Skip to main content
PLOS Genetics logoLink to PLOS Genetics
. 2020 Aug 4;16(8):e1008962. doi: 10.1371/journal.pgen.1008962

Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing

Ujué Fresán 1,2,#, Maria A Rodríguez-Sánchez 1,#, Oscar Reina 3, Victor G Corces 4, M Lluisa Espinàs 1,2,*
Editor: Kami Ahmad5
PMCID: PMC7428214  PMID: 32750047

Abstract

Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.

Author summary

Haspin is a highly conserved kinase in eukaryotes involved in chromosome organization during mitosis. In this study we demonstrated that haspin is also required to maintain proper chromatin organization during interphase. Our analyses showed that Drosophila haspin is necessary for insulator activity, nuclear architecture, heterochromatin organization and pairing-sensitive gene silencing. We further found that haspin modulates Pds5-cohesin association with chromatin and it is required for robust Polycomb-mediated homeotic gene silencing. Overall our findings reveal that haspin kinase is a key element in chromatin organization and thereby regulates gene expression.

Introduction

Genome organization in the cell nucleus plays an important role in the regulation of gene expression during cellular differentiation and development [1,2]. Insulator or architectural proteins are essential components of the three-dimensional organization of chromatin by mediating long-range interactions between distant sites in the genome. Current results suggest that architectural complexes have two inter-related functions: to organize the genome in domains and to facilitate the interaction between regulatory elements [3,4,5]. Several architectural proteins have been characterized in Drosophila melanogaster, including DNA-binding proteins (CTCF, SuHw, BEAF-32, GAGA, DREF, TFIIIC, Z4, Elba, ZIPIC, Ibf1 and Ibf2) that recruit accessory factors (CP190, mod(mdg4), Rad21, Cap-H2, Fs(1)h-L, L(3)mbt and chromator) to mediate chromatin interactions [6]. A small number of architectural proteins have been characterized in mammals, and among them, CTCF and cohesin, have also been shown to support interactions between distant sites in the genome [5].

Long-range gene regulation also involves epigenetic components such as the Polycomb group proteins (PcG) [7,8,9,10,11]. In Drosophila, homeotic (Hox) genes, which encode evolutionary conserved master regulators of development, are the most prominent PcG targets. Precise spatiotemporal expression of Hox genes involves an intricate collection of enhancers, promoters, polycomb response elements (PREs) and insulators. It has been demonstrated, both by fluorescent in situ hybridization and Chromosome Conformation Capture approaches, that chromatin organization of the Abdominal-B (Abd-B) locus in the bithorax complex (BX-C) is a critical determinant of the regulation of the expression of the gene. Several reports have shown that insulators and PREs interact with the Abd-B promoter in tissues where the gene is not expressed, and Polycomb and the insulator/architectural proteins CTCF and CP190 are required for these interactions [12,13,14,15].

Histone modifications and the enzymes responsible for them are also important players in the regulation of chromatin organization. Haspin, a highly conserved kinase in eukaryotes, is responsible for phosphorylation of histone H3T3 during mitosis [16]. Haspin kinase has been shown to be involved in sister chromatid cohesion [17] and to be necessary to localize the Chromosomal Passenger Complex (CPC) on mitotic chromatin at centromeres to activate Aurora B that regulates kinetochore-microtubule attachments [18,19,20]. In fission yeast and mammalian cells, haspin has been shown to bind the cohesin-associated protein Pds5 at centromeres and to antagonize the cohesin-unloading factor Wapl [21,22,23]. H3T3ph dephosphorylation upon exit from M phase has been shown to be necessary for chromosome decondensation and nuclear envelope reformation [24]. Haspin kinase has been reported to be strongly activated by Cdk1 and Polo-like kinase in mitosis [25,26]. However, haspin contains an atypical protein kinase domain, which is conserved from yeast to humans, that does not require phosphorylation on the activation loop for activity, suggesting that it could be partially active all along the cell cycle. We show here that haspin is necessary for insulator activity, position-effect variegation (PEV) and pairing-sensitive silencing (PSS) modulating nuclear architecture in interphase. We also demonstrate that haspin is required for robust Polycomb-dependent homeotic gene silencing. Altogether our results indicate that Drosophila haspin kinase is involved, not only in chromosome organization during mitosis, but also in genome organization in interphase cells playing a functional role in gene regulation.

Results

Haspin kinase is necessary for insulator activity

In order to identify new proteins with insulator activity we performed a mutagenesis screen in Drosophila by random transposition of a P element. New insertions were analyzed for changes in reporter gene expression in enhancer-blocking assays using a transgenic line that contain the Fab7 boundary/insulator element of the BX-C between the white enhancer and the mini-white reporter gene (B727.1, S1 Fig), which blocks promoter activation by the distal enhancer. Any relief of insulator activity should allow communication between enhancer and promoter of the white reporter gene increasing eye color. Among all the lines showing a significant relief of enhancer-blocking we further studied line 86 (Fig 1A). The P element insertion in this line was mapped to the first exon in the 5'UTR of the gene haspin (S2A Fig). We analyzed haspin expression in the homozygous line, and we observed a strong reduction in transcript levels indicating that haspin86 is either a null or a strong hypomorph haspin alelle (S2B Fig). By mobilazing the P element in line 86 we obtained line 128 that harbors a partial deletion of the P element, the first and second exons and part of the second intron of the gene haspin (S2A Fig), likely rendering the gene non functional. Haspin128 homozygous mutant flies are viable, they show a decrease in adult longevity which is stronger in females than males (S2C Fig), and fertility of both sexes is clearly affected (S2D Fig).

Fig 1. Insulator activity of haspin.

Fig 1

A) Eye color of representative flies of enhancer-blocking assays using the transgenic line B727.1 that contains the Fab7 insulator element in wild-type and heterozygous line 86 background. B) Eye color of representative flies of enhancer-blocking assays using the transgenic line F72.5 that contains the Fab7 insulator and PRE elements in haspin RNAi mutant background. C) Quantitative analysis of eye pigment in flies with the F72.5 construct and the genotypes indicated. n = 3, significant differences between wild-type and the different mutant backgrounds as determined by Student’s t-test (p<0.001). D) Quantitative analysis of eye pigment in flies with constructs containing Fab6, Fab7 and Fab8 insulator elements (see S1 Fig for details of the constructs) in wild-type and haspin128 heterozygous mutant background (n = 3). Statistical significance (**p<0.01 and ***p<0.001) was determined by Student’s t-test.

To establish further the role of haspin in insulator function we performed enhancer-blocking assays with independent mutant backgrounds and different insulator elements. We knocked down haspin levels using the UAS/Gal4 system. Our results show a clear increase in the eye pigmentation of flies with decreased haspin levels using another transgenic line that contains the Fab7 element of the BX-C (Fig 1B). Indeed, quantitative analyses showed significant relief of Fab7 enhancer-blocking activity in the different haspin mutant lines, which is similar to the one observed in CP190 insulator protein mutant background (Fig 1C). Moreover, similar effects were obtained using transgenic lines containing either the Fab6 or Fab8 insulator elements between the white enhancer and the mini-white reporter gene (Fig 1D). These results indicate that haspin is necessary for the function of different insulators of the bithorax complex and suggest that haspin could be involved in modulating higher-order chromatin organization of the BX-C.

Drosophila haspin is the kinase responsible for the phosphorylation of histone H3 at Thr3 in mitosis and interphase

Haspin is a highly conserved kinase that has been shown to be responsible for mitotic phosphorylation of histone H3 at threonine 3 at centromeric regions in yeast and mammals [27]. To analyze whether haspin is also performing this function in Drosophila we carried out immunostaining assays of spread metaphase chromosomes of Drosophila larval brains using antibodies against H3T3ph and the centromere marker Cenp-C. Our results show that H3T3ph is concentrated at the inner centromere between the paired regions of Cenp-C and that H3T3ph signal completely disappears in a haspin128 mutant background (Fig 2A and S3A Fig). These assays were performed in the presence of colcemid which arrest cells in a prolonged prometaphase that leads to the opening of sister chromatid arms to produce X-shaped chromosomes [28]. Our assays show that haspin depletion disrupts connection between sister chromatids at the centromeres (S3A Fig, see differences in connection between chromatids in DNA panels), as previously reported in mammals [17]. Indeed, the inter-kinetochore distance on chromosome spreads prepared from haspin128 mutant brains, which was measured using the centromere marker Cenp-C, was 30% further apart compared to control (S3B Fig). Thus, the mitotic functions of haspin are likely to be conserved in Drosophila.

Fig 2. Haspin kinase phosphorylates H3T3 in mitosis and interphase and it is required for chromatin binding of Pds5.

Fig 2

A) Immunolocalization of H3T3ph (green) and Cenp-C (red) in mitotic cells of wild-type and haspin128 mutant Drosophila larval brains. DNA is stained with DAPI (blue). Scale bars are 2μm. B) Representative polytene chromosome spreads from wild-type and haspin86 mutant salivary glands of third-instar larvae immunostained with antibodies against H3T3ph (green). DNA is stained with DAPI (blue). C) Representative polytene chromosome spreads from salivary glands of third-instar larvae that express Pds5-HA under the control of nubbin promoter in GFP (upper panels) or haspin (lower panels) RNAi backgrounds, immunostained with antibodies against HA (red) and CP190 (green). DNA is stained with DAPI (blue). D) Pds5-HA/CP190 immunofluorescence intensity ratio in polytene chromosome spreads from salivary glands of third-instar larvae that express Pds5-HA under the control of nubbin promoter in GFP or haspin RNAi backgrounds. n = 5, means and s.d. are shown. ***p<0.001 was determined by Student’s t-test.

Most mitotic kinases need to be phosphorylated at the activation loop to be activated and this only occurs during mitosis [29]. Although haspin kinase has also been shown to be strongly activated in mitosis by phosphorylation, it is intrinsically active without phosphorylation, suggesting that it could be partially active all along the cell cycle [27]. Therefore, in order to characterize whether H3 is phosphorylated at Thr3 during interphase we performed immunostaining assays of polytene chromosomes of Drosophila salivary glands. As shown in Fig 2B, H3T3ph signals are observed at discrete loci on extended polytene chromosomes in wild-type larvae while these signals are not present in a mutant haspin86 background (Fig 2B), indicating that haspin is required for the phosphorylation of histone H3 at Thr3 in interphase.

Chromatin binding of cohesin-associated protein Pds5 depends on haspin

Haspin and the cohesin complex have been shown to be functionally related during mitosis in mammals and yeast. Haspin is involved in protection of mitotic centromere cohesion by binding to the cohesin-associated protein Pds5 and antagonizing the cohesin unloading factor Wapl [21,22,23]. Since our results show that haspin is required for centromeric cohesion in Drosophila (S3 Fig), we asked whether the interaction of haspin with Pds5 is also conserved and, moreover, if this association takes place not only during mitosis but also in interphase. To characterize the interaction between haspin and Pds5 during interphase we performed coimmunoprecipitation experiments in larval salivary gland nuclear extracts of a transgenic line that express Pds5-HA-Flag. To this end, we raised antibodies against haspin (see Materials and Methods and S4A Fig) that were able to specifically coprecipitate Pds5-HA-Flag (S4B Fig). To further characterize this interaction we performed Pds5 immunolocalization assays in Pds5-HA-Flag larval salivary gland polytene chromosomes in either mock (GFP) or haspin RNAi backgrounds. Our results show a strong decrease of Pds5 binding to chromosomes when knocking-down haspin levels (Fig 2C and 2D). Since the lack of Pds5 binding to chromatin could also reflect a contribution of haspin to synthesis and/or stability of the protein we have analyzed Pds5 mRNA and protein levels. While there are no significant changes in Pds5 mRNA levels (S4C Fig), protein levels are clearly reduced in larval salivary glands (S4D Fig). These results strongly suggest destabilization of Pds5 protein due, most likely, to its inability to associate with haspin and chromatin. Altogether, our results indicate that haspin interacts with the cohesin-associated protein Pds5 during interphase and it is required for Pds5 binding to chromatin.

It has been shown that Pds5 proteins have both positive and negative effects on cohesin association with chromatin; they cooperate with Wapl in releasing cohesin from DNA but they have also been implicated on cohesion during mitosis [30]. To characterize the relationship between haspin and the core of the cohesin complex we performed coimmunoprecipitation experiments using salivary gland nuclear extracts that ubiquitously express the cohesin subunit Rad21 fused to a myc epitope in a Rad21 mutant background (Vtdex3). αhaspin antibodies were able to specifically coprecipitate Rad21-myc (S5A Fig) indicating that haspin associates with the core of the cohesin complex during interphase. We then performed immunolocalization assays in larval salivary gland polytene chromosomes that showed no apparent changes in Rad21 binding to chromosomes in the absence of haspin (S5B Fig, compare upper and lower panels). We also analyzed Rad21 expression and our results showed that transcript levels are similar in haspin mutant background compared to control (S5C Fig). To further analyze whether haspin modulates the interaction of this complex with chromatin we quantified the amount of chromatin-associated cohesin in the absence of haspin. To this end, formaldehyde crosslinking of Drosophila embryo nuclei that express Rad21-myc in a Rad21 mutant background (Vtdex3) in either control or haspin128 mutant background were carried out, chromatin fractions were purified and the amount of Rad21 and Histone H3 were compared. During the first hours of Drosophila embryo development nuclei go through 13 rapid mitotic divisions having very short S-phases and omitting gap phases while later in development the mitotic rate is much slower. Therefore, in early embryos cells are most of the time in the mitotic phase of the cell cycle while in late embryos most of cells are in interphase. Our assays showed a significant decrease in chromatin-bound Rad21 in the absence haspin in early embryos (0–4 hours) that, although attenuated, is also present in late embryos (20–24 hours) (S5D and S5E Fig). Altogether, these data indicate that haspin modulates the dynamic association of cohesin with chromatin during cell cycle.

Nuclear morphology defects and nuclear compaction during interphase in the absence of haspin activity

We performed immunostaining experiments in wild-type and haspin-mutant Drosophila late third-instar larval salivary glands. We found that haspin-depleted cells displayed irregularly shaped nuclei showing a crumpled raisin-like appearance revealed by lamin Dm0 immunolocalization (Fig 3A). To characterize the subcellular localization of haspin we performed biochemical fractionation of Drosophila embryos that express an epitope-tagged haspin-HA protein. A significant amount of haspin-HA was detected in the nuclear matrix fraction, which is characterized by the presence of lamin Dm0 (S6A Fig). Insulator protein CP190 and Polycomb group of proteins were also found mostly associated with the nuclear matrix (S6A Fig), consistent with previously reported results [31,32]. These data indicate that haspin localizes at the nuclear lamina and modulates nuclear morphology.

Fig 3. Modulation of nuclear architecture by haspin kinase.

Fig 3

A) Immunostaining of Drosophila salivary glands with antibodies against lamin Dm0 in wild-type third-instar larvae (upper panel) and haspin86 mutant background (lower panel). DNA is stained with DAPI. In the overlap (right panels), lamin Dm0 is shown in green and DAPI in blue. Scale bars are 50 μm. B) Box plot showing quantification of DAPI signals of Drosophila salivary gland nuclei in wild-type (WT), haspin mutant background (haspin86), overexpression of haspin under control of its own promoter (haspinPROM), overexpression of haspin in a mutant background (haspin86; haspinPROM) and in haspin, CP190, and CTCF RNAis under the control of nubbin promoter (nub > haspinRNAi, nub > CP190RNAi, and nub > CTCFRNAi). Nuclear size was determined in around 50 nuclei for each condition (n≥3). The p values as determined by Wilcoxon test of the different genetic backgrounds respect to WT are indicated (*** p < 0.001). C) Box plot showing quantification of DAPI signal of Drosophila salivary gland nuclei in wild-type (WT) and overexpression under the control of 69B of tagged versions of either haspin wild-type (haspin-HA) or haspin with a mutated kinase domain (haspinH420A-HA and haspinK282M-HA). Nuclear size was determined in around 50 nuclei for each condition (n≥3). Significant differences between wild-type and mutated kinase domains as determined by Wilcoxon test (*** p<0.001).

In the assays reported above, changes in nuclear size between control and haspin-depleted salivary glands are apparent (Fig 3A). We further characterized this phenotype in detail by DAPI immunostaining experiments in either loss or gain of function alleles of haspin. Our analyses showed that in late third-instar larvae, at a time when there is no further replication, haspin mutants exhibit reduced nuclear size (S6B Fig, compare WT and haspin86 panels). Quantification analyses confirmed the decrease in the absence of haspin (Fig 3B). On the contrary, overexpression of haspin in a transgenic line with two extra copies of the haspin genomic locus gave rise to a clear increase in the nuclear size of larval salivary glands (Fig 3B and S6B Fig). The expression of haspin under the control of its own promoter in a mutant background totally rescued the loss of function phenotype (Fig 3B and S6B Fig, no significant differences in nuclear size were observed between WT and haspin86; haspinPROM). These altered nuclear sizes are not the consequence of changes in DNA replication since both WT and haspin mutant salivary glands showed similar DNA content (S6C Fig). When we knocked-down haspin levels in salivary gland nuclei using the UAS/Gal4 system and the nubbin-Gal4 driver we also observed a strong decrease in nuclear size (Fig 3B, nub > haspinRNAi lane). Similar effects were obtained by knocking-down two well characterized insulator/architectural proteins such as CP190 and CTCF (Fig 3B). In order to characterize the contribution of the kinase domain of haspin to this phenotype we obtained transgenic lines that express epitope-tagged haspin-HA proteins either wild-type or with a Lys282Met substitution in the ATP recognition motif or a His420Ala, change that has been previously shown to be required for haspin activity in mammals [33]. Similar levels of expression of the epitope-tagged proteins in the different transgenic lines were obtained using the UAS/Gal4 system (S6D Fig). Our analyses showed that while overexpression of haspin-HA wild-type protein in a null mutant background was able to totally rescue the nuclear size of salivary gland cells, overexpression of kinase dead proteins were not (Fig 3C). Thus, haspin kinase activity is required for global nuclear organization in interphase cells.

Altogether our results show extensive interphase nuclear compaction in haspin-depleted cells that is associated with defects in nuclear morphology and they suggest that haspin kinase is an enzymatic protein that associates with the nuclear matrix/lamina to perform key roles in chromatin organization and nuclear architecture.

Haspin is a suppressor of position-effect variegation

In order to identify genome-wide location of H3T3ph we performed chromatin immunoprecipitation sequencing (ChIP-seq) analysis in S2 cells using αH3T3ph antibody. Sites of enrichment (peaks) were identified by bioinformatics and biostatistics analyses of aligned ChIP-seq data (see experimental procedures). H3T3ph enriched regions across whole genome accumulate in heterochromatic regions of the chromosomes where they colocalize with HP1a (Fig 4A). To statistically assess the overlap between H3T3ph and HP1a binding sites we used overlap permutation tests that showed a high degree of statistically significant association (z-score >38, p-value < 0.01 for all HP1a modENCODE replicates, S7A Fig). We also examined the location of H3T3ph peaks in relation to the Drosophila melanogaster 9 different chromatin states as determined in S2 cells [34] and we found that they are preferentially located in state 7, which correspond to centromeric heterochromatin and chromosome 4 (S7B Fig). Indeed, strong association between H3T3ph and heterochromatin regions was statistically assessed using overlap permutation tests (positive z-scores for states 7 and 8, S7B Fig). The model generated by Kharchenko et al. [34] distinguishes a set of heterochromatin-like regions (state 8) enriched in chromatin marks typically associated with heterochromatic regions (H3K9me2/me3 and HP1a) but at lower levels than in pericentromeric heterochromatin. This state occupies extensive domains in euchromatic arms of the chromosomes such as the region shown in Fig 4B. Line on top corresponds to the H3T3ph binding profile (normalized H3T3ph IP versus input signal) while line on bottom corresponds to H3T3ph enriched peaks. Our assays showed that H3T3ph is enriched at these heterochromatin-like regions (Fig 4B and S7B Fig).

Fig 4. Haspin is a suppressor of position-effect variegation.

Fig 4

A) ChIP-seq data for H3T3ph genome-wide localization. Enriched regions of HP1a (modENCODE data, see S1 Text) are depicted below. B) ChIP-seq data for H3T3ph over a region of 500 kb in chromosome 3 in Drosophila S2 cells. Binding profiles of CP190 and Ibf2 [66], Pol II S5ph and HP1a (modENCODE data) are shown. H3T3ph peaks are depicted in last row. C) Effect of haspin128 mutation on position-effect variegation in In(1)wm4 males (n = 3). D) Representative ChIP-seq data for H3T3ph over a 400 kb region of chromosome 3R in Drosophila S2 cells. Binding profiles of CP190 and Ibf2 [66], Pol II S5ph, H3K27me3 and HP1a (modENCODE data, see S1 Text) and lamin Dm0 [69] are shown. H3T3ph peaks are depicted in last row.

Our ChIP-seq analyses do not allow distinguishing if the heterochromatic H3T3ph enrichment is only present in mitotic cells or it is also found in interphase cells, since we have shown above that H3T3ph signal is strongly activated during mitosis in centromeric regions in Drosophila (Fig 2A) as it has been previously reported in mammals [25,26]. To study whether haspin could be involved in heterochromatin organization in interphase we analyzed position-effect variegation (PEV) in a haspin mutant background. In the In(1)wm4 rearrangement the inversion results in juxtaposition of the white gene with the heterochromatic region of the X chromosome. In this line spreading of heterochromatin into the euchromatic domain results in silencing and variegation of white expression [35]. Our analyses showed that haspin128 heterozygous mutation strongly suppressed white silencing in the In(1)wm4 rearrangement (Fig 4C), indicating that haspin is a novel Su(var) gene (suppressor of PEV), such as Su(var)2-5 (HP1a) and Su(var)3-9 (histone H3K9 methyltransferase) [35]. Thus, our results indicate that haspin is involved in heterochromatin organization and suggest that H3T3 phosphorylation by haspin modulates heterochromatin formation and/or stability.

Our assays showed that H3T3ph enriched regions found at euchromatic arms of the chromosomes are often localized in broadly enriched large genomic regions usually flanked by insulator proteins such as CP190 and Ibf2. While some of these regions are enriched in HP1a, such as region shown in Fig 4B, others were found to be enriched in lamin Dm0. An example of these regions is shown in Fig 4D. We also used overlap permutation tests to statistically assess the location of H3T3ph peaks at euchromatic arms of the chromosomes in relation to the different chromatin states [34]. H3T3ph euchromatic regions were defined as those not overlapping with chromatin state 7 and we found that they are preferentially located in state 9, which corresponds to silent domains (S7C Fig). H3T3ph enriched regions were often found in clusters presenting a high number of regions in very close succession while other areas with moderate H3T3ph signal presented a lower number of sparsely reported regions, as it is shown in line at the bottom in Fig 4B and 4D and S8A Fig. Depending on the density of accumulation, H3T3ph enriched regions were described as highly or lowly enriched by visual inspection (S8A Fig, regions b and c respectively). We observed that while high (dense) H3T3ph enriched regions tended to colocalize with lamin Dm0, low (sparse) enriched regions colocalized with H3K27me3, such as region c that corresponds to the Antennapedia complex, suggesting that PcG silenced domains contain low levels of H3T3ph. Our ChIP-seq data also suggest that H3T3ph enriched regions do not contain binding sites for the active form of the RNA polymerase II phosphorylated at serine 5 (Fig 4B and 4D and S8A Fig). Indeed, general comparisons of H3T3ph with active RNA polymerase II binding sites showed a mutually antagonistic location (S8B Fig). Altogether, our results indicate that phosphorylated histone H3 at Thr3 colocalizes with silent chromatin.

Haspin is required for robust Polycomb-dependent homeotic gene silencing

Insulator/architectural elements of the BX-C have been shown to be involved in the regulation of homeotic gene expression [36,37,38] and our results reported above indicate that haspin is required for the function of several of these regulatory elements (Fig 1). Therefore, we analyzed levels of homeotic gene expression by reverse transcription followed by quantitative PCR and we found that Abd-B gene was derepressed in the mutant (Fig 5A), indicating that haspin is required for Abd-B gene silencing. Homeotic gene silencing depends on PcG complexes and we asked whether chromatin association of PcG complexes is affected by haspin. We performed ChIP assays in wild-type and haspin128 mutant backgrounds and we analyzed Polycomb binding at several PRE-containing regulatory elements of Abd-B. Our results show a significant reduction in Pc binding at Mcp, Fab7, Fab8 and the promoter regions A and B of the Abd-B gene in the absence of haspin (Fig 5B).

Fig 5. Haspin is required for Polycomb-dependent homeotic gene silencing.

Fig 5

A) Abdominal-B transcriptional levels normalized to Actin5C in wild-type or haspin128 mutant Drosophila larval brains. n = 4, means and s.d. are shown. B) ChIP-qPCR using an antibody against Polycomb and primers for pointed as a control negative region, Mcp, Fab7 and Fab8 regulatory elements and Abd-B promoters A and B. Average enrichments (normalized to the input sample) are plotted as the ratio of precipitated DNA in either wild-type or haspin128 Drosophila larval brains relative to the control negative region. n = 3, means and s.e.m. are shown. C) Representative examples of homeotic transformations observed: second to first leg (L2-L1), third to first leg (L3-L1) and wing to haltere (W-H). A red circle marks sex combs that appear in the second and third leg of male flies. D) Frequencies of homeotic transformations in flies heterozygous for Pc1, Pc3 or Pc15 mutations in either wild-type or homozygous haspin128 mutant backgrounds. n = 3, over 20 individuals scored. E) Eye color of representative flies of a transgenic line P714 containing a homozygous PRE-miniwhite in a wild-type or haspin128 mutant background (n = 3). F) Frequencies of homeotic transformations in flies heterozygous for Pc3 mutation in either wild-type or combinations of heterozygous mutant backgrounds for haspin128 and cohesin complex components. n = 4, over 50 individuals scored. Statistical significance (*p<0.05, **p<0.01 and ***p<0.001) was determined by Student’s t-test (A and B) or z-test (D and F).

To further characterize the participation of haspin in Polycomb-dependent homeotic gene silencing we looked for phenotypic changes in a sensitized background. We analyzed homeotic transformations already observed in flies with defective Pc silencing, such as the appearance of sex combs on the second (L2-L1) and third (L3-L1) pairs of legs of male flies and a defective wing development indicative of a wing to haltere (W-H) transformation (Fig 5C). We found that in three different Pc mutant backgrounds, Pc1, Pc3 and Pc15 [39,40,41], the frequency of transformation was much higher in flies homozygous for haspin128 mutation and heterozygous for the Pc mutation compared with animals carrying only the corresponding Pc mutation (Fig 5D). Moreover, the frequencies of L2-L1 and W-H transformations were also higher when knocking haspin levels in a Pc3 heterozygous background using the UAS/Gal4 system to express haspinRNAi under the control of the Act5C promoter (S9A Fig). Therefore, haspin mutation acts as an enhancer of Pc mutations and altogether these results indicate that haspin is required for efficient Polycomb-dependent homeotic gene silencing.

PcG complexes are known to mediate silencing not only in cis but also in trans; accordingly, in transgenic lines the PRE-mediated silencing is pairing-sensitive (PSS) being stronger in homozygous than heterozygous individuals [42]. We analyzed PSS in a transgenic line carrying a construct containing the PRE of the Fab7 element and the mini-white reporter gene [43] in haspin128 mutant background. Our assays showed a clear increase in eye pigmentation in the absence of haspin (Fig 5E) indicating that PSS depends on haspin. It was shown earlier that, in another transgenic line, insertion of a Fab7 transgene in the X chromosome 9.6 kb upstream of the scalloped (sd) gene induces a mutant phenotype, resulting in disruption of wing morphology (transgenic line 5F24 25,2 [44]). This phenotype is pairing-dependent, as it is observed with strong penetrance of up to 85–95% in homozygous females, whereas it is absent in heterozygous females or hemizygous males, and it is attenuated by mutations in PcG genes [44,45]. The sd phenotype of homozygous females is strongly suppressed in a haspin128 mutant background with 66% of the individuals showing no sd phenotype at all (S9B Fig). Thus, these results indicate that haspin is necessary for PRE pairing-sensitive silencing and suggest that depletion of haspin might enhance homeotic transformations via loss of PRE contacts and progressive decrease in chromatin silencing efficiency through subsequent generations.

Both in Drosophila and mammals, cohesin complexes have been shown to influence PcG-mediated gene silencing by supporting long-range interactions between Polycomb domains that are important for repression [46,47]. We have shown above that haspin is required for Pds5 binding to chromatin (Fig 2C) and modulates cohesin dynamics (S5 Fig). To analyze whether haspin and cohesin are functionally related in Drosophila we characterized homeotic transformations in flies with a combination of mutant alleles for haspin and cohesin complex components Rad21/Vtd and Pds5. While mutations of cohesin proteins alone do not significantly modify the Pc3 extra sex combs phenotype (S9C Fig), the frequency of transformations increased when cohesin mutant alleles are in combination with haspin128 (Fig 5F). Indeed, flies containing both, Pds5e6 and haspin128 heterozygous mutant alleles, showed a strong enhancement of Pc3 extra sex combs phenotype, since almost all the flies presented L2-L1 and L3-L1 transformations, with an average number of 7 sex combs in L2 and 4 in L3.

In summary, our data demonstrate that haspin is required for robust PcG-mediated regulation of gene expression and suggest that haspin and the cohesin complex, especially the cohesin-associated protein Pds5, cooperate to regulate homeotic gene silencing.

Discussion

In this work we report that Drosophila haspin modulates key aspects of chromatin organization during interphase: insulator activity, heterochromatin-induced position-effect variegation, nuclear morphology and PRE-dependent pairing-sensitive silencing. Some of these aspects could be influenced by mitotic events and, therefore, be regulated by haspin functionality in chromosome organization during mitosis. However, our results also show that haspin phosphorylates histone H3 in interphase and associates with the cohesin complex mediating Pds5 binding to chromatin in interphase cells, strongly suggesting that this kinase modulates chromatin organization not only during mitosis but also in interphase.

Thr3 in histone H3 is located immediately adjacent to Lys4, which has been shown to be tri-methylated at active promoter sites [48,49]. TFIID binding to H3K4me3, which is involved in transcription machinery recruitment, is severely reduced in mitosis as a result of H3T3 phosphorylation [50]. On the other hand, in vitro studies have shown that tri-methylation of H3K4 reduces substrate recognition by haspin suggesting antagonism between H3K4 methylation and H3T3 phosphorylation [33]. In agreement with these studies, our results show that H3T3ph localizes at heterochromatin and lamin-enriched regions, while it does not colocalize with active RNA polymerase II. Even though, future investigations will be needed to decipher whether or not H3T3ph never colocalizes with H3K4me and active transcription, altogether these studies suggest antagonism between phosphorylated H3T3 and active transcription. Moreover, haspin is preferentially found at the nuclear lamina, like CP190 insulator protein and polycomb proteins (our results and previously reported studies [30,31]). While proteins that are associated with transcriptionally active chromatin are easily solubilized in subcellular fractionation assays, haspin, insulator and polycomb proteins are tightly bound to the nuclear matrix where they colocalize with laminas suggesting that nuclear organization of these proteins might contribute to their functionality.

We report here that haspin is a strong suppressor of position-effect variegation playing a role in heterochromatin organization. HP1 proteins, which are key components of heterochromatin, have been reported to promote haspin localization at mitotic centromeres to protect centromeric cohesion in mammals [51]. Whether HP1 proteins promote haspin localization at centromeric heterochromatin in interphase and whether phosphorylation of H3T3 is involved in heterochromatin organization remain to be determined.

We have also shown here that haspin is required for robust Polycomb-dependent homeotic gene silencing based on the following observations in the absence of haspin: i) derepression of Abd-B transcription, ii) reduction of Pc binding at several PRE-containing regulatory elements and iii) enhanced homeotic transformations in Pc mutant sensitized backgrounds. Moreover, depletion of haspin has a strong impact in pairing-sensitive silencing which involves long-range chromatin organization [11,52]. Our results also show that haspin cooperates with Pds5-cohesin to enhance Polycomb-dependent homeotic transformations. Thus, haspin might regulate homeotic gene silencing by directly affecting the binding of PcG proteins to chromatin or by affecting Pds5-cohesin dynamics modulating chromatin organization of Polycomb domains. Recent results point to an important role for cohesin complexes in the establishment and/or maintenance of Polycomb-repressed domains in mammalian cells but also to restrict their aggregation [46]. We have shown here that haspin mediates Pds5-binding to chromatin in interphase and modulates cohesin association with chromatin along the cell cycle. Pds5 proteins have both positive and negative effects on cohesin association with chromatin, they cooperate with Wapl in releasing cohesin from DNA but they are also required to maintain sister-chromatid cohesion in G2/M [30]. Pds5 interacts with Wapl, Dalmatian/Sororin, Eco/Eso acetyltransferase and haspin through the same conserved protein-protein module [21,53]. Wapl-Pds5 interaction has been shown to be counteracted by Eco and Sororin in S phase antagonizing Wapl’s ability to dissociate cohesin from DNA [53,54]. On the other hand, haspin has been shown to phosphorylate Wapl [22] and to antagonize Wapl-Pds5 interaction to protect proper centromeric cohesion in mitosis [21,22,23]. Although relationship between haspin and the cohesin complex needs to be further characterized, our work point to an important role of haspin in the complex regulation of Pds5-cohesin dynamics along the entire cell cycle.

Pds5 proteins are also required for proper maintenance of heterochromatin [55] and participate in chromatin loop formation [56,57]. It has been suggested that they may be required for the boundary function of CTCF, since cells depleted of Pds5 proteins contain many fewer loops than control cells, which is similar to the effect of CTCF depletion [57]. On the other hand, it has been shown that chromatin becomes more compact after reducing levels of CTCF and Rad21 and the analysis of the molecular basis for this counter-intuitive behavior suggested that compaction could be the consequence of changes in chromatin loops [58]. Our data show that haspin is required for insulator activity, nuclear compaction, heterochromatin-induced position-effect variegation and PcG-mediated pairing-sensitive silencing strongly suggesting that haspin could be involved in the organization of the genome in chromatin domains and loops by modulating Pds5-cohesin association with chromatin.

It has been suggested that inhibition of haspin could have potent anti-tumoral effects with fewer adverse effects compared with other anti-cancer agents [59]. Our results show mitotic defects in Drosophila haspin mutants in agreement with previous reported studies in yeast and mammals [17,21]. However, haspin mutants have been reported not lethal in budding yeast [60] and in fission yeast [61] and our data show that they are also viable in Drosophila, even though life span and fertility are affected. Besides, our findings demonstrate that haspin is controlling genome organization of interphase cells raising concerns with respect to the use of haspin inhibitors as potent mitosis-specific anticancer drugs.

Materials and methods

Drosophila genetics and transgenic lines

Flies were raised in standard cornmeal yeast extract media at 25°C except when indicated. w1118 line was used as wild-type.

The mutagenesis screen was performed by mobilization of the P element from a P(Mae-UAS.6.11) line that carries the yellow (y) marker. The P element was mobilized from an X chromosome site in males and transpositions to the autosomes were recovered as y+ males. Insertions were subsequently screened for changes in white expression in enhancer-blocking assays with heterozygous flies of B727.1 transgenic line. This line carries an attB construct containing the Fab7 boundary/insulator element (1.2 kb) between the white enhancer and the mini-white reporter gene (S1A Fig).

S1B and S1C Fig show the transgenic lines used in this study.

Constructs were inserted in the attP51C landing site via phiC31-mediated integration [62]. The RFP marker of the attP docking site and the white marker of the attB plasmid were eliminated via Cre recombinase-mediated excision, thus allowing enhancer-blocking assays.

For enhancer-blocking quantitative analyses, eye pigment of 20 heads was extracted with 30% acid-ethanol (pH 2) according to [63] and OD480 was determined in a Nanodrop 1000/3.7.

CP190RNAi and CTCFRNAi lines from Vienna Drosophila RNAi Center (#35078 and #30713 respectively). haspinRNAi lines from BDSC (B-35276 and B-57787). GFPRNAi transgenic line was generated according to standard procedures. CP190H31-2 [64]. Pds5e6, Vtdex3, Vtdex3,tub-Rad21-myc, In(1)wm4, GAL4 lines (da-GAL4, nub-GAL4, 69B-GAL4 and Act5C-GAL4) and Polycomb mutations (Pc1, Pc3 and Pc15) were obtained from BDSC. da-GAL4 line does not contain the mini-white reporter gene to allow enhancer-blocking assays. 69B-GAL4 was used to drive moderate expression in larval salivary glands [65].

Haspin cDNA (LD07633 from Drosophila Genomics Resource Center) was cloned to be expressed under the control of either 3 kb of haspin 5’ genomic sequences (haspinPROM) or UAS sequences (tagged HA versions of the protein either wild-type, UAS-haspin-HA, or with point mutations in the kinase domain, UAS-haspinH420A-HA and UAS-haspinK282M-HA). Details of the constructs are available upon request. UAS-Pds5-HA-Flag construct was obtained from DGRC (UFO12474). Transgenic lines with these constructs were obtained via phiC31-mediated integration [62].

Longevity assays were performed with 80 newly hatched either females or males housed at 20 flies/vial and transferred to fresh vials every 5 days. For the fertility test, newly hatched females or males were mated with 3 w virgin individuals of the opposite sex and at least ten crosses for control and haspin128 mutant flies were set up simultaneously. Flies were transferred into fresh vials with 3 new w flies of the opposite sex every 5 days until they were 20-day old. The progenies of each cross were counted excluding vials that did not contain all four flies alive at the end of each 5-day mating period.

Antibodies

Rat αhaspin polyclonal antibodies were raised against bacterially expressed recombinant protein containing amino acids 1–316 of haspin and were validated in western blot, immunostaining and immunoprecipitation assays giving specific signal only in IP assays (IP 3μl). Rabbit αCP190 is described in [66] (WB 1:5,000) and rat αCenp-C is a gift from F. Azorin (IF 1:200). Commercially available antibodies used were as follows: rat αHA (Roche 1867423, WB 1:500, IF 1:100), rabbit αH3 (Cell Signaling 9715, WB 1:5000), mouse αlaminDm0 (Developmental Studies Hybridoma Bank ADL67, WB 1:2,500, IF 1:500), rabbit αH3T3ph (Millipore 07–424, IF 1:100, Millipore 04–746, ChIP 3μl), rabbit αPc (Santa Cruz Biotech, WB 1:500, ChIP 3μl), mouse αmyc (Millipore 05–724, WB 1:1000).

Immunostaining experiments

Immunostaining of larval salivary glands, polytene chromosomes and neuroblast squashes were performed as described elsewhere [66,67,68]. For visualization, slides were mounted in Mowiol (Calbiochem-Novabiochem) containing 0.2ng/ml DAPI (Sigma) and visualized in a confocal Leica TCS SP2-AOBS microscope. Images were acquired and processed using ImageJ (http://imagej.nih.gov/ij/) and Adobe Photoshop software. At least three independent biological replicates were performed.

Quantification of immunofluorescence images

Mean grey areas (nuclei) or intensities (polytene chromosomes) were calculated using ImageJ on thresholded images at DAPI masked regions of interest running Analyze particles plugin on the FeatureJ.

Coimmunoprecipitation experiments

Assays were performed with extracts prepared from Drosophila salivary glands. Cells were lysed with 0.5% NP40, 300mM NaCl, 50mM Tris pH8, 5mM EDTA and protease inhibitors. Incubation with αhaspin, αFlag or no antibodies was performed at 4°C. After incubation with Protein A/G Agarose (Santa Cruz Biotech), beads were pelleted by centrifugation, washed and analysed by Western-blot. At least two independent biological replicates were performed.

Biochemical fractionation

3–21 hours old embryos, collected in juice agar plates and dechorionated, were subjected to loose dounce in ENB buffer (0.3M sucrose, 10mM Tris-HCl pH 8, 60mM KCl, 15mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.5mM spermidine, 0.15mM spermine, 0.1mM PMSF and Protease Inhibitor Cocktail). Centrifugation was carried out for 5 min at 2,300g resulting in supernatant (cytoplasm + some nuclear soluble fraction) and pellet (nuclei). The pellet was incubated in CSK buffer (0.3M sucrose, 10mM Hepes pH 7.9, 250mM NaCl, 3mM MgCl2, 0.05mM CaCl2, 0.5mM DTT, 0.1mM PMSF and Protease Inhibitor Cocktail) for 5 min at 0°C and centrifuged to obtain the nuclear soluble fraction. Then, the pellet was incubated in CSK buffer containing 10U DNAseI for 15 min at 37°C and NaCl was added to 2M final concentration. After 5 min at 0°C samples were centrifuged to obtain the high-salt chromatin fraction and the remaining pellet containing the nuclear matrix fraction was solubilized in 8M Urea, 0.1M NaH2PO4, 10mM Tris-HCl pH8. To be able to compare protein amounts in the different fractions equal buffer volumes were used for all fractionation steps except for the first one, which was carried out in a large volume (2x) to purify properly nuclei. Then, double volume of this fraction with respect to the others were subjected to SDS-PAGE and immunoblotted with the indicated antibodies.

Chromatin purification

Nuclei from 0–4 and 20–24 hours embryos were prepared as described in the biochemical fractionation procedure. Nuclei were crosslinked for 10 min in PBS with 1% formaldehyde. 0.125M glycine (final concentration) was added to stop reaction and nuclei were pelleted by centrifugation at 2,300g for 5 min. Nuclei were washed sequentially for 10 min each in WA (0.25% Triton X-100, 10mM Tris-HCl pH8, 10mM EDTA, 0.5mM EGTA), WB (0.2M NaCl, 10mM Tris-HCl pH8, 1mM EDTA, 0.5mM EGTA) and WC (1% SDS, 10mM Tris-HCl pH8, 1mM EDTA). To revers crosslinks pellets were resuspended in 25mM Tris-HCl pH6.8, 4.4% glycerol, 1% SDS, 5% 2-mercaptoethanol, 0.005% bromophenol blue and incubated for 20 min at 95°C. Samples were subjected to SDS-PAGE and immunoblotted with the indicated antibodies.

Quantitative RT-qPCR

Total RNAs were extracted with TRIzol Reagent (Life Technologies), purified with RNeasy Mini Kit (QIAGEN) and treated with DNAseI (QIAGEN). cDNAs were prepared from 0.8 μg of RNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche) and oligo-dT primers.–RT controls were included in qPCR reactions to discard genomic DNA contamination. qPCR was performed on Roche LightCycler 480 System (Roche) using LightCycler 480 SYBER Green I Master (Roche). Primers used are listed in S1 Table. Three independent biological replicates for each genotype were performed.

DNA content analysis

DNA from S2 cells and 20 larval salivary glands either WT or haspin86 was extracted by standard methods. DNA content was calculated by real-time qPCR. The logarithm values of 3 quantities of DNA standard (S2 cells) in 10-fold dilutions and the corresponding cycle numbers (Ct value) of actin gene amplification were used to perform linear regression. This standard was used to calculate the relative DNA content in WT and haspin86 mutant salivary glands (see S6C Fig in supporting information spreadsheet form).

ChIP experiments

For ChIP, chromatin from S2 cells was fixed in 1.8% formaldehyde for 10 min at room temperature. Cells were sonicated in TE containing 0.1% SDS in a Diagenode Bioruptor. Drosophila brains of third-instar larvae were fixed in 1% formaldehyde for 15 min at room temperature. Brains were resuspended in 10mM Tris-HCl pH 8, 10mM NaCl, 0.2% NP-40 and manually homogenizated. After centrifugation pellet was resuspended in lysis buffer (50mM Tris-HCl pH8, 10mM EDTA and 1% SDS) and incubated for 20 min at room temperature. A 0.5x volume of dilution buffer (1.1% Triton X100, 16.7mM Tris-HCl pH8, 2mM EDTA, 167mM NaCl) was added and chromatin was sonicated in a Branson sonifier. Samples from S2 cells and brains were immunoprecipitated in RIPA buffer (140mM NaCl, 10mM Tris-HCl pH8, 1mM EDTA, 1% Triton X100, 0.1% SDS, 0.1% sodium deoxycholate) with Protein A Sepharose. For ChIP-qPCR, three independent biological replicates were analyzed. Primers used are listed in S1 Table. ChIP-seq libraries for Illumina sequencing were constructed following manufacture’s protocols.

Supporting information

S1 Fig. Transgenic lines used in enhancer-blocking assays.

A) Diagram of the reporter used in enhancer-blocking assays. E corresponds to White enhancer sequences (X: 2798339–2796777) that contain the eye enhancer [70]. RE indicates the different regulatory elements and mini-white is the reporter gene. B) Scheme of Abd-B genomic region with the regulatory elements used in this study. B indicates boundary/insulator element and P indicates PRE. C) Locations of the fragments corresponding to the regulatory elements in the different transgenic lines are indicated.

(TIF)

S2 Fig. Phenotypes of Drosophila haspin mutant alleles.

A) Scheme of haspin genomic organization in haspin86 and haspin128 mutant lines. Location of the P element is indicated by a triangle and deleted sequences in line haspin128 are indicated in grey. B) Haspin transcriptional levels normalized to Actin5C as fold changes relative to control in haspin86 and haspin128 mutant larvae. n = 3, means and s.d. are shown. C) Survival curves for wild-type and haspin128 adult flies. n≥5, means and s.d. are shown. D) Fertility test: progenies of wild-type and haspin128 flies of the indicated ages were counted and plotted (n≥20). In these tests haspin128 females did not survive more than 15–20 days. Statistical significance (*p<0.05, **p<0.01 and ***p<0.001) was determined by Student’s t-test (panels in B and C) or Wilcoxon test (panels in D).

(TIF)

S3 Fig. Mitotic defects in haspin mutant backgrounds.

A) Immunolocalization at higher magnification of H3T3ph (green) and Cenp-C (red) on chromosome spreads prepared from wild-type and haspin128 Drosophila larval brains arrested in mitosis with colcemid. DNA is stained with DAPI (blue). Scale bars are 2 μm. B) Box plot showing quantification of inter-kinetochore distances in wild-type and haspin128 chromosome spreads. The inter-kinetochore distance was measured using the centromere marker Cenp-C in over 15 chromosomes. Distance was determined by drawing lines which length was calculated using the imageJ software. ***p<0.001 as determined by Wilcoxon test.

(TIF)

S4 Fig. Haspin is required for Pds5-chromatin interaction.

A) Western blot analysis using αHA of salivary gland extracts from larvae that express haspin-HA under the control of Actin5C promoter that were subjected to immunoprecipitation with αhaspin. Input corresponds to 10% of the immunoprecipitated material. B) Western blot analysis using αFlag of salivary gland extracts from larvae that express Pds5-HA-Flag under the control of nubbin promoter that were subjected to immunoprecipitation with αhaspin or αFlag. Input corresponds to 10% of the immunoprecipitated material. C) Pds5 transcriptional levels normalized to Actin5C as fold changes relative to control in haspin128 mutant Drosophila third-instar larvae (L) and salivary glands of third-instar larvae (SG). n = 3, means and s.d. are shown. D) Drosophila salivary glands of third-instar larvae that express Pds5-HA under the control of nubbin promoter in wild-type (upper panels) or haspin RNAi background (lower panels) immunostained with antibodies against HA. DNA is stained with DAPI.

(TIF)

S5 Fig. Haspin modulates cohesin-chromatin interactions.

A) Western blot analysis using αmyc of salivary gland extracts from larvae that express ubiquitously Rad21-myc in a Rad21 mutant background that were subjected to immunoprecipitation with αhaspin. Input corresponds to 10% of the immunoprecipitated material. B) Representative polytene chromosome spreads from salivary glands of third-instar larvae that express Rad21-myc, under the control of tubulin promoter in a Rad21 mutant background (Vtdex3), in control (upper panels) or haspin128 mutant background (lower panels) immunostained with antibodies against myc (red) and CP190 (green). C) Rad21 transcriptional levels normalized to Actin5C as fold changes relative to control in haspin128 mutant Drosophila third-instar larvae (L) and salivary glands of third-instar larvae (SG). n = 3, means and s.d. are shown. D) Western blot analysis using αmyc (upper row) of chromatin extracts from Drosophila embryos from 0–4 h (left panel) and 20–24 h (right panel) after egg laying that express Rad21-myc in a Rad21 mutant background (Vtdex3) in control or haspin128 mutant backgrounds. Antibodies to H3 were used for the loading control (bottom row). E) Rad21-myc protein levels normalized to H3 in chromatin extracts of control or haspin128 mutant Drosophila embryos. Error bars are s.d. of three independent biological replicates. Differences in chromatin associated Rad21 are statically significant (*p<0.05 and **p<0.01 as determined by Student’s t-test).

(TIF)

S6 Fig. Haspin Kinase is localized at the nuclear matrix and modulates nuclear architecture.

A) Biochemical fractionation of Drosophila embryos that express haspin-HA under the control of Actin5C promoter. Aliquots of cytoplasm + nuclear soluble (lane 1), nuclear soluble (lane 2), chromatin (lane 3) and nuclear matrix (lane 4) fractions were subjected to SDS-PAGE and immunoblotted with the indicated antibodies. B) Immunostaining of Drosophila salivary glands with DAPI in larvae of the indicated genotypes. Scale bars represent 50 μm. C) Relative DNA content in wild-type and haspin86 Drosophila larval salivary glands. n = 3, means and s.d. are shown. D) Western blot analysis of larval salivary gland protein extracts of control and overexpression of either wild-type protein (nub > haspin-HA) or mutated proteins in the kinase domain (nub > haspinH420AHA and nub > haspinK282MHA) using antibodies to HA (upper row). Antibodies to H3 were used for the loading control (bottom row).

(TIF)

S7 Fig. Genomic distribution of H3T3ph.

A) Proportion of H3T3ph peaks that overlap modENCODE HP1a enriched regions. Association was analyzed using overlap permutation tests with the overlapPermTest function from the regioneR package version 1.14.0 using 5000 permutations and default options. The z-score numerical measurement indicates the strength of the association. B) Proportion of H3T3ph peaks in the 9 chromatin states characterized by [34]. State 1 (red) active promoters and transcription start sites; state 2 (yellow) transcript elongation; states 3 and 4 (light and bright green) regulatory regions; state 5 (green-blue) active male X chromosome; state 6 (light blue) PcG regions; state 7 (dark blue) centromeric heterochromatin and chromosome 4; state 8 (purple) other heterochromatin; state 9 (pink) other silent domains. z-score in permutation tests is indicated below (blue and red indicate negative and positive values respectively). C) Proportion of euchromatic H3T3ph peaks, which were defined as those not overlapping with chromatin state 7, in chromatin states characterized by [34].

(TIF)

S8 Fig. Genomic distribution of H3T3ph at euchromatin.

A) ChIP-seq data for H3T3ph over a region of 800 kb in chromosome 3 that contains the Antennapedia complex. Binding profiles of CP190 and Ibf2 [66], Pol II S5ph and H3K27me3 (modENCODE data) and lamin Dm0 [69] are depicted. High, low and no signal for H3T3ph, H3K27me3 and lamin Dm0 are indicated below by black, grey and white bars respectively. B) Whole genome colocalization of H3T3ph with Pol II S2ph/S5ph.

(TIF)

S9 Fig. Haspin mutant backgrounds enhance Pc-associated phenotypes.

A) Frequencies of male L2-L1 and female W-H homeotic transformations in a Pc3 heterozygous mutant background either expressing or not haspinRNAi under the control of the Actin5C promoter at 25°C. Increasing temperature to 29°C caused male lethality and only female W-H transformations were scored. n = 3, over 50 and 8 individuals scored at 25°C and 29°C respectively. ***p<0.001 as determined by z-test. B) The percentage of homozygous F75F24 transgenic females at 25°C showing normal wings (0) and wing blade destruction in one (1) or both (2) wings in wild-type and haspin mutant flies is presented. n indicates number of females scored. C) Frequencies of homeotic transformations in flies heterozygous for Pc3 mutation in either wild-type or heterozygous mutant backgrounds for cohesin complex components. n = 3, over 50 individuals scored. No significant differences as determined by z-test.

(TIF)

S1 Table. Primers used in RT-qPCR and ChIP-qPCR.

(DOCX)

S1 Text. Bioinformatics analyses of ChIP-Seq data.

(DOCX)

S1 Data. Spreadsheet with numerical data used to generate graphs in all Figures.

(XLSX)

Acknowledgments

We thank Josep Casacuberta, Elena Casacuberta, Joan Roig, Jordi Casanova, F. Azorin and all members of his laboratory for helpful discussions and comments. We are grateful to F. Azorin and R. Paro for antibodies and fly stocks. We are thankful to Bloomington Drosophila Stock Center, Vienna Drosophila RNAi Center, Drosophila Genomics Resource Center and Developmental Studies Hybridoma Bank for providing fly stocks, clones and antibodies. We also thank Alicia Vera for technical assistance.

Data Availability

All relevant data are within the manuscript and its Supporting Information files except ChIP-seq files that are available from the NCBI GEO database (accession number GSE98223).

Funding Statement

This work was supported by the Spanish Ministerio de Economia y Competitividad (BFU2013-48712-P) and the Generalitat de Catalunya (SGR2017-475). U. F. and M. R-S. acknowledge receipt of doctoral fellowships from Consejo Superior de Investigaciones Cientificas and Ministerio de Economia y Competitividad respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Dixon JR, Gorkin DU, Ren B (2016) Chromatin Domains: The Unit of Chromosome Organization. Molecular cell 62: 668–680. 10.1016/j.molcel.2016.05.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Rowley MJ, Corces VG (2016) The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol 40: 8–14. 10.1016/j.ceb.2016.01.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ali T, Renkawitz R, Bartkuhn M (2016) Insulators and domains of gene expression. Current opinion in genetics & development 37: 17–26. [DOI] [PubMed] [Google Scholar]
  • 4.Cubenas-Potts C, Corces VG (2015) Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett 589: 2923–2930. 10.1016/j.febslet.2015.05.025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Merkenschlager M, Nora EP (2016) CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. Annu Rev Genomics Hum Genet 17: 17–43. 10.1146/annurev-genom-083115-022339 [DOI] [PubMed] [Google Scholar]
  • 6.Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A, et al. (2014) Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS genetics 10: e1004544 10.1371/journal.pgen.1004544 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, et al. (2017) PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell 20: 689–705 e689. 10.1016/j.stem.2017.02.004 [DOI] [PubMed] [Google Scholar]
  • 8.Eagen KP, Aiden EL, Kornberg RD (2017) Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proc Natl Acad Sci U S A 114: 8764–8769. 10.1073/pnas.1701291114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Entrevan M, Schuettengruber B, Cavalli G (2016) Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 26: 511–525. 10.1016/j.tcb.2016.04.009 [DOI] [PubMed] [Google Scholar]
  • 10.Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, et al. (2015) Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular cell 58: 216–231. 10.1016/j.molcel.2015.02.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Schwartz YB, Cavalli G (2017) Three-Dimensional Genome Organization and Function in Drosophila. Genetics 205: 5–24. 10.1534/genetics.115.185132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Cleard F, Moshkin Y, Karch F, Maeda RK (2006) Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nat Genet 38: 931–935. 10.1038/ng1833 [DOI] [PubMed] [Google Scholar]
  • 13.Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9: 1167–1174. 10.1038/ncb1637 [DOI] [PubMed] [Google Scholar]
  • 14.Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, et al. (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes & development 25: 1686–1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li HB, Muller M, Bahechar IA, Kyrchanova O, Ohno K, et al. (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Molecular and cellular biology 31: 616–625. 10.1128/MCB.00849-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes & development 19: 472–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Developmental cell 11: 741–750. 10.1016/j.devcel.2006.09.018 [DOI] [PubMed] [Google Scholar]
  • 18.Broad AJ, DeLuca KF, DeLuca JG (2020) Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, et al. (2020) Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, et al. (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330: 231–235. 10.1126/science.1189435 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Goto Y, Yamagishi Y, Shintomi-Kawamura M, Abe M, Tanno Y, et al. (2017) Pds5 Regulates Sister-Chromatid Cohesion and Chromosome Bi-orientation through a Conserved Protein Interaction Module. Current biology: CB 27: 1005–1012. 10.1016/j.cub.2017.02.066 [DOI] [PubMed] [Google Scholar]
  • 22.Liang C, Chen Q, Yi Q, Zhang M, Yan H, et al. (2018) A kinase-dependent role for Haspin in antagonizing Wapl and protecting mitotic centromere cohesion. EMBO Rep 19: 43–56. 10.15252/embr.201744737 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhou L, Liang C, Chen Q, Zhang Z, Zhang B, et al. (2017) The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis. Current biology: CB 27: 992–1004. 10.1016/j.cub.2017.02.019 [DOI] [PubMed] [Google Scholar]
  • 24.Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, et al. (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330: 235–239. 10.1126/science.1189505 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ghenoiu C, Wheelock MS, Funabiki H (2013) Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Molecular cell 52: 734–745. 10.1016/j.molcel.2013.10.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zhