Skip to main content
Tropical Medicine and Health logoLink to Tropical Medicine and Health
. 2020 Aug 14;48:68. doi: 10.1186/s41182-020-00256-1

Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: a systematic review

Samuel Baker Obakiro 1,2,3,, Ambrose Kiprop 2,3, Isaac Kowino 3,4, Elizabeth Kigondu 5, Mark Peter Odero 2,3, Timothy Omara 2,3,6, Lydia Bunalema 7
PMCID: PMC7427981  PMID: 32818019

Abstract

Objective

Many studies on the treatment of tuberculosis (TB) using herbal medicines have been undertaken in recent decades in East Africa. The details, however, are highly fragmented. The purpose of this study was to provide a comprehensive overview of the reported medicinal plants used to manage TB symptoms, and to analyze scientific reports on their effectiveness and safety.

Method

A comprehensive literature search was performed in the major electronic databases regarding medicinal plants used in the management of TB in East Africa. A total of 44 reports were retrieved, and data were collected on various aspects of the medicinal plants such as botanical name, family, local names, part(s) used, method of preparation, efficacy, toxicity, and phytochemistry. The data were summarized into percentages and frequencies which were presented as tables and graphs.

Results

A total of 195 species of plants belonging to 68 families and 144 genera were identified. Most encountered species were from Fabaceae (42.6%), Lamiaceae (19.1%), Asteraceae (16.2%), and Euphorbiaceae (14.7%) families. Only 36 medicinal plants (18.5%) have been screened for antimycobacterial activity. Out of these, 31 (86.1%) were reported to be bioactive with minimum inhibitory concentrations ranging from 47 to 12,500 μg/ml. Most tested plant extracts were found to have acceptable acute toxicity profiles with cytotoxic concentrations on normal mammalian cells greater than 200 μg/ml. The most commonly reported phytochemicals were flavonoids, terpenoids, alkaloids, saponins, cardiac glycosides, and phenols. Only Tetradenia riparia, Warburgia ugandensis, and Zanthoxylum leprieurii have further undergone isolation and characterization of the pure bioactive compounds.

Conclusion

East Africa has a rich diversity of medicinal plants that have been reported to be effective in the management of symptoms of TB. More validation studies are required to promote the discovery of antimycobacterial drugs and to provide evidence for standardization of herbal medicine use.

Keywords: Antimycobacterial, Antitubercular, Medicinal plants, Herbal medicine, Phytochemicals, Mycobacterium tuberculosis

Background

Tuberculosis (TB) is a chronic infectious bacterial disease caused by Mycobacterium tuberculosis (Mtb). It affects mainly the respiratory system but may also affect other organs of the body causing pulmonary and extrapulmonary TB respectively. The World Health Organization (WHO) estimated that a quarter of the world’s population is infected with Mtb and thus at a risk of developing TB [1]. Although TB affects all people, those living with HIV/AIDS are at a higher risk of developing active TB [2]. The burden of TB is still high as it is ranked among the ten diseases of global concern [3]. In 2018, a total of 10 million new cases and 1.49 million deaths due to TB were reported worldwide. In East Africa, 378,000 new cases and 91,000 deaths (24%) occurred. In East Africa, Kenya and Tanzania are still ranked among the 30 countries with a high burden of TB in the world [1].

Treatment of TB remains a challenge due to the emergence of multidrug-resistant Mtb strains and extensively drug-resistant TB cases which poorly respond to the first line antitubercular drugs (rifampicin, isoniazid, pyrazinamide, and ethambutol). These drugs also have side effects and a high potential to interact with antiretroviral drugs resulting in increased toxicity, poor compliance, and treatment failure [46]. As a result, many TB patients have resorted to using alternative and complementary medicines with herbal remedies being the most widely used in the management of tuberculosis [7]. Due to limited access to health services and chronic poverty in East Africa, many people not only believe that herbal medicines are efficacious and safe but also affordable, available, and culturally acceptable [810]. Thus, there is widespread use of herbal remedies by many people in the East Africa to manage symptoms of TB [713]. The WHO also reported that approximately 60% of the world’s population depend on non-conventional therapies for primary health care [14].

The search to discover new effective drugs against Mtb has intensified globally in the last decade as the current therapies become less effective and in an attempt to have a world free of TB by 2035 [1]. With natural products being the leading sources of novel drugs, ethnobotanical surveys and scientific validation studies have been conducted on East African flora in the past decades [710]. Several plant species have been documented and some of their extracts, fractions, and isolated pure compounds have been tested for efficacy and safety [1518]. However, this information is highly fragmented.

Comprehensive data on medicinal plants used in the management of TB is important for the conservation of these species as some of them are either rare or endangered. It also provides more evidence that increases the confidence in the utilization of these herbal remedies for primary health care as well as their regulation by relevant authorities in case of ineffectiveness and toxicity [19, 20]. The analysis and synthesis of the results may also help in identifying existing gaps and challenges in the current research and stimulates future research opportunities. This can lead to identification of novel molecules that can be developed into new antitubercular drugs with better efficacy and safety profiles [21]. This review was therefore undertaken to compile a comprehensive report on the ethnobotany, ethnopharmacology, and phytochemistry of medicinal plants used in management of symptoms of TB in the East African region so as to generate knowledge on the current status and future opportunities for drug discovery against TB.

Methods

Reporting and protocol registration

This systematic review was reported according to the Preferred Reporting Items for the Systematic Reviews and Meta-Analyses (PRISMA) guidelines [22]. The protocol used in this study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) and can be accessed at their website (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=187098) with the registration number CRD42020187098.

Literature search strategy

Relevant literature pertaining the ethnobotany, phytochemistry, efficacy and safety of medicinal plants utilized in management of symptoms of TB in Uganda, Kenya, Tanzania, Rwanda, Burundi and South Sudan were retrieved from Scopus, Web of Science Core Collection, PubMed, Science Direct and Google Scholar [2325]. Key search words such as tuberculosis, mycobacteria, tuberculosis symptoms, tuberculosis treatment, vegetal, antituberculosis, antitubercular, antimycobacterial, cough, traditional medicine, ethnobotany, alternative medicine, and ethnopharmacology combined with either Uganda, Kenya, Tanzania, Rwanda, Burundi, or South Sudan were used. All publishing years were considered, and reports in the returned results were carefully scrutinized. More searches were carried out at the Google search engine using more general search terms, such as mycobacteria, tuberculosis, antituberculosis, antimycobacterial, cough, vegetal species, vegetal extract, traditional medicine, alternative medicine, plants, plant extract, vegetal, herbal, complementary therapy, natural medicine, ethnopharmacology, ethnobotany, herbal medicine, herb, herbs, decoction, infusion, macerate, and concoction combined with either Uganda, Kenya, Tanzania, Rwanda, Burundi, or South Sudan. The searches were done independently by the authors for each country and the outputs were saved where possible on databases and the authors received notifications of any new searches meeting the search criteria from Science Direct, Scopus, and Google scholar.

Inclusion and exclusion criteria

Only full-text original research articles published in peer-reviewed journals, books, theses, dissertations, patents, and conference papers on plants used in the management of symptoms of TB in Uganda, Kenya, Tanzania, Rwanda, Burundi, and South Sudan written in English and dated until April 2020 were considered.

Study selection

At first, literature screening of the extracted articles involved examining the titles and abstracts for relevant articles for inclusion. This was conducted independently by 6 authors. Then, the full-text articles were evaluated against the inclusion/exclusion criteria. The article selection process resulted in 44 studies included in this systematic review (Figure S1).

Data collection

A data collection tool was designed in Microsoft Excel (Microsoft Corporation, USA) to capture data on different aspects of medicinal plant species used in TB management. These included botanical name, plant family, local name(s), part(s) used, growth habit, mode of preparation and administration, method of extraction, efficacy, toxicity and phytochemical screening of crude extracts, isolated pure compounds, and efficacy and toxicity. Careful review of the articles was done, and data were captured using the tool. The collected data were checked for completeness, processed independently for each country by the authors and later analyzed.

Data analysis

Missing information in some studies (local names and growth habit of the plants), and misspelled botanical names were retrieved from the Google search engine and botanical databases (The Plant List, International Plant Names Index, NCBI taxonomy browser, and Tropicos) respectively.

Descriptive statistical methods were used to analyze the collected data. Results were expressed as ranges, percentages, and frequencies and subsequently presented as tables and charts. The analyses were performed using SPSS statistical software (Version 20, IBM Inc.)

Results and discussion

Ethnobotanical studies

With the current antitubercular drugs becoming less effective in the management of multidrug-resistant Mtb strains, medicinal plants can provide the novel molecules for development of new efficacious and safe drugs [26, 27]. From the electronic survey in multidisciplinary databases, 44 reports on medicinal plants used for management of symptoms of TB in East Africa were retrieved. A total of 195 species of plants belonging to 68 families and 144 genera were identified (Table 1). Some of these documented plant species have also been reported in other regions across the world for management of TB. For example, Psidium guajava, Catha edulis, Carica papaya, Citrus limon, Lantana camara, Aloe vera, Biden pilosa, Piliostigma thonningii, Tamarindus indica, Ficus platyphyla, and Vernonia cinereal in Nigeria, South Africa, Ethiopia, India, and Mexico [6064]. This implies that plants continue to occupy a critical niche in the environment due to their rich possession of secondary metabolites (phytochemicals) that have potential to be used as medicines for several ailments that affect man. Therefore, the use of herbal medicines in the provision of primary health care remains an integral component of all health systems globally [14].

Table 1.

Medicinal plants used in treatment of symptoms of TB in East Africa

Botanical name Family Local Names Habit Part used Country Author (s)
Acacia ataxacantha DC Fabaceae Not reported Tree Roots Kenya [28]
Acacia hockii De Wild. Fabaceae Kasana (Luganda), Kashiono Tree Leaves, Stem bark Uganda [7, 10]
Acacia horrida (L.) Fabaceae Lerai (Samburu) Tree Stem bark Kenya [29]
Acacia mearnsii De Wild. Fabaceae Burikoti Tree Stem bark Uganda [10]
Acacia nilotica (L.) Willd. Ex Delile Fabaceae Sunut Tree Fruit South Sudan [30]
Acacia polyacantha Willd. Fabaceae Egirigirioi Tree Stem bark Uganda [10]
Acacia senegal Fabaceae Lderekesi (Samburu) Tree Stem bark Kenya [29]
Acacia spectabilis A. Cunn. Ex Benth. Fabaceae Gasiya (Luganda) Tree Leaves Uganda [7]
Acanthus pubescens (Thomson ex Oliv.) Engl. Acanthaceae Matovu, Itojo Herb Roots Uganda, Kenya [10, 12]
Achyranthes aspera L. Amaranthaceae Muhurura Herb Flower Uganda [10]
Achyrospermum carvalhoi Gürke Lamiaceae Kanyamafundo Shrub Leaves Uganda [10]
Acokanthera friesiorum Apocynaceae Chipilikwa (Samburu) Tree Leaves Kenya [29]
Adenia gummifera Passifloraceae Chepnyalildet (Nandi) Climber Roots Kenya [31]
Adhatoda engleriana Lindau C.B. Clarke Acanthaceae Iringoringo (Chagga) Herb Roots Tanzania [32]
Ageratum conyzoides L. Asteraceae Namirembe (Luganda) Herb Whole plant Uganda [7]
Alangium chinense (Lour.) Harms Cornaceae Omusiisa (Luganda) Herb Stem bark Uganda [7]
Albizia anthelmitica Fabaceaa Lamurtana (Samburu) Tree Stem bark Kenya [29]
Albizia coriaria Welw. Ex Oliv Fabaceae Mugavu (Luganda), Etek (Lango), Musita (Lusoga), Omusesa (Runyangkore), Omubele (Wanga) Tree Stem bark Uganda, Kenya [710, 12, 33]
Albizia species Fabaceae Ennongo (Luganda) Tree Stem bark Uganda [7]
Albizia versicola Fabaceae Not reported Tree Leaves Tanzania, Kenya [12]
Albizia zygia (DC.) Macbr. Fabaceae Ekegonchori (Kuria) Tree Roots Kenya [12]
Allium sativum L. Alliaceae Kitungu saumu (Luo), Garlic (Luganda) Herb Leaves Uganda, Kenya [10, 12]
Aloe vera (L.) Burm. f. Asphodelaceae Kigaji (Luganda) Herb Leaves Uganda [7]
Aloe secundiflora Engl. Aloaceae Sukuroi (Samburu), Osukuroi (Masai), Kiluma (Kamba) Herb Leaves Kenya [12, 34]
Amaranthus spinosus Amaranthaceae Kidodo (Luganda) Herb Leaves Uganda [10]
Anogeissus leiocarpus (DC.) Guill. & Perr. Combretaceae Sahab Tree Stem bark South Sudan [30, 35]
Antiaris toxicaria Lesch. Moraceae Kirundu (Luganda) Tree Stem bark Uganda [7]
Asparagus africanus Lam. Asparagaceae Mukira gwango (Luganda) Climber Stem bark Uganda [10]
Aspilia africana (Pers.) C.D. Adams Asteraceae Makaayi (Luganda) Emaruoit Herb Root bark, Leaves Uganda [7, 10]
Aspilia pluriseta Schweinf. Asteraceae Rirangera Herb Roots Kenya [28]
Azadirachta indica L. Meliaceae Muarubaini (Kamba) Tree Seeds Kenya [12]
Azadirachta indica A. Juss. Meliaceae Neem tree (Luganda) Tree Leaves, stem bark Uganda [7, 10]
Balanites aegyptiaca (L.) Delile Zygophyllaceae Olngosua (Maasai), Ekorete Shrub Stem bark Tanzania, Kenya; Uganda [10, 12]
Bersama abyssinica Fres. Melianthaceae Kipsigriet (Sabaot), Kibuimetiet (Nandi) Tree Leaves Kenya [36]
Bidens pilosa L. Asteraceae Sere, Labika (Luganda), Kalala (Lusoga), ononot (Lango) Herb Flowers, Leaves Uganda, Rwanda, Burundi [7, 10, 37, 38]
Blighia unijugata Baker Sapindaceae Enkuza nyana (Luganda) Tree Stem bark Uganda [7]
Boscia senegalensis (Pers.) Lam. Capparaceae Kursan; Mukheit Shrub Not reported South Sudan [35]
Bridelia micrantha (Hochst.) Baill. Euphorbiaceae Katazamitti (Luganda), Umugimbu, Tree Stem bark, Root Uganda, Burundi [7, 38]
Brillantaisia owariensis P. Beauv. Acanthaceae Icuga Herb Leaves Uganda [10]
Cadaba farinosa Forssk Capparaceae Lumuriai (Samburu), Akado marateng (Luo) Shrub Not reported Kenya [39]
Callistemon citrinus (Curtis) Skeels Myrtaceae Mwabalabutonya (Luganda) Shrub Leaves, Stem bark Uganda [7, 9, 10]
Canarium schweinfurthii Engl. Burseraceae Muwafu (Luganda), Mubafu (Lusoga, Rutoro) Tree Stem bark, stem, roots Uganda, Kenya [7, 9, 12]
Canephora pierre ex A. Froehner Rubiaceae Emwanyi (Luganda) Shrub Stem bark Uganda [7]
Capparis erythrocarpos Isert Capparaceae Muzingani omwelu, Kitunku ekitono Shrub Roots Uganda [10]
Capparis tomentosa Lam. Capparaceae Muzingani omwelu, Kitunku ekitono Shrub Roots Uganda [10]
Carica papaya L. Caricaceae Amapapali, Paapali essajja (Luganda), Mupapali omusaiza (Lusoga), Apapalu (Lango) Shrub Leaves, Stem Uganda [7, 9, 10]
Carissa edulis (Forsk.) Vahl Apocynaceae Muyonza, Ekamuriei (Ateso) Shrub Roots Uganda [10]
Cassine buchananii Loes. Celastraceae Mbaluka (Luganda) Tree Stem bark, Leaves Uganda [8]
Catha edulis Forsk. Celastraceae Chemgangoi (Sabaot) Shrub Stem bark Kenya [36]
Celosia trigyna L. Amaranthaceae Kakubaggiri (Luganda) Herb Leaves Uganda [7]
Chaetacme aristata Planch. Ulmaceae Embutami (Luganda) Tree Leaves Uganda [7]
Cinnamomum zeylanicum Blume Lauraceae Mudalasini (Luganda) Tree Stem bark Uganda [7]
Cissampelos pereira L. Menispermaceae Karigi munana Liana Roots Kenya [28]
Cissus quinquangularis L. Vitaceae Sukurtuti Herb Roots Kenya [12, 34]
Citrus limon (L.) Osbeck Rutaceae Nimawa Tree Fruit Uganda [9]
Combretum molle R.Br. ex. G. Don. Combretaceae Ndagi, Loro (Lango) Tree Stem bark Uganda [7, 8, 10]
Commiphora species Burseraceae Oltemuai (Sabaot) Shrub Not reported Kenya [40]
Commiphora edulis (Klotzsch) Burseraceae Not reported Shrub Stem bark, Leaves Kenya [12, 26]
Commiphora ellenbeckii Engl. Burseraceae Not reported Shrub Stem bark, Leaves Kenya [26]
Commiphora mildbraedii Engl. Burseraceae Not reported Shrub Stem bark, Root bark Kenya [26]
Cordia africana Lam Boraginaceae Not reported Tree Roots Tanzania, Kenya [12]
Crassocephalum vitellinum Apiaceae Akayungubira Herb Leaves Burundi [38]
Crossopteryx febrifuga (Afzel. ex G.Don) Benth. Rubiaceae Not reported Tree Roots Tanzania, Kenya [12]
Croton dichogamus Pax. Euphorbiaceae Oloiborrbenek (Massai) Shrub Roots Tanzania, Kenya [12]
Croton macrostachyus Hochst. ex Del Euphorbiaceae Omutswitswi (Wanga), Mukinduri (Kikuyu) Tree Leaves, Roots Kenya [33]
Croton sylvaticus Euphorbiaceae Not reported Tree Roots Tanzania [41]
Croton zambesicus Euphorbiaceae Um-Gilagla Tree Fruit South Sudan [42, 43]
Cryptolepis sanguinolenta Apocynaceae Kafulu (Luganda) Shrub Roots Kenya, Uganda [12, 44]
Cymbopogon citratus D.C. ex Stapf Poaceae Kisubi (Luganda), Akisube (Ateso), Lum cai (Lango) Herb Leaves Uganda [7]
Cyperus latifolius Poir. Cyperasaceae Ekekeriaut Herb Roots Uganda [10]
Cyperus rotundus L. Subsp. rotundus Cyperasaceae Ekekeriaut Herb Roots Uganda [10]
Cyphostemma adenocaule Vitaceae Lordo (Samburu) Herb Not reported Kenya [34]
Dalbergia melanoxylon Guill. & Perr. Fabaceae Not reported Tree Stem bark Kenya [28]
Datura stramonium Solanaceae Not reported Herb Leaves Rwanda [45]
Desmodium salicifolium (Poir.) D.C. Fabaceae Enkolimbo (Luganda) Herb Leaves Uganda [7]
Desmodium repandum (Vahl) DC. Papilionaceae Ituza Herb Leaves Uganda [10]
Dichrostachys cinerea (L.) Wight and Arn Fabaceae Chinjiri (Digo) Tree Roots Kenya [28]
Dodonaea angustifolia L. f. Sapindaceae Musambya (Luganda) Shrub Leaves Uganda [10]
Dracaena steudneri Engl. Asparagaceae Kajjolyenjovu (Luganda) Tree Stem bark Uganda, Kenya [7, 9, 10, 12]
Dychrostachys glomerata (DG) (Forssk.) Fabaceae Not reported Tree Leaves, Roots Uganda, Kenya, Tanzania [10, 12, 29]
Embelia schimperi Vatke Myrsinaceae Sachuonet (Ogiek) Tree Stem bark Kenya [46]
Entada abbysinica A. Rich. Fabaceae Laginaria (Luo) Mwolola (Luganda) Shrub Roots, Stem bark, Leaves Uganda, Kenya, Tanzania [7, 10, 12, 29]
Erythrina abyssinica Lam. ex DC. Fabaceae Ejjirikiti (Luganda), Kiko Omoko (Rutoro), Oluo (Lugbara), Owila kot (Lango), Muyirikiti (Lusoga), Omotembe (Kisii)Muhuti (Kikuyu), Umurinzi Tree Stem bark, leaves Uganda, Kenya, Tanzania, Rwanda, Burundi [710, 12, 38, 45, 47]
Eucalyptus species Myrtaceae Kalintusi (Luganda) Tree Leaves, Stem bark Uganda, Kenya, Tanzania, Rwanda [710, 12, 47, 48]
Euclea divinorum Hiern Ebenaceae Emus, Kasalagala/Muda (Lusoga) Shrub Roots Uganda [10]
Euphorbia ingens E.Mey. ex Boiss. Euphorbiaceae Not reported Tree Roots Kenya [28]
Euphorbia schimperiana Scheele Euphorbiaceae Kazagamira (Luganda) Tree Leaves Uganda [7]
Faidherbia albida (Del.) Chevi. Fabaceae Haraz Tree Leaves South Sudan [42]
Ficus glumosa Delile Moraceae Muwo (Luganda) Shrub Stem bark Uganda [7]
Ficus natalensis Hochst. Moraceae Omutuba (Luganda), Mugaire (Lusoga) Tree Stem bark Uganda [7]
Ficus platyphylla Delile Moraceae Mudodwe Shrub Stem bark Uganda [10]
Ficus saussureana Moraceae Omuwo (Luganda) Shrub Stem bark Uganda [8]
Fleurya aestuans (L.) Gaudich. ex Miq. Urticaceae Munyango (Luganda) Herb Leaves Uganda [7]
Garcinia buchananii Baker Clusiaceae Musaali (Luganda) Tree Stem bark, Root bark Uganda, Kenya, Tanzania [7, 10, 12]
Gnaphalium purpureum L. Asteraceae Omuya (Luganda) Herb Leaves Uganda [7]
Gnidia buchananii Gilg Thymelaeaceae Not reported Herb Roots Kenya [49]
Gomphocarpus physocarpus E. Mey. Apocynaceae Gashaho Herb Leaves Uganda [10]
Gutenbergia cordifolia Benth. ex Oliv. Asteraceae Ekoutapem Herb Roots, Leaves Uganda [10]
Harrisonia abyssinica Oliv. Simaroubaceae Mutagataga (Meru), Osiro (Luo), Orongoriwe (Kuria), Lushaike Shrub Stem bark Uganda, Kenya [10, 50, 51]
Harungana madagascariensis Lam.ex Pior Hypericaceae Mukabiiransiko (Luganda) Tree Stem bark, Leaves Uganda [8]
Helichrysum odoratissimum (L.) Asteraceae Lweza (luganda) Herb Leaves Uganda [10]
Heterotis canescens Melastomataceae Umusomaw’a-bungere, Herb Leaves Burundi [38]
Hibiscus fuscus Garcke Malvaceae Lusaala (Luganda) Herb Leaves Uganda [7]
Hoslundia opposita Vahl Lamiaceae Cheroronit, Cherungut (Nandi), Nfodo (Lusoga) Shrub Leaves Uganda, Kenya [10, 31]
Hypericum revolutum Vahl Clusiaceae Mushungwa Tree Leaves Uganda [10]
Hypoestes verticillaris (L.f.) Sol. Acanthaceae Narubat (Ogiek) Herb Roots Kenya [46]
Iboza multiflora (Benth.) E. A. Bruce Lamiaceae Iseja Shrub Leaves Uganda [10]
Iboza riparia (Hochst.) N. E. Br. Lamiaceae Muravumba Shrub Leaves Uganda [10]
Indigofera emarginella Steud. ex A. Rich. Fabaceae Olutunga nsonzi (Luganda) Shrub Leaves, Stem bark Uganda [7]
Indigofera lupatana Baker F Fabaceae Not reported Shrub Roots Kenya [28]
Kalanchoe glaucescens Planch. ex Benth Crassulaceae Ekiyondo ekyeru (Luganda) Herb Leaves Uganda [7, 9]
Kalanchoe integra Crassulaceae Not reported Shrub Leaves Rwanda [48]
Khaya senegalensis Meliaceae Not reported Tree Leaves, Stem bark South Sudan [52]
Lagenaria sphaerica (Sond.) Naudin Cucurbitaceae Mutanga Herb Leaves Uganda [10]
Lantana camara L. Verbenaceae Kayukiyuki (Luganda), Owinybilo (Lango), Kanpanga (Ateso) Shrub Leaves Uganda [7, 10, 53]
Lantana trifolia Verbenaceae Not reported Shrub Leaves Rwanda [48]
Leonotis nepetifolia (L.) R. Br. Lamiaceae Susuni Shrub Leaves Uganda [10]
Leucas calostachys Oliv. Lamiaceae Kakuba musulo (Luganda) Shrub Leaves, Whole plant Uganda [8]
Lippia grandifolia Hochst. ex A. Rich Verbenaceae Olugumaguma (Luganda) Herb Leaves Uganda [7]
Lonchocarpus eriocalyx Harms Fabaceae Not reported Tree Stem bark Kenya [11, 28]
Maesa lanceolata Forssk. Myrsinaceae Muhanga Tree Roots Uganda [10]
Mangifera indica L. Anacardiaceae Muyembe (Luganda), Aeme (Lango) Tree Stem bark Uganda, Kenya [7, 9, 10, 12, 47]
Maytenus senegalensis (Lam.) Celastraceae Naligwalimu (Luganda), Muwaiswa, Eterka, Itereka (Lango) Shrub Root bark, Leaves Uganda [7, 10]
Microglossa pyrifolia (Lam.) Asteraceae Kabilili akatono (Luganda) Shrub Roots Uganda [10]
Microgramma lycopodiodes (L.) Copel Polypodiaceae Kukumba (Luganda) Herb Roots, Leaves Uganda [8]
Milicia excelsa (Welw.) C.C. Berg Moraceae Muvule (Luganda) Tree Leaves Uganda [7]
Momordica foetida Schumach. Cucurbitaceae Bombo (Luganda), Luiwula/Mwishwa Herb Leaves Uganda, Rwanda [7, 10, 45]
Momordica rostrata A. Zimm. Cucurbitaceae Chepkologolio (Ogiek) Herb Roots Kenya [46]
Morella kandtiana (Engl.) Verdc. & Polhill Myricaceae Mukikimbo (Luganda) Herb Roots, Leaves, Whole plant Uganda [8]
Morinda lucida Benth. Rubiaceae Kabaja nsayi (Luganda) Tree Stem bark Uganda [7]
Moringa oleifera Lam. Moringaceae Moringa (Luganda) Tree Fruit, Stem Uganda [7, 10]
Mucuna pruriens (L.) DC. Papilionaceae Lugenyu (Luganda) Vine Leaves Uganda [10]
Myrica kandtiana Engl. Myricaceae Enkikimbo(Luganda) Tree Fruit, Leaves, Stem bark, Root bark Uganda [7]
Myrsine africana L. Myrsinaceae Seketeti (Samburu) Shrub Not reported Kenya [34]
Nauclea latifolia Sm Rubiaceae Karmadoda Tree Fruit South Sudan [54]
Ocimum basilicum Lamiaceae Umusurasura Herb Leaves Burundi [38]
Ocimum suave Willd. Lamiaceae Muhumuzanganda (Luganda) Herb Leaves Uganda [10]
Olea capensis L. Oleaceae Pekeriondet (Sabaot) Tree Stem bark Kenya [36]
Olinia rochetiana Penaeaceae Kaptolongit (Sabaot) Tree Roots Kenya [36]
Ormocarpum trichocarpum (Taub.) Harms Papilionaceae Eseperuae Tree Roots Uganda [10]
Pappea capensis (Spreng) Eckl. & Zeyh. Sapindaceae Muba (Kikuyu), Enkorrirri, Oltimigomi (Maasai) Shrub Stem bark, Root bark Kenya [55, 56]
Parinari curatellifolia Planch. ex Benth. Chrysobalanaceae Umunazi Tree Stem bark, roots Burundi [38]
Pavetta crassipes K. Schum. Rubiaceae Not reported Shrub Roots Tanzania, Kenya [12]
Pentas longiflora Oliv. Rubiaceae lsagara Herb Roots Rwanda [37]
Persea americana Mill. Lauraceae Ovacado (Luganda) Tree Stem bark Uganda [7, 9]
Phaseolus lunatus L. Fabaceae Kayindiyindi (Luganda) Herb Leaves Uganda [7]
Phaseolus vulgaris L. Fabaceae Bijanjaro (Luganda) Herb Husks Uganda [7]
Phyllanthus reticulatus Poir. Phyllanthaceae Mutulika (Luganda) Shrub Leaves Uganda [7]
Piliostigma thonningii Fabaceae Chebutiandet (Sabaot) Tree Leaves Kenya [36]
Piptadenistrum africana Fabaceae Mpewere (Luganda) Tree Stem bark Uganda [7, 9, 10]
Plectranthus barbatus Andrews Lamiaceae Ekibankulata (Luganda), Ebiriri omutano (Ateso) Shrub Leaves Uganda [7, 10]
Plectranthus hadiensis Lamiaceae Kibwankulanta (Luganda) Shrub Whole plant, Leaves Uganda [8]
Plumbago dawei Plumbaginaceae Lkiarianthus (Samburu) Herb Stem bark Kenya [29]
Plumbago zeylanica L. Plumbaginaceae Musajjabanda (Luganda), Mukya (Kamba) Herb Leaves Uganda, Kenya [7, 34, 57]
Podocarpus usambarensis Pilg. Podocarpaceae Kamusenene (Luganda) Tree Leaves Uganda [7]
Prunus africana (Hook.f.) Kalkman Rosaceae Ntaseesa, Ngwabuzito (Luganda, Rutoro),Sirumandu (Lugisu) Tree Stem bark Uganda [7]
Pseudospondia microcarpa (A. Rich.) Engl. Anacardiaceae Muziru (Luganda) Tree Stem bark Uganda [7]
Psidium guajava L. Myrtaceae Mpera (Chagga) Tree Fruit, Leaves, Stem bark, Root bark Uganda, Kenya, Tanzania [7, 12]
Pycnostachys ericirosenii R.E.Fr. Lamiaceae Musindikwa (Luganda) Shrub Leaves Uganda [10]
Rhamnus prinoides L’Herit. Rhamnaceae Munanira (Luganda) Shrub Leaves Uganda [10]
Rhoicissus tridentata (L.f.) Wild. & R.B.D. Drumm. Vitaceae Mumara (Luganda) Shrub Leaves Uganda [10]
Rhus natalensis Bernh. ex Krauss Anacardiaceae Lmisigiyoi, Muthigiu (Kikuyu) Tree Roots, Leaves Kenya [51]
Rhus vulgaris Meikle Anacardiaceae Kakwansokwanso (Luganda) Herb Stem bark, Leaves Uganda [7]
Ribes uva-crispa L. Grossulariaceae Entuntunu (Luganda) Shrub Leaves Uganda [7]
Rosmarinus officinalis L. Lamiaceae Not reported Herb Leaves South Sudan [52]
Rubia cordifolia L. Rubiaceae Kasalabakesi (Luganda) Urumurwa (Kuria) Herb Leaves, Whole plant Uganda, Kenya, Tanzania [7, 9, 10, 12, 16]
Rumex abyssinicus Jacq. Polygonaceae Not reported Herb Leaves Rwanda [48]
Sapium ellipticum (Hochst.) Pax Euphorbiaceae Omusasa (Luganda) Shrub Stem bark Uganda [7]
Securidaca longipedunculata Fresen. Polygalaceae Mukondwa, Awee ilila (Lango), Mukondwa (Lusoga), Eliloi (Ateso) Tree Roots Uganda [8, 10]
Senna siamea (Lam.) Irwin & Barneby Fabaceae Gasiya seed Tree Stem bark Uganda [10]
Sesamum calycinum Pedaliaceae Lutungotungo (Luganda) Herb Leaves, Whole plant Uganda [8]
Solanum aculeastrum Dunal Solanaceae Mutura (Kikuyu), Ekitengo (Luganda) Shrub Fruit, Roots, Leaves Uganda, Kenya [7, 8, 12]
Solanum incanum L. Solanaceae Entengotengo Ennene (Luganda), Ocokocok (Lango), Ntonka (Lusoga), Mutongu (Kamba),Entulelei (Maasai) Shrub Fruit Uganda, Kenya [7, 12]
Solanum mauense Bitter Solanaceae Ng’onyoyiek (Ogiek) Shrub Seeds Kenya [46]
Spathodea campanulata P. Beauv. Bignoniaceae Kifabakazi (Luganda) Tree Stem bark Uganda [7]
Syzygium cumini (L.) Skeels Myrtaceae Jambula (Luganda) Tree Stem bark Uganda [7, 9]
Tamarindus indica L. Fabaceae Mukoge (Luganda), Cwao (Lango) Tree Leaves Uganda [10]
Teclea nobilis Del. Rutaceae Luzo Shrub Leaves Uganda [10]
Tetradenia riparia (Hochst.) Codd Lamiaceae Ekyewamala (Luganda) Herb Leaves Uganda, Rwanda [7, 37]
Terminalia laxiflora Engl. & Diels Combretaceae Darout Tree Stem bark South Sudan [30]
Tithonia diversifolia (Hemsl.) A. Gray Asteraceae Ekimyula, Okelokelo (Lango) Shrub Stem bark Uganda [7]
Toddalia asiatica (L.) Lam Rutaceae Simborichet (Sabaot), Mururue (Kikuyu), Oleparmunyo (Maasai), Kawule (Luganda) Shrub Roots, Leaves Uganda, Kenya [7, 8, 10, 36]
Tragia brevipes Pax Euphorbiaceae Nakepian Climber Roots Uganda [10]
Tragia subsessilis Pax Euphorbiaceae Totoananyia Herb Roots Uganda [10]
Trichilia dregeana Sond. Meliaceae Sekoba (Luganda) Tree Stem bark, Uganda [7]
Triumfetta flavescens Hochst. ex A. Rich. Malvaceae Luwugula (Luganda) Shrub Stem Uganda [7]
Vachellia drepanolobium (Harms ex Sjostedt) P.J.H. Huter Fabaceae Oluai (Maasai) Tree Stem bark, Root bark Kenya [55]
Vernonia cinerea (L.) Less. Asteraceae Kayayana, Lukohe (Luganda), Yat Kwong (Lango) Herb Leaves Uganda [7]
Vernonia amygdalina Del. Asteraceae Mululuza (Luganda) Lubilili Shrub Leaves Uganda [7, 10]
Warburgia ugandensis Sprague Canellaceae Abaki, Sokoni (Samburu), Muthiga (Kikuyu) Tree Stem bark Uganda, Kenya, Tanzania [710, 12, 16, 5759]
Zanthoxylum chalybeum Engl. Rutaceae Ntale ya ddungu (Luganda), Eusuk (Ateso), Agodaman (Lango), Oloisuki (Maasai), Rukuts (Karimojong), Outiku (Lugbara) Tree Stem bark Uganda, Kenya, Tanzania [5, 810, 12]
Zanthoxylum gillettii (De Wild.) P.G. Waterman Rutaceae Sagawatiet, Shihumba/Shikuma Tree Stem bark Kenya [31]
Zanthoxylum leprieurii Rutaceae Not reported Tree Stem bark Uganda [5]
Zehneria scabra Cucurbitaceae Umushishiro, Herb Leaves Burundi [38]
Zingiber officinale Zingiberaceae Tangawizi (Luo), Ntangawuzi (Luganda) Herb Stem Uganda, Kenya [7, 9, 10, 12]

Languages: Ateso, Lango, Luganda, Lugbara, Lugisu, Lusoga, Karimojong, and Rutoro (Uganda); Digo, Kamba, Kikuyu, Kisii, Kuria, Luo, Maasai, Meru, Nandi, Ogiek ,Sabaot, Samburu, and Wanga (Kenya); and Chagga (Tanzania). Local names with language(s) not indicated were not specified by the authors

Most encountered species were from the family Fabaceae (42.6%), Lamiaceae (19.1%), Asteraceae (16.2%), Euphorbiaceae (14.7%), Moraceae (10.3%), Rubiaceae (10.3%), Rutaceae (8.8%), Burseraceae (7.4%), and Cucurbitaceae (7.4%) (Fig. 1). Fabaceae, Asteraceae, and Lamiaceae were also reported to provide the largest number of plants species used for TB management in South Africa, Ghana, Nigeria, Ethiopia, and India [6472]. From these families, 15 species were the most cited in East Africa (Fig. 2). These families were reported from at least four countries of East Africa. This could probably be attributed to the abundant distribution of the analogue active substances among species from these families [23, 24]. The family Fabaceae has biosynthetic pathways that produce majorly flavonoids, terpenoids, and alkaloids as secondary metabolites [7375]. It is these phytochemicals that are responsible for the antimycobacterial activity against different mycobacterial strains [67, 70, 76, 77]. Other families reported in East Africa to house medicinal plants for management of TB and have also been reported in other countries include Acanthaceae, Apocynaceae, Cariaceae, Combretaceae, Malvaceae, Moraceae, Myrtaceae, Rhamnaceae, Rubiaceae, Solanaceae, and Zingiberaceae [64, 72, 7881].

Fig. 1.

Fig. 1

Major botanical families from which TB remedies are obtained in East Africa

Fig. 2.

Fig. 2

The most cited plant species used for treatment of TB and its symptoms in East Africa

Geographically, none of the documented plant species was reported to be used in the management of TB across all the East African countries. However, two plant species (Erythrina abyssinica and Eucalyptus species) are used by at least 4 countries. A total of 30 plant species were reported to be used by at least two countries. Uganda had the highest number of species mentioned followed by Kenya and then Tanzania (Table 1). The differences in species utilization could be attributed to the differences in soil chemistry, rainfall, topography, and climate that results into differences in phytochemical composition of the same species growing in different geographical areas [82]. Additionally, it could also be due to differences in knowledge and experiences as result of different social and cultural backgrounds that exists across the countries. Uganda had many ethnobotanical surveys conducted to document medicinal plants used in the management of tuberculosis as compared to other countries. Most of these medicinal plants were growing as trees (40.0%), herbs (29.7%), shrubs (27.7%), and rarely as climbers, vines, or lianas (Fig. 3).

Fig. 3.

Fig. 3

Growth habit of the plants used for preparation of antitubercular remedies in East Africa

Analysis of ethnomedicinal recipes revealed that mainly leaves (38.6%), stem bark (28.4%), and roots (18.6%) were used for preparing herbal remedies. Root bark, whole plants, fruits, flowers, seeds, and husks were rarely used (Fig. 4). Harvesting of leaves and stem bark allows sustainable utilization of the plants hence promoting their conservation as opposed to use of roots and whole plants. Additionally, leaves are the primary sites for secondary metabolic pathways in plants while stem barks act as major concentration areas (deposition sites) for the synthesized metabolites [9, 57].

Fig. 4.

Fig. 4

Frequency of plant parts used for preparation of antitubercular remedies in East Africa

Most articles reviewed reported that traditional herbal medicine practitioners usually combined different plant species while preparing herbal medicines. However, they did not report how the herbal medicine from individual plant species can be prepared. Decoction was by far the commonest method of herbal medicine preparation cited. Others included cold infusions, drying and pounding into a powder, burning into ash, chewing, and steaming. Use of more than one plant in combination is more effective than single plant perhaps due to the synergistic interactions that occur among the different phytochemicals that result into increased bioactivity (efficacy). But also, the benefit of phytochemicals from one species counteracting the toxicity of another species could be another explanation.

The major route of administration was oral (via the mouth) although sometimes inhalation and topical application were also reported depending on the preparation method used and the toxicity of the plant(s). Cups, bottles, and tablespoons were the most commonly used for determining the posology of herbal remedies [7, 10, 12].

Efficacy and safety studies

Some ethnobotanical studies reported that herbal medicine preparations were effective in the treatment of TB, while some were used in the management of multidrug-resistant tuberculosis [7, 12, 47]. This could be due to the synergistic interaction between the various phytochemicals present in the herbal preparations [27, 83]. However, as much as these herbal medicines might have genuine bioactivity, sometimes they are used concurrently with conventional therapies as supplements and at times adulterated. Therefore, it is important to scientifically validate the claimed efficacy and safety of both the herbal preparations and the individual medicinal plants. Out of the 195 species documented, only 36 plant species (18.5%) have been studied for their antimycobacterial activity. A WHO report [14] indicated that only approximately 10% of the world’s flora have been studied as regards their medicinal potential. This has greatly hindered the discovery of potential lead compounds that could be developed into new antitubercular drugs.

Out of the 36 screened medicinal plants, 31 species (86.1%) were reported to be bioactive with some species exhibiting quite considerable antimycobacterial activity although the current standard drugs had superior bioactivity (Table 2). This is comparable to India where 70% of 365 plants which were studied showed antimycobacterial activity [87]. Among the promising plant species (with minimum inhibitory concentration less than 0.5 mg/ml) were Erythrina abyssinica, Entada abyssinica, Bidens pilosa, Callistemon citrinus, Khaya senegalensis, Lantana camara, Piptadenistrum africana, Rosmarinus officinalis, Tetradenia riparia, and Zanthoxylum leprieurii. Isolated pure compounds from three of the promising plant species had much higher activity against Mtb than the crude extracts and fractions. Indeed, some of the compounds from Zanthoxylum leprieurii had minimum inhibitory concentrations lower than those of standard antitubercular drugs (Table 3). Crude extracts and fractions usually have less pharmacological activity than standard drugs because of the interference from other inactive substances in the matrix that reduce the overall concentration of the active molecules in the tested dose. This explains why isolation of pure compounds is a critical step in natural product drug discovery process. The five documented medicinal plants that were found to be inactive are Acacia ataxacantha, Dalbergia melanoxylon, Indigofera lupatana, Lonchocarpus eriocalyx, and Solanum incanum. This could probably be attributed to the absence of inherent bioactive phytochemicals against Mtb in the plant species. This could be brought about by absence or impaired biosynthetic metabolic pathways due to unfavorable growth conditions in the habitat from where the plants grow. This implies that herbal remedies for TB containing each of these plants singly may not be effective. Therefore, other benefits provided by these species in the concoctions of TB such as detoxification of other toxic phytochemicals, preservation of the herbal medicine, or potentiation of the pharmacological activity of other phytochemicals could be investigated.

Table 2.

Efficacy, toxicity, and phytochemical studies on medicinal plants used for treatment of TB in East Africa

Plant Extraction method (solvent) MIC (μg/ml) on H37Rv strain MIC (μg/ml) on TMC-331 strain Toxicity of crude extracts (μg/ml) Class of compounds Author(s)
Acacia ataxacantha Maceration (methanol) Not active Not tested IC50 = 90.39 Phenols, terpenoids [28]
Acacia horrida Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Alkaloids, cardiac glycosides, tannins, saponins, terpenoids [29]
Acacia senegal Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Cardiac glycosides, tannins, saponins, terpenoids, flavonoids [29]
Acokanthera friesiorum Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Cardiac glycosides, Tannins, flavonoids [29]
Albizia anthelmitica Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Alkaloids, saponins, tannins, flavonoids [29]
Aspilia pluriseta Maceration (methanol) Active at 1 g/ml (MIC not determined) Not tested IC50 = 24.51 Phenol, terpenoids, flavonoids [28]
Bidens pilosa Maceration (ethanol) 100 Not tested Not tested Not tested [37]
Callistemon citrinus Maceration (methanol, chloroform) 325 (methanol), 48 (chloroform) (Iso = 4.0; R = 2.0) 78 (methanol), 158 (chloroform), Iso = 4.0 Not tested Flavonoids, alkaloids, triterpenoids, saponins [15]
Cissampelos pareira Maceration (methanol) Active at 1 g/ml (MIC not determined) Not tested IC50 = 179 Anthraquinones, phenols, terpenoids, flavonoids [28]
Commiphora edulis Maceration (ethyl acetate, DCM, water) 6250 (Ethyl acetate), 780 (methanol), Not active (water) Not tested IC50 = 393 (DCM), 1734 (ethyl acetate) Flavonoids, terpenoids [26]
Commiphora ellenbeckii Maceration (ethyl acetate, methanol, water) 12500 (Ethyl acetate), 3125 (methanol), 780 (water), 15 (rif) Not tested IC50 = 608 (methanol), 1509 (water) Alkaloids, saponins, tannins, phenols, flavonoids, terpenoids [26]
Commiphora mildbraedii Maceration (ethyl acetate, methanol, water) 6250–9250 (Ethyl acetate), 390–780 (methanol), not active (water), 15 (Rif) Not tested IC50 = 339 (ethyl acetate), 452 (methanol) Alkaloids, saponins, tannins, phenols, flavonoids, terpenoids [26]
Cordia sinensis Soxhlet (methanol) < 500 (Iso < 500) Not tested Not tested Saponins, terpenoids, flavonoids, tannins [29]
Cryptolepsis sanguinolenta Methanol chloroform 1170 (methanol) (Iso = 0.25; R = 0.25) 1580 (methanol) (Iso = 0.25) LD50 = 758 mg/kg Alkaloids, tannins, flavonoids [84]
Dalbergia melanoxylon Maceration (methanol) Not active Not tested IC50 = 120.04 Phenols, terpenoids [28]
Dichrostachys cinerea Maceration (methanol) Active at 1 g/ml, (MIC not determined) Not tested IC50 = 201.22 Phenols, terpenoids [28]
Entadda abyssinica Maceration (methanol) 500 (Iso = 0.25) Not tested Not tested Flavonoid, alkaloids, saponins, tannins [12, 29]
Erythrina abyssinica Maceration (methanol) 390 (Rif = 0.25; Iso = 0.25) 2350 (Iso = 9.38) LD50 = 776.2 mg/kg Flavonoids, alkaloids, tannins [44]
Euphorbia ingens Maceration (methanol) Active at 1 g/ml (MIC not determined) Not tested IC50 = 105.55 Phenols, terpenoids [28]
Euphorbia scarlatica Soxhlet (methanol) < 500 (Iso < 500) Not tested Not tested Alkaloids, cardiac glycosides, terpenoids, flavonoids [29]
Gnidia buchananii Maceration (methanol) Active at 1 g/ml (MIC not determined) Not tested IC50 = 76.24 Phenols, terpenoids, [28]
Indigofera lupatana Maceration (methanol) Not active Not tested IC50 = 60.37 Phenols, terpenoids [28]
Khaya senegalensis Maceration (ethyl acetate, chloroform) 6.25 Not tested IC50 = 1000 Not tested [52]
Lantana camara Maceration (methanol, chloroform) 20 (Rif = 1) 15 (Iso = 0.25) LD50 > 500 mg/kg Not reported [53]
Lonchocarpus eriocalyx Maceration (methanol) Not active Not tested IC50 = 201.87 Terpenoids, phenols, flavonoids [28]
Loranthus acaciae Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Alkaloids, cardiac glycosides, saponins, flavonoids [29]
Mangifera indica Methanol 3130 (methanol) (Iso = 0.25; R = 0.25) 590 (methanol) (Iso = 0.25) Not tested Phenols, terpenoids [16]
Pentos longiflora Maceration (ethanol) 1000 Not tested Not tested Not tested [37]
Piptadenistrum africana Maceration (chloroform) 395 (chloroform) 395 (chloroform) Not tested Flavonoids, tannins [15]
Plumbago dawei Soxhlet (methanol) < 1000 (Iso < 500) Not tested Not tested Cardiac glycosides, tannins, terpenoids, flavonoids [29]
Rosmarinus officinalis L. Maceration (chloroform) 6.25 Not tested IC50 = 100 Not tested [52]
Salvadora persica Soxhlet (methanol) < 500 (Iso < 500) Not tested Not tested Alkaloids, cardiac glycosides, terpenoids, flavonoids [29]
Solanum incanum Methanol chloroform Not active Not active Not tested Not reported [16]
Tetradenia riparia Maceration (ethanol) 500 Not tested Not tested Not tested [37]
Warburgia ugandensis Methanol chloroform 4690 (methanol), 2350 (chloroform) (Iso = 0.25; R = 0.25) 2350 (methanol), 590 (chloroform) (Iso = 0.25) Not tested Flavonoids, tannins, terpenoids [85, 86]
Zanthoxylum leprieurii Methanol 47.5 (Iso = 4.0; R = 2.0) 75.3 (Iso = 4.0) Not tested Alkaloids [5]

IC50 median cytotoxic concentration, LD50 median lethal dose, Iso isoniazid, Rif rifampicin, H37Rv pan sensitive Mtb strain, TMC331 rifampicin-resistant Mtb strain, MIC minimum inhibitory concentration. Extracts in [26] were tested against Mycobacteria smegmatis

Table 3.

Isolation and characterization studies on medicinal plants used for management of TB in East Africa

Plant Pure compounds with antitubercular activity Chemical class MIC of pure compounds (μg/ml) Author(s)
Zanthoxylum leprieurii 2-hydroxy-1, 3-dimethoxy-10-methyl-9-acridone (1), 1-hydroxy-3-methoxy-10-methyl-9-acridone (2), 3-hydroxy-1, 5, 6-trimethoxy-9-acridone (3) Acridone alkaloids 1.5 (1), 0.2 (2), 0.4 (3); tested against H37Rv [5]
Warburgia ugandensis Sprague Muzigadial (4), muzigadiolide (5), linoleic acid (6) Sesquiterpenes 64 (4), 128 (5), 16 (6); tested against M. smegmatis [58, 85]
Tetradenia riparia 15- sandaracopimaradiene-7α, 18-dio1 (7) Diterpenediol 25–100 [37]

MIC minimum inhibitory concentration. No toxicity studies of the pure compounds were conducted.

All toxicity studies reviewed evaluated only the acute toxicity profiles of the medicinal plants either in vitro or in vivo but not both. Of the bioactive extracts screened, less than half of them were tested for their acute toxicity. Selectivity index (SI) is used as the best estimate of the relative toxicity of a compound to normal mammalian cells as compared to the pathogen and hence its suitability for being a drug candidate. According to the SI criterion, compounds with higher SI are regarded to have better toxicity profiles than those with lower SI [88]. From the retrieved data, only two plant species (Khaya senegalensis and Rosmarinus officinalis) had acceptable selectivity indices to warrant drug discovery from them. In this study, the SI of only five plant species could be calculated (Table 4) because they were the only plant species with both the inhibitory concentration on Mtb and cytotoxic concentration on normal mammalian cell lines (IC50) reported. Hence, there is need to emphasize dual testing of both toxicity and efficacy of natural products for drug development purposes.

Table 4.

Selectivity indices of some antitubercular plant species reported in East Africa

Plant Solvent MIC on Mtb strain (μg/ml) IC50 (μg/ml) SI Comment
Commiphora edulis Dichloromethane 1560 393 0.25 More toxic to human cells than the Mtb; not useful
Ethyl acetate 3125 1734 0.55 More toxic to human cells than the Mtb; not useful
Commiphora ellenbeckii Water 780 1509 1.93 More toxic to Mtb than human cells but the SI is low. May be optimized for lead candidate identification
Methanol 3125 608 0.19 More toxic to human cells than the Mtb; not useful
Commiphora mildbraedii Methanol 390 452 1.16 More toxic to Mtb than human cells but the SI is close to 1. No practical application
Ethyl acetate 6250 339 0.054 More toxic to human cells than the Mtb; not very useful
Khaya senegalensis Chloroform 6.25 1000 160 More toxic to Mtb than human cells with high SI. Promising for development of lead candidate
Rosmarinus officinalis L. Chloroform 6.25 100 16 More toxic to Mtb than human cells with high SI. Promising for development of lead candidate

IC50 cytotoxic concentration normal cells, SI selectivity index

Two other systems of acute toxicity classification: The National Cancer Institute (NCI) and Organization for Economic cooperation and development (OECD) guidelines 423 were used to assess the toxicity profiles of the different extracts [89, 90]. There was no single plant species among those tested for acute toxicity that was reported to be highly toxic (with IC50 less than 20 μg/ml). All the plant species with promising bioactivity that were tested for toxicity had acceptable acute toxicity profiles. These included Rosmarinus officinalis, Lantana camara, Khaya senegalensis, and Erythrina abyssinica (Table 2). Aspilia pluriseta, Cissampelos pareira, Euphorbia ingens, and Gnidia buchananii had moderate toxicity with IC50 between 20 and 200 μg/ml. According to OECD 2001 guidelines, Lantana camara, Erythrina abyssinica, and Cryptolepis sanguinolenta had slight toxicity as their median lethal doses (LD50) were above 500 mg/kg. These results justify the general public belief that traditional medicines are relatively safer as compared to the current conventional therapies. However, toxicity testing should be done on all potential medicinal plants and their phytochemicals before concluding that they are safe for human treatment [9194]. This is because toxicity of herbal medicines may be due to presence of inherent poisonous chemicals in the plant species, misidentification of the plant species, adulteration or contamination during harvesting, preparation, and storage [95, 96]. Acute toxicity tests determine a single high dose that kills 50% of the cells or animals in a population. They may not be evident enough to depict the real toxicity situation for herbal remedies taken for a longer time in chronic conditions like TB [18, 97]. Therefore, this may necessitate sub-chronic and chronic toxicity tests to be carried out on a medicinal plant species with a potential lead compound [95].

Phytochemistry of the reported plants

Phytochemical investigation reveals the chemical nature of the pure compounds that are responsible for the pharmacological activity as well as the toxicity of medicinal plants [19, 64, 98101]. Chromatographic and spectroscopic techniques are used to identify and elucidate the chemical structures of compounds [102107]. In this study, maceration was the commonly used method of extraction as compared to Soxhlet. Majority of the hexane extracts were reported to be inactive against mycobacterial strains while almost all methanolic extracts were active. Methanol being a polar solvent extracts polar phytochemical while hexane (a non-polar solvent) extracts non-polar compounds. It is reasonable to assert that the antimycobacterial activity of the extracts is largely due to polar phytochemicals. There were variations in bioactivity of different parts of the same plant with no specific patterns. This could be due to differences in their rate of accumulating the bioactive substances.

The phytochemicals that were frequently screened for have been alkaloids, saponins, cardiac glycosides, flavonoids, terpenoids, and phenols. All these secondary metabolites were reported to be present in different bioactive extracts. The most commonly reported phytochemicals were flavonoids, terpenoids, and alkaloids [15, 17, 26, 29, 70, 106, 108]. Flavonoids and alkaloids were reported to be absent in three out of the five inactive plants (Table 2). Out of the 31 bioactive plant species, only three (Tetradenia riparia, Warburgia ugandensis, and Zanthoxylum leprieurii) have been further characterized to identify the pure compounds responsible for their antimycobacterial activity [5, 37, 58, 85] (Table 3). This is attributed to the complexity and the rigorous nature of the process that require extraction, screening, isolation, and characterization [100, 109, 110]. Low extraction yield, compound instability, high costs, low technology especially in developing countries, limited access to advanced chromatographic, and spectroscopic equipment and inadequate funding have made it difficult to undertake herbal medicine research [21, 111, 112]. This is further complicated by the microbiological nature of the Mtb that require bioassays to be conducted in biosafety level 3 laboratories that are not readily available in East Africa [60, 113]. More robust and effective techniques are required to fasten the drug discovery process against TB [3, 77, 92, 114].

A total of seven pure compounds have been isolated and characterized with bioactivity against Mtb (Fig. 5). These are 2-hydroxy-1,3-dimethoxy-10-methyl-9-acridone (1), 1-hydroxy-3- methoxy-10-methyl-9-acridone (2), 3-hydroxy-1, 5, 6-trimethoxy-9-acridone (3), muzigadial (4), muzigadiolide (5), linoleic acid (6), and 15-sandaracopimaradiene-7α, 18-dio1 (7). Compounds 1, 2, and 3 are acridone alkaloids; 4, 5, and 6 are sesquiterpenes, while 7 is a diterpenediol [5, 37, 85]. In Asia and America, several studies have reported pure compounds isolated from medicinal plants to have promising antimycobacterial activity [78, 115117]. For example, Bisbenzylisoquinoline alkaloids from Tiliacora triandra (tiliacorinine, tiliacorine and 2′-nortiliacorinine) were found to have comparable antimycobacterial activity (MIC = 0.7–6.2 μg/ml) to the standard first line drugs against sensitive and resistant Mtb strains [108]. Rukachaisirikul et al. [118] reported that 5- hydroxysophoranone (an isoflavone from Erythrina stricta) had promising antimycobacterial activity (MIC = 12.5 μg/ml) against Mtb H37Ra. Vasicine acetate and 2-acetyl benzylamine isolated from hexane extract of Adhatoda vasica Ness. (Acanthaceae) inhibited one sensitive and multidrug-resistant strain at 50 and 200 μg/ml respectively [119]. Since flavonoids and alkaloids were reported to be absent in three out of the five inactive plants [28] and majority of the isolated bioactive pure compounds belong to the class of alkaloids, terpenoids, and flavonoids [5, 85, 118], it implies that these classes of phytochemicals are the ones most likely to be responsible for the observed antimycobacterial activity.

Fig. 5.

Fig. 5

Structure of antitubercular molecules isolated in claimed medicinal plants in East Africa. The numbers 17 correspond to the molecules mentioned in Table 3

Conclusion

East Africa has a rich diversity of medicinal plants that have been reported to be effective in the management of symptoms of TB. Most of the plants are from the family Fabaceae, Lamiaceae, and Asteraceae. A large proportion of the documented plants have not been scientifically validated for their efficacy and safety. Although the standard drugs had superior activity, majority of the validated plants were found to possess acceptable acute toxicity profile on animal cells and considerable bioactivity with isolated pure compounds showing promising efficacy against Mtb. We recommend more scientific validation studies to be conducted on the remaining plants in order to standardize herbal medicine use and also promote drug discovery and development against TB. More isolation and characterization studies will enrich the chemical diversity of both the natural product and synthetic chemical libraries from which possible lead candidates could be developed. Currently, we are working on isolation and characterization of bioactive compounds from selected medicinal plants from family Fabaceae identified from this study. These include Erythrina abyssinica, Albizia coriaria, and Entada abyssinica.

Supplementary information

41182_2020_256_MOESM1_ESM.doc (33.5KB, doc)

Additional file 1: Figure S1. PRISMA flow diagram used for the review.

Acknowledgements

The authors are grateful to the World Bank and the Inter-University Council of East Africa (IUCEA) for the scholarship awarded to SBO, MPO, and TO through the Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE) at Moi University, Kenya, which made this communication possible. The authors commend preceding authors for their fruitful quest for knowledge on medicinal plants utilized by rural communities of East Africa, the reports of which the current study was based.

Abbreviations

IC50

Median cytotoxic concentration

LD50

Median lethal dose

Iso

Isoniazid

MIC

Minimum inhibitory concentration

Rif

Rifampicin

H37Rv

Pan sensitive Mtb strain

TMC331

Rifampicin-resistant Mtb strain

SI

Selectivity Index

TB

Tuberculosis

WHO

World Health Organization

Authors’ contributions

SBO, AK, IK, EK, MPO, TO, and LB designed the study. SBO, IK, EK, MPO, TO, and LB performed literature search for medicinal plants in Uganda, Burundi, Rwanda, Kenya, Tanzania, and South Sudan, respectively. SBO and TO analyzed the collected data. TO, MPO, and LB verified the plant names in botanical databases and local languages. SBO, MPO, TO, and LB wrote the first draft of the manuscript. AK, IK, and EK reviewed the draft manuscript. All authors revised and approved the final manuscript.

Funding

This research received no external funding.

Availability of data and materials

This is a review article and no raw experimental data were collected. All data generated or analyzed during this study are included in this published article.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information accompanies this paper at 10.1186/s41182-020-00256-1.

References

  • 1.WHO. Global Tuberculosis Report 2019. World Health Organization, Geneva, Switzerland. 2019. 297p. https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1. Acessed 04 March 2020.
  • 2.Hiraiwa M, Kim J, Lee H, Inoue S, Becker AL, Weigel KM, et al. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. J Micromech Microeng. 2015;25:055013. doi: 10.1088/0960-1317/25/5/055013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Yuan T, Sampson NS. Hit generation in TB drug discovery: from genome to granuloma. Chem Rev. 2018;118:1887–1916. doi: 10.1021/acs.chemrev.7b00602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ambrosio LD, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res. 2015;1:00010–02015. doi: 10.1183/23120541.00010-2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bunalema L, Fotso GW, Waako P, Tabuti J, Yeboah SO. Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant Mycobacterium tuberculosis. BMC Complement Altern Med. 2017;17:89. doi: 10.1186/s12906-017-1602-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Godebo A, Abiy H, Toma A. Recent advances in the development of anti-tuberculosis drugs acting on multidrug-resistant strains: a review. Int J Res Pharm Biosci. 2015;2:1–18. [Google Scholar]
  • 7.Bunalema L, Obakiro S, Tabuti JRS, Waako P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. J Ethnopharmacol. 2014;151:999–1004. doi: 10.1016/j.jep.2013.12.020. [DOI] [PubMed] [Google Scholar]
  • 8.Schultz F, Anywar G, Wack B, Quave CL, Garbe L. Ethnobotanical study of selected medicinal plants traditionally used in the rural greater Mpigi region of Uganda. J Ethnopharmacol. 2020;256:112742. doi: 10.1016/j.jep.2020.112742. [DOI] [PubMed] [Google Scholar]
  • 9.Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, et al. Ethnobotanical survey of medicinal plant species used by communities around Mabira central Forest reserve, Uganda. J Ethnobiol Ethnomed. 2016;12:5. doi: 10.1186/s13002-015-0077-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Tabuti JRS, Kukunda CB, Waako PJ. Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J Ethnopharmacol. 2010;127:130–136. doi: 10.1016/j.jep.2009.09.035. [DOI] [PubMed] [Google Scholar]
  • 11.Jeruto P, Lukhoba C, Ouma G, Otieno D, Mutai C. An ethnobotanical study of medicinal plants used by the Nandi people in Kenya. J Ethnopharmacol. 2008;116:370–376. doi: 10.1016/j.jep.2007.11.041. [DOI] [PubMed] [Google Scholar]
  • 12.Orodho JA, Kirimuhuzya C, Otieno JN, Magadula JJ, Okemo P. Local management of tuberculosis by traditional medicine practitioners in Lake Victoria region. Open Complement Med J. 2011;3:1–9. [Google Scholar]
  • 13.Anywar G, Kaduidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. J Ethnopharmacol. 2020;246:112205. doi: 10.1016/j.jep.2019.112205. [DOI] [PubMed] [Google Scholar]
  • 14.WHO Global Report on Traditional and Complementary Medicine. 2019. https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf?ua=1. Accessed 04 March 2020.
  • 15.Bunalema L, Tabuti J, Sekagya Y, Ogwang S, Waako P. Anti-tubercular activity of Callistemon citrinus and Piptadenistrum africanum on resistant strains of Mycobacterium tuberculosis using microplate alamar blue assay. Spat DD. 2015;5:235–240. [Google Scholar]
  • 16.Magadula JJ, Otieno JN, Nondo RS, Kirimuhuzya C, Kadukuli E, Orodho JA, et al. Eur J Med Plants. 2012;2:125–131. [Google Scholar]
  • 17.Mariita M. Efficacy of medicinal plants used by communities around Lake Victoria region and the Samburu against mycobacteria, selected bacteria and Candida albicans. Nairobi: Kenyatta University; 2011. [Google Scholar]
  • 18.Obakiro SB, Bunalema L, Nyatia E, Waako JP. Ulcerogenic potential of Eucalyptus globulus L. leaf extract in Wistar albino rats. J Pharmacol Toxicol. 2018;4:46–51. [Google Scholar]
  • 19.Omara T. Plants ised in antivenom therapy in rural Kenya: ethnobotany and future perspectives. J Toxicol. 2020;2020:1–9. doi: 10.1155/2020/1828521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Alamgeer. Younis W, Asif H, Sharif A, Riaz H, Bukhari IA, et al. Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence. Chin Med. 2018;13:48. doi: 10.1186/s13020-018-0204-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zuniga ES, Early J, Parish T. The future for early-stage tuberculosis drug discovery. Future Microbiol. 2015;10:217–229. doi: 10.2217/fmb.14.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, et al. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. Trop Med Health. 2020;48:6. doi: 10.1186/s41182-019-0187-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Omara T, Kiprop AK, Ramkat RC, Cherutoi J, Kagoya S, Nyangena DM, et al. Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evidence-Based Complement Alternat Med. 2020;2020:1–26. doi: 10.1155/2020/3529081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Omara T. Antimalarial plants used across Kenyan communities. Evidence-Based Complement Alternat Med. 2020;2020:1–31. doi: 10.1155/2020/4538602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Nimbeshaho F, Mwangi CN, Orina F, Chacha M, Moody JO, Kigondu EM. Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya. J Med Plants Res. 2020; (in press).
  • 27.Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, et al. Interactions synergistic interactions of phytochemicals with antimicrobial agents : potential strategy to counteract drug resistance. Chem Biol Interact. 2019;308:294–303. doi: 10.1016/j.cbi.2019.05.050. [DOI] [PubMed] [Google Scholar]
  • 28.Njeru SN, Obonyo MA. Potency of extracts of selected plant species from Mbeere, Embu County-Kenya against Mycobacterium tuberculosis. J Med Plant Res. 2016;10:149–157. [Google Scholar]
  • 29.Mariita RM, Ogol CKPO, Oguge NO, Okemo PO. Antitubercular and phytochemical investigation of methanol extracts of medicinal plants used by the Samburu community in Kenya. Trop J Pharm Res. 2010;9:379–385. [Google Scholar]
  • 30.Musa MS, Abdelrasool FE, Elsheikh EA, Ahmed LAMN, Mahmoud ALE, Yagi SM. Ethnobotanical study of medicinal plants in the Blue Nile state, South-Eastern Sudan. J Med Plant Res. 2011;5:287–4297. [Google Scholar]
  • 31.Kimathi KN, Ogutu PA, Mutai C, Jeruto P. Ethnobotanical study of selected medicinal plants used against bacterial infections in Nandi county. Kenya. 2019;7:103–108. [Google Scholar]
  • 32.Watt JM, Breyer-Brandwijk G. Medicinal and poisonous plants of southern and eastern Africa. 2. Edinburgh & London: E. & S. Livingstone Ltd; 1962. [Google Scholar]
  • 33.Shiracko N, Owuor BO, Gakuubi MM, Wanzala W. A survey of ethnobotany of the AbaWanga people in Kakamega county, Western province of Kenya. Indian J Tradit Knowle. 2016;15:93–102. [Google Scholar]
  • 34.Fratkin E. Traditional medicine and concepts of healing among samburu pastoralists of Kenya. J Ethnobiol. 1996;16:63–97. [Google Scholar]
  • 35.Ghazali GE, Abdalla WE, El H, Khalid S, Khalafalla M. Medicinal plants of Sudan, part V: medicinal plants of Ingassana area. Khartoum, Sudan: National Center for Research, Ministry of Science and Technology; 2003. pp. 1–19. [Google Scholar]
  • 36.Okello SV, Nyunja RO, Netondo GW, Onyango JC. Ethnobotanical study of medicinal plants used by sabaots of Mt. Elgon Kenya. Afr J Tradit Complement Altern Med. 2010;7:1–10. doi: 10.4314/ajtcam.v7i1.57223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Van Puyvelde L, Ntawukiliyayo JD, Portaels F, Hakizamungu E. In vitro inhibition of mycobacteria by Rwandese medicinal plants. Phytother Res. 1994;8:65–69. [Google Scholar]
  • 38.Ngezahayo J, Havyarimana F, Hari L, Stévigny C, Duez P. Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases. J Ethnopharmacol. 2015;173:338–351. doi: 10.1016/j.jep.2015.07.028. [DOI] [PubMed] [Google Scholar]
  • 39.Gafna DJ, Dolos K, Mahiri IO, Mahiri JG, Obando JA. Diversity of medicinal plants and anthropogenic threats in the Samburu central sub-county of Kenya. Afr J Tradit Complement Altern Med. 2017;14:72–79. [Google Scholar]
  • 40.Kiringe JW. A survey of traditional health remedies used by the Maasai of southern Kaijiado district, Kenya. Ethnobot Res Appl. 2006;4:61–73. [Google Scholar]
  • 41.Kokwaro JO. Medicinal plants of East Africa. 3. Nairobi: East Africa Literature Bureau; 1976. [Google Scholar]
  • 42.El-Kamalia HH, El-Khalifa KF. Folk medicinal plants of riverside forests of the southern Blue Nile district, Sudan. Fitoterapia. 1999;70:493–497. [Google Scholar]
  • 43.Burham BO. Chemical constituents of selected Sudanese medicinal and aromatic plants. 2007. [Google Scholar]
  • 44.Bunalema L, Kirimuhuzya C, Tabuti JRS, Waako P, Magadula JJ, Otieno N, et al. The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant mycobacterium tuberculosis. Afr Health Sci. 2011;11:587–593. [PMC free article] [PubMed] [Google Scholar]
  • 45.Desouter S. Human and veterinary pharmacopoeia, vol. 22. Tervuren; 1991. p. 252.
  • 46.Amuka O, Okemo PO, Alex K, Mbugua PK. Ethnobotanical survey of selected medicinal plants used by Ogiek communities in Kenya against microbial infections. Ethnobot Res Appl. 2014;12:627–641. [Google Scholar]
  • 47.Orodho JA, Okemo P, Tabuti JB, Otieno N, Magadula JJ, Kirimuhuzya C. Indigenous knowledge of communities around Lake Victoria Basin regarding treatment and management of tuberculosis using medicinal plants. Int J Med Sci. 2014;6:16–23. [Google Scholar]
  • 48.Kayonga A, Habiyaremye FX. Traditional medicine and Rwandan medicinal plants. Contribution to ethnobotanic study of Rwandan Flora. Gisenyi prefecture. Curfametra: Univ. Nat. University Research Center on pharmacopoeia and traditional medicine; 1987. p. 121. [Google Scholar]
  • 49.Sospeter NN, Meshack AO. Potency of extracts of selected plant species from Mbeere, Embu County-Kenya against Mycobacterium tuberculosis. J Med Plants Res. 2016;10:149–157. [Google Scholar]
  • 50.Cyrus WG, Daniel GW, Nanyingi MO, Njonge FK, Mbaria JM. Antibacterial and cytotoxic activity of Kenyan medicinal plants. Mem Inst Oswaldo Cruz. 2008;103:650–652. doi: 10.1590/s0074-02762008000700004. [DOI] [PubMed] [Google Scholar]
  • 51.Nanyingi MO, Mbaria JM, Lanyasunya AL, Wagate CG, Koros KB, Kaburia HF, et al. Ethnopharmacological survey of Samburu district, Kenya. J Ethnobiol Ethnomed. 2008;12:1–12. doi: 10.1186/1746-4269-4-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Abuzeid N, Kalsum S, Larsson M, Glader M, Andersson H, Raffetseder J, et al. Antimycobacterial activity of selected medicinal plants traditionally used in Sudan to treat infectious diseases. J Ethnopharmacol. 2014;157:134–139. doi: 10.1016/j.jep.2014.09.020. [DOI] [PubMed] [Google Scholar]
  • 53.Kirimuhuzya C, Waako P, Joloba M, Odyek O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-Western Uganda. Afr Health Sci. 2009;9:40–45. [PMC free article] [PubMed] [Google Scholar]
  • 54.EL-Kamali HH. Ethnopharmacology of medicinal plants used in North Kordofan (Western Sudan) Ethnobot Leaf. 2009;13:203–210. [Google Scholar]
  • 55.Nankaya J, Nampushi J, Petenya S, Balslev H. Ethnomedicinal plants of the Loita Maasai of Kenya. Environ Dev Sustain. 2019. 10.1007/s10668-019-00311-w.
  • 56.Nankaya J, Gichuki N, Lukhoba C, Balslev H. Medicinal plants of the Maasai of Kenya: a review. Plants. 2020;9:1–17. doi: 10.3390/plants9010044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Asiimwe S, Kamatenesi-Mugisha M, Namutebi A, Borg-Karlsson AK, Musiimenta P. Ethnobotanical study of nutri-medicinal plants used for the management of HIV/AIDS opportunistic ailments among the local communities of western Uganda. J Ethnopharmacol. 2013;150:639–648. doi: 10.1016/j.jep.2013.09.017. [DOI] [PubMed] [Google Scholar]
  • 58.Mbwambo Z, Erasto P, Innocent E, Masimba P. Antimicrobial and cytotoxic activities of fresh leaf extracts of Warburgia ugandensis. Tanzan J Health Res. 2009;11:75–78. [Google Scholar]
  • 59.Okello D, Kang Y. Ethnopharmacological potentials of Warburgia ugandensis on antimicrobial activities. Chin J Integr Med. 2019. 10.1007/s11655-019-3042-6. [DOI] [PubMed]
  • 60.Buwa LV, Afolayan AJ. Antimicrobial activity of some medicinal plants used for the treatment of tuberculosis in the eastern Cape Province, South Africa. Afr J Biotechnol. 2009;8:6683–6687. [Google Scholar]
  • 61.Babalola IT, Adelakun EA. Compendium of medicinal plants for the ethno-therapeutic management of tuberculosis and other respiratory diseases. J Pharmacog Phytochem. 2018;7:1983–1994. [Google Scholar]
  • 62.Semenya SS, Maroyi A. Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo province, South Africa. Afr J Tradit Complement Altern Med. 2012;10:316–323. doi: 10.4314/ajtcam.v10i2.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Alvin A, Miller KI, Neilan BA. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res. 2014;169:483–495. doi: 10.1016/j.micres.2013.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Semenya SS, Maroyi A. Ethnobotanical survey of plants used by Bapedi traditional healers to treat tuberculosis and its opportunistic infections in the Limpopo Province, South Africa. South Afr J Bot. 2019;122:401–421. [Google Scholar]
  • 65.Green E, Samie A, Obi CL, Bessong PO, Ndip RN. Inhibitory properties of selected south African medicinal plants against Mycobacterium tuberculosis. J Ethnopharmacol. 2010;130:151–157. doi: 10.1016/j.jep.2010.04.033. [DOI] [PubMed] [Google Scholar]
  • 66.Famewo EB, Clarke AM, Wiid I, Ngwane A, Van Helden P, Afolayan AJ. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in eastern cape, South Africa. Afr Health Sci. 2017;17:780–789. doi: 10.4314/ahs.v17i3.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ibekwe NN, Ameh SJ. Plant natural products research in tuberculosis drug discovery and development: a situation report with focus on Nigerian biodiversity. Afr J Biotechnol. 2014;13:2307–2320. [Google Scholar]
  • 68.Mann A, Amupitan JO, Oyewale AO, Okogun JI, Ibrahim K, Oladosu P, et al. Evaluation of in vitro antimycobacterial activity of Nigerian plants used for treatment of respiratory diseases. Afr J Biotechnol. 2008;7:1630–1636. [Google Scholar]
  • 69.Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-manu D, Addo PGA, Kissi-Twum A. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J Ethnopharmacol. 2016;182:10–15. doi: 10.1016/j.jep.2016.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Gemechu A, Giday M, Worku A, Ameni G. In vitro anti-mycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis and Mycobacterium bovis strains. BMC Complement Altern Med. 2013;13:291. doi: 10.1186/1472-6882-13-291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Pandit R, Singh PK, Kumar V. Natural remedies against multi-drug resistant Mycobacterium tuberculosis. J Tuberculosis Res. 2015;3:171–183. [Google Scholar]
  • 72.Rai R. Herbal remedies in cure of tuberculosis prevalent among ethnic communities in Central India. Trop Plant Res. 2016;3:344–353. [Google Scholar]
  • 73.Mongalo NI, McGaw LJ, Segapelo TV, Finnie JF, Van Staden J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. Ex DC. (Combretaceae) – a review. J Ethnopharmacol. 2016;94:789–802. doi: 10.1016/j.jep.2016.10.072. [DOI] [PubMed] [Google Scholar]
  • 74.Saleh-e-In MM, Van Staden J. Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: a review. J Ethnopharmacol. 2018;220:294–320. doi: 10.1016/j.jep.2018.01.011. [DOI] [PubMed] [Google Scholar]
  • 75.Sharma A, Flores-Vallejo RC, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J Ethnopharmacol. 2017;208:264–329. doi: 10.1016/j.jep.2016.04.045. [DOI] [PubMed] [Google Scholar]
  • 76.Ngadino S, Koerniasari E, Sudjarwo SA. Evaluation of antimycobacterial activity of Curcuma xanthorrhiza ethanolic extract against Mycobacterium tuberculosis H37Rv in vitro. Vet World. 2018;11:368–372. doi: 10.14202/vetworld.2018.368-372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Tuyiringire N, Tusubira D, Munyampundu JP, Tolo CU, Muvunyi CM, Ogwang PE. Application of metabolomics to drug discovery and understanding the mechanisms of action of medicinal plants with anti-tuberculosis activity. Clin Transl Med. 2018;7:29. doi: 10.1186/s40169-018-0208-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Al-baadani WA, Satyanarayan ND. Anti-tubercular evaluation of Rivea hypocrateriformis (Der.) choisy against Mycobacterium tuberculosis H37Rv strain. J Pharmacognosy Phytochem. 2018;7:2679–2682. [Google Scholar]
  • 79.Lawal IO, Grierson DS, Afolayan AJ. Phytotherapeutic information on plants used for the treatment of tuberculosis in eastern Cape Province. South Africa Evidence-based Complement Altern Med. 2014:1–11. 10.1155/2014/735423. [DOI] [PMC free article] [PubMed]
  • 80.Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PGA. Medicinal plants used to treat TB in Ghana. Int J Mycobacteriol. 2015;4:116–123. doi: 10.1016/j.ijmyco.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 81.Ogbole OO, Ajaiyeoba EO. Traditional management of tuberculosis in Ogun state of Nigeria: the practice and ethnobotanical survey. Afr J Tradit Complement Altern Med. 2010;7:79–84. doi: 10.4314/ajtcam.v7i1.57270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Stewart ZP, Pierzynski GM, Middendorf BJ, Prasad PVV. Approaches to improve soil fertility in sub-Saharan Africa. J Exp Bot. 2020;71:632–641. doi: 10.1093/jxb/erz446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Ge F, Zheng F, Liu S, Guo N, Ye H, Song Y, et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against Mycobacterium tuberculosis. J Med Microbiol. 2010;59:567–572. doi: 10.1099/jmm.0.014837-0. [DOI] [PubMed] [Google Scholar]
  • 84.Kirimuhuzya C. Efficacy of Cryptolepis sanguinolenta root extract on slow-growing rifampicin resistant Mycobacterium tuberculosis. J Med Plants Res. 2012;6:1140–1146. [Google Scholar]
  • 85.Wube AA, Bucar F, Gibbons S, Asres K. Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity. Phytochem. 2005;66:2309–2315. doi: 10.1016/j.phytochem.2005.07.018. [DOI] [PubMed] [Google Scholar]
  • 86.Kirimuhuzya C, Bunalema L, Tabuti JRS, Kakudidi EK, Orodho J, Magadula J, et al. A presentation at the 14th NAPRECA symposium held at ICIPE, Kasarani, Nairobi, Kenya. 2011. The in vitro antimycobacterial activity of medicinal plants used by traditional medicine practitioners (TMPs) to treat tuberculosis in the Lake Victoria basin in Uganda. [Google Scholar]
  • 87.Gautam R, Saklani A, Jachak SM. Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol. 2007;110:200–234. doi: 10.1016/j.jep.2006.12.031. [DOI] [PubMed] [Google Scholar]
  • 88.Kaminsky R, Caecilia S, Reto B. An “in vitro selectivity index” for evaluation of cytotoxicity of antitrypanosomal compounds. In vitro Toxicol. 1996;9:315–24.
  • 89.OECD. OECD guideline for testing of chemicals: acute oral toxicity – acute toxic class method. OECD Guideline for Testing of Chemicals, no. December: 1–14. 2001. doi: 10.1787/9789264070943-en.
  • 90.Geran RI, Greenberg HM, McDonald M, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemoth Rep. 1972;33:1–17. [Google Scholar]
  • 91.Keter L, Too R, Mwikwabe N, Mutai C, Orwa J, Mwamburi L, et al. Risk of fungi associated with aflatoxin and fumonisin in medicinal herbal products in the Kenyan market. Sci World J. 2017;1892972. [DOI] [PMC free article] [PubMed]
  • 92.Pan S, Zhou S, Gao S, Yu Z, Zhang S, Tang M, et al. “New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-based complement. Altern Med. 2013. 10.1155/2013/627375. [DOI] [PMC free article] [PubMed]
  • 93.Ko RJ. A U.S. perspective on the adverse reactions from traditional Chinese medicines. J Chin Med Assoc. 2004;67:109–116. [PubMed] [Google Scholar]
  • 94.Chuluun B, Iamchaturapatr J, Rhee J. Phytoremediation of organophosphorus and organochlorine pesticides by Acorus gramineus. Environ Eng Res. 2009;14:226–236. [Google Scholar]
  • 95.Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Tomlinson B, Chan TY, Chan JC, Critchley JA, But PP. Toxicity of complementary therapies: an eastern perspective. J Clin Pharmacol. 2000;40:451–456. doi: 10.1177/00912700022009206. [DOI] [PubMed] [Google Scholar]
  • 97.Aniagu S, Nwinyi F, Akumka DD, Ajoku GD, Dzarma S, Izebe KS. Toxicity studies in rats fed nature cure bitters. Afri J Biotechnol. 2005;4:72–78. [Google Scholar]
  • 98.Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T. Review: African medicinal plants with wound healing properties. J Ethnopharmacol. 2016;177:85–100. doi: 10.1016/j.jep.2015.11.008. [DOI] [PubMed] [Google Scholar]
  • 99.Owor RO, Bedane KG, Zühlke S, Derese S, Ong'amo GO, Ndakala A, et al. Anti-inflammatory flavanones and flavones from Tephrosia linearis. J Nat Prod. 2020. 10.1021/acs.jnatprod.9b0092. [DOI] [PubMed]
  • 100.Gavamukulya Y, Maina EN, Meroka A, Madivoli ES, El-Shemy HA, Magom G, et al. Liquid chromatography single quadrupole mass spectrometry (LC/SQ MS) analysis reveals presence of novel antineoplastic metabolites in ethanolic extracts of fruits and leaves of Annona muricata. Pharmacognosy J. 2019;11:660–668. [Google Scholar]
  • 101.Andima M, Coghi P, Yang LJ, Wong VKW, Ngule CM, Heydenreich M, et al. Antiproliferative activity of secondary metabolites from Zanthoxylum zanthoxyloides Lam : in vitro and in silico studies. Pharmacognosy Comm. 2020;10:44–51. [Google Scholar]
  • 102.Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014;31:35–60. doi: 10.1039/c3np70058e. [DOI] [PubMed] [Google Scholar]
  • 103.Saraswathi VS, Saravanan D, Santhakumar K. Isolation of quercetin from the methanolic extract of Lagerstroemia speciosa by HPLC technique, its cytotoxicity against MCF-7 cells and photocatalytic activity. J Photochem Photobiol B. 2017;171:20–26. doi: 10.1016/j.jphotobiol.2017.04.031. [DOI] [PubMed] [Google Scholar]
  • 104.Chraibi MM, Farah A, Lebrazi S, El Amine O, Iraqui Houssaini M, Fikri-Benbrahim K. Antimycobacterial natural products from Moroccan medicinal plants: chemical composition, bacteriostatic and bactericidal profile of Thymus satureioides and Mentha pulegium essential oils. Asian Pac J Trop Biomed. 2016;6:836–840. [Google Scholar]
  • 105.Hoerr V, Duggan GE, Zbytnuik L, Poon KKH, Große C, Neugebauer U, et al. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol. 2016;16:82. doi: 10.1186/s12866-016-0696-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Esquivel-ferriño PC, Favela-hernández JMJ, Garza-gonzález E, Waksman N, Ríos MY, Camacho-corona MR. Antimycobacterial activity of constituents from Foeniculum vulgare var. Dulce grown in Mexico. Molecules. 2012;17:8471–8482. doi: 10.3390/molecules17078471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Zhao J, Evangelopoulos D, Bhakta S, Gray AI, Seidel V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J Ethnopharmacol. 2014;155:796–800. doi: 10.1016/j.jep.2014.06.034. [DOI] [PubMed] [Google Scholar]
  • 108.Sureram S, Senadeera SPD, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012;22:2902–2905. doi: 10.1016/j.bmcl.2012.02.053. [DOI] [PubMed] [Google Scholar]
  • 109.Gao F, Ye L, Wang Y, Kong F, Zhao S, Xiao J. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem. 2019;183:111678. doi: 10.1016/j.ejmech.2019.111678. [DOI] [PubMed] [Google Scholar]
  • 110.Machelart A, Song O, Hoffmann E, Brodin P. Host-directed therapies offer novel opportunities for the fight against tuberculosis. Drug Discov Today. 2017;22:1250–1257. doi: 10.1016/j.drudis.2017.05.005. [DOI] [PubMed] [Google Scholar]
  • 111.WHO. Global Tuberculosis Report 2017. WHO, Geneva, Switzerland. 2017. 262p. https://reliefweb.int/sites/reliefweb.int/files/resources/9789241565516-eng.pdf. Accessed 4 Mar 2020.
  • 112.Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-manu D, Addo PGA. Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol. 2017;4:165–183. doi: 10.1016/j.ijmyco.2015.05.004. [DOI] [PubMed] [Google Scholar]
  • 113.Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Manjunatha UH, Smith PW. Perspective: challenges and opportunities in TB drug discovery from phenotypic screening. Bioorganic Med Chem. 2015;23:5087–5097. doi: 10.1016/j.bmc.2014.12.031. [DOI] [PubMed] [Google Scholar]
  • 115.León-Díaz R, Meckes M, Said-Fernández S, Molina-Salinas GM, Vargas-Villarreal J, Torres J, et al. Antimycobacterial neolignans isolated from Aristolochia taliscana. Mem Inst Oswaldo Cruz. 2010;105:45–51. doi: 10.1590/s0074-02762010000100006. [DOI] [PubMed] [Google Scholar]
  • 116.Bocanegra-Garcia V, Garcia A, Palma-Nicolás JP, Palos I, Rivera G. A case study based insight into modern strategies. Intech open. 2011. Antitubercular drugs development: recent advances in selected therapeutic targets and rational drug design; pp. 207–242. [Google Scholar]
  • 117.Vyas DH, Tala SD, Dhaduk MF, Akbari JD, Joshi HS. Synthesis, antitubercular and antimicrobial activities of some new pyrazoline and isoxazole derivatives. J Indian Chem Soc. 2007;84:1140–1144. [Google Scholar]
  • 118.Rukachaisirikul T, Saekee A, Tharibun C, Watkuolham S. Biological activities of the chemical constituents of Erythrina stricta and Erythrina subumbrans. Arch Pharm Res. 2007;30:1398. doi: 10.1007/BF02977363. [DOI] [PubMed] [Google Scholar]
  • 119.Ignacimuthu S, Shanmugam N. Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica ness . Leaves. J Biosci. 2010;35:565–570. doi: 10.1007/s12038-010-0065-8. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

41182_2020_256_MOESM1_ESM.doc (33.5KB, doc)

Additional file 1: Figure S1. PRISMA flow diagram used for the review.

Data Availability Statement

This is a review article and no raw experimental data were collected. All data generated or analyzed during this study are included in this published article.


Articles from Tropical Medicine and Health are provided here courtesy of BMC

RESOURCES