a genus to a subgenus within the genus "Xenopus". Then Silurana allotetraploid evolution was confirmed cytogenetically by Knytl et al (2017).

2) I do not understand why there are three separate values for chromosome 9, 10 and 9_10 - the column "proportion of synonymous substitutions XLA.L-XLA.S" (Table 2).

3) Authors use terms "homoeologous" and "homeologous". It should be uniform.

4) Higher substitution rate was found at proximal and distal ends of chromosomes caused probably by frequent recombination and mutations. Are there any studies focused on a presence of transpositions in these parts of chromosomes? If yes, it might be discussed.

5) There are identical labels of second and third column in the Figure 3A and B (XLA.L-XTR).

Cannatella D. (2015). Xenopus in space and time: fossils, node calibrations, tip-dating, and paleobiogeography. Cytogenetic and genome research, 145(3-4), 283-301.

Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, et al. (2015) Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West

and Central Africa. PLoS ONE 10(12): e0142823.

Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, & Cannatella DC. (2004). A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Molecular phylogenetics and evolution, 33(1), 197-213.

Knytl M, Smolík O, Kubíčková S, Tlapáková T, Evans BJ, Krylov V (2017) Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE 12(5): e0177087.

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538(7625), 336-343.

Reviewer #2: The manuscript “Heterogeneity of synonymous substitution rates in the Xenopus frog genome”, by Lau et al provides an important assessment of population parameters in a model system that has become critical to understanding the impacts of genome duplication on genome structure and evolution.

I have only a few comments that I think should be addressed prior to publication. These are listed below.

1) Line 169. Is the word “somehow” necessary? It seems to indicate that there is some doubt. I would recommend expanding on this or removing “somehow”

2) Line 217 The statement “While amphibians do not have microchromosomes” is false. Many taxa have microchromsomes and it is abundantly clear that they were present in the common ancestor of all amphibians. Xenopus do not have microchromosomes however.

3) Line 230, there seems to be a reference to a non-existent figure.

4) In the discussion of apparent increases in population size. Is it possible that this is accounted for to some degree by increases/changes in mutation rate. I’d recommend including more detail on how the relative contributions of Ne and mu were assessed.

5) Lines 254-259. The proposal on ongoing hybridization and large population size seems to run counter to the idea that the two founding populations had accumulated distinctly different repetitive element contents (from the X laevis genome paper PMID: 27762356) as large Ne would seemingly tend to work against fixation of large numbers of semi-deleterious insertions and hybridization would tend to homogenize repeat family contents. Perhaps a bit more discussion would make it easier to integrate the apparent conflicts.

Sincerely

Jeramiah Smith

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: Yes: Jeramiah James Smith

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2020 Aug 7;15(8):e0236515. doi: 10.1371/journal.pone.0236515.r002

Author response to Decision Letter 0


15 Jun 2020

Dear Prof. Robinson-Rechavi,

Thank you for facilitating the review process of our manuscript. We also thank both reviewers for their insightful comments and feedback that have helped us to improve our manuscript. We have addressed all reviewer comments below, and have amended the manuscript accordingly. All line references refer to our 'Revised Manuscript with Track Changes'. References refer to those listed in the revised manuscript.

We hope that you and the reviewers find our amendments to be satisfactory.

Regards

Quintin Lau

Reviewer #1: The proposed manuscript shows important piece of work and supplements Xenopus phylogeny.

1) I suggest some improvements of the discussion section which seems to be little bit poor. Authors are mainly focused on the study Session et al. (2016) but there are a lot of other important phylogenetic studies which authors should take into account and discussed. e.g., Evans et al. (2004) estimated divergent times including common ancestor of S. tropicalis and X. laevis. Cannatella (2015) estimated divergence times based on fossil calibration. New re-validation of the Xenopus topology and taxonomy was done by Evans et al. (2015) including downgrading "Silurana" from a genus to a subgenus within the genus "Xenopus". Then Silurana allotetraploid evolution was confirmed cytogenetically by Knytl et al (2017).

Thank you for your recommendation to improve the Discussion section and providing of several important references. We have now incorporated all suggestions into the discussion (and partially in the introduction):

Line 55-57: “Indeed, revalidation of Xenopus topology and taxonomy [5] classifies Silurana as a subgenus within Xenopus, which includes X. tropicalis.”

Line 254-261: “The estimated species divergence time of t = 38.7 – 47.0 mya (XLA.S-XLA.L, range among chromosomes) and t = 44.8 - 64.3 mya (XTR-XLA) (Table S2), is older than the previous estimates (using genomic data) of 34 and 48 mya, respectively [6], but similar to some other studies. For example, based on mitochondrial DNA, the common ancestor of Xenopus frogs was dated back to 31.8 – 54.6 mya [24]. In addition, the divergence time between Xenopus and Silurana (based on DNA, morphology, and fossil calibration) was estimated to be 27 – 51 mya [25]. Furthermore, simple molecular clock estimates date the X. laevis – X. tropicalis divergence and genome duplication in X laevis at around 50 and 40 mya, respectively [26].”

Line 291-294: “Moreover, genomic studies of polyploid species within the sub-genus Silurana, including X. mellotropicalis and X. epitropicalis [35], will be important to further understand the relationship between chromosomal rearrangements and mutation rates before and after polyploidization.

2) I do not understand why there are three separate values for chromosome 9, 10 and 9_10 - the column "proportion of synonymous substitutions XLA.L-XLA.S" (Table 2).

To avoid confusion, we have now deleted the ‘proportion of synonymous substitutions’ data for chromosomes 9 and 10 in the ‘XLA.L-XLA.S’ column, and the corresponding footnote.

3) Authors use terms "homoeologous" and "homeologous". It should be uniform.

We have ensured that the term is now used uniformly in the manuscript (see line 196).

4) Higher substitution rate was found at proximal and distal ends of chromosomes caused probably by frequent recombination and mutations. Are there any studies focused on a presence of transpositions in these parts of chromosomes? If yes, it might be discussed.

Thank you for your suggestion. Transposable elements have been studied in Xenopus frogs, but not in association with specific parts of the chromosomes, but instead with GC content. A study in Drosophila found higher frequency of repeat elements near the center of autosomes. We have now included the following sentences into lines 174-184:

“While an association between GC content and recombination rate has not been demonstrated in amphibians to date, a positive correlation has been identified in many other species [15–17]. The presence of transposable elements (TEs) may also contribute to heterogeneity in substitution rates within a chromosome. In Drosophila melanogaster, TEs tended to be accumulated in the proximal region (i.e. near centromere) of autosomes [18]; transposon density was also found to be negatively correlated with recombination rate in this species [19]. Moreover, a study in X. tropicalis found that frequency of TEs was negatively correlated with GC content [20], but chromosomal location of only specific transposons have been mapped in X. laevis [6]. Based on these previous studies, there may be a lower frequency of TEs in the distal parts of the Xenopus chromosomes along with high CG content, which may be related to high recombination rates.”

5) There are identical labels of second and third column in the Figure 3A and B (XLA.L-XTR).

Sorry for our error and thank you for spotting it. We have now changed the labels to be XTR-XLA.L and XTR-XLA.S for the second and third columns, respectively.

Reviewer #2: The manuscript “Heterogeneity of synonymous substitution rates in the Xenopus frog genome”, by Lau et al provides an important assessment of population parameters in a model system that has become critical to understanding the impacts of genome duplication on genome structure and evolution.

I have only a few comments that I think should be addressed prior to publication. These are listed below.

1) Line 169. Is the word “somehow” necessary? It seems to indicate that there is some doubt. I would recommend expanding on this or removing “somehow”

As suggested, we have now removed ‘somehow’ to avoid ambiguity.

2) Line 217 The statement “While amphibians do not have microchromosomes” is false. Many taxa have microchromsomes and it is abundantly clear that they were present in the common ancestor of all amphibians. Xenopus do not have microchromosomes however.

I apologize for this error, and have amended the statement to ‘While Xenopus frogs do not have microchoromosomes’. (Line 229)

3) Line 230, there seems to be a reference to a non-existent figure.

I’m sorry that I do not quite follow this query. Line 230 (now line 242) is the Figure title for Figure 3, and line 243-247 is the Figure 3 caption. I have double-checked that Figure 3 was attached in the initial uploaded manuscript.

4) In the discussion of apparent increases in population size. Is it possible that this is accounted for to some degree by increases/changes in mutation rate. I’d recommend including more detail on how the relative contributions of Ne and mu were assessed.

Due to the nature of our maximum likelihood estimates of X=4N_A gμ and Y=2μt [N_A, ancestral population size; t, divergence time; g, generation time; and µ, mutation rate (synonymous substitution rate) per site per year], assumptions in one of the parameters had to be made. In our manuscript, a constant µ was assumed based on genome analysis in a previous study. We did examine ML estimates of µ after assuming T is 48 mya and 34 mya for divergence between X. laevis - X. tropicalis and X.laevis L – X.laevis S, respectively. It may be possible that the apparently high population size could be due to variation or increase in mutation rate. Therefore, we have added the following statement in lines 278–291:

“The seemingly large population size is based on our large ML estimates of X, which is dependent on both population size and mutation rate. Therefore, high mutation rate may be contributive to the large X estimate. We briefly examined variation in μ using the ML estimates of Y=2μt and constant species divergence time (48 mya and 34 mya for divergence times of X. laevis - X. tropicalis and X. laevis L – X. laevis S, respectively [6]) and found that µ varied between chromosomes (1.85 – 2.59 and 2.10 – 2.59 x10-9 substitutions/site/year, respectively). However, no clear increase was evident, supporting that large population size instead of mutation rate more likely contributed to the large ML estimates of X. Indeed, the Xenopus topology and taxonomy validated using morphological and molecular analyses (mitochondrial and nuclear genes) [5], with a large diversity of polyploidy and high number of independent polyploidization events, could be further explored using genomics.”

5) Lines 254-259. The proposal on ongoing hybridization and large population size seems to run counter to the idea that the two founding populations had accumulated distinctly different repetitive element contents (from the X laevis genome paper PMID: 27762356) as large Ne would seemingly tend to work against fixation of large numbers of semi-deleterious insertions and hybridization would tend to homogenize repeat family contents. Perhaps a bit more discussion would make it easier to integrate the apparent conflicts.

Thank you for your comment here. Perhaps there may have been some misunderstanding, as we feel that there is no conflict between hybridization and large population size.

After the divergence of X. laevis L and S progenitors, a number of transposable elements were preserved in the original state, according to identification of sub-genome specific TEs (Session et al. 2016; PMID: 27762356). This instead supports that repeat family elements were not homogenized in the genome after the hybridization between the X. laevis L and S progenitors. Therefore, we feel that ‘hybridization would tend to homogenize repeat family contents’ may not be applicable here. Moreover, many genes have been retained as duplicates following whole genome duplication (e.g. Chain et al 2011; PMID: 22151890), while others like MHC have copy number loss (Sato et al 1994; PMID: 8454860).

Hybridization can increase the heterogeneity of a species (i.e. two species joining to become one). Consequently, genetic variation within a species should increase, and large genetic variation is reflected in a large effective population size. Based on this, we feel that there are no apparent conflicts. However, we are happy to discuss further with you in case our discussion is missing some clarity.

Decision Letter 1

Marc Robinson-Rechavi

9 Jul 2020

Heterogeneity of synonymous substitution rates in the Xenopus frog genome

PONE-D-20-12594R1

Dear Dr. Lau,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Marc Robinson-Rechavi

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: (No Response)

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Partly

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: I Don't Know

Reviewer #2: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The proposed manuscript was improved and I did not find any errors or discrepancies. My comments and suggestions were adequately addressed as well. Only one last point, I am not a statistical expert and for this reason I suggest that someone else as an expert should briefly check statistical data.

Reviewer #2: The manuscript is certainly improves, although the results related to the interrelationship between population size estimates and hybridization are a bit difficult to digest and it seems that these would be much easier to interpret if a figure were added to the discussion that annotates changes in population size/divergence times, and where hybridization and other factors may impact their estimates. Are the hybridization events alluded to here independent of the allopolypolidization event, or does this potentially impact those estimates?

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Martin Knytl

Reviewer #2: Yes: Jeramiah Smith

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Relationship between proportion of synonymous substitutions (k) and location within each chromosome, for each genome pair combination (XTR-XLA.L in red, XTR-XLA.S in green, and XLA.L-XLA.S in blue).

    Representative plots are presented in Fig 2. Centromere locations (vertical dotted line) are based on [15, 16].

    (DOCX)

    S2 Fig. Frequency of CG dinucleotides along each chromosome based on whole genome data of Xenopus tropicalis and X. laevis L and S.

    Y-axes represent CG composition in 1Mb sliding windows with a 100kb step on the chromosomes, X-axes represent chromosome locations (x1000000). The dinucleotide composition was computed using a batch-learning self-organizing map (BLSOM) program (Abe et al. 2003). The BLSOM program can be obtained from UNTROD, Inc. (y_wada@nagahama-i-bio.ac.jp).

    (DOCX)

    S3 Fig

    Unique patterns observed between proportion of synonymous substitutions k and location within (A) chromosome 8, (B) chromosome 3 (normal pattern), and (C) chromosome 9/10 could be attributed to chromosomal rearrangements previously identified using cytogenetic mapping by Session et al. [5].

    (DOCX)

    S1 Table. Quadratic regression analyses of relationship between W = chromosome location and Z = proportion of synonymous substitutions (k).

    Partial F-test was used to compare two models: linear [lm(W~Z)] and quadratic [lm(W~Z + I (Z^2)]. Values presented are significance probabilities associated with the F values, Pr(F), and were calculated independently for each pairwise comparison of genomes: XLA.L-XLA.S (blue), XTR-XLA.L (red), and XTR-XLA.S (green). Values with Pr(F) < 0.01 (in bold) significantly support a quadratic model.

    (DOCX)

    S2 Table. Maximum likelihood estimates and calculations of rate heterogeneity (α), ancestral population size (NA), and divergence time (t).

    Although chromosome 9_10 is homoeologous in XLA.L and XLA.S, we separated estimations to chromosome 9 or 10 based on location in XTR.

    (DOCX)

    S3 Table. Chi-square p-values following fitting observed data (synonymous difference) against the distribution 'nbinom' by maximum likelihood.

    (DOCX)

    Data Availability Statement

    All relevant data are within the paper and its Supporting Information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES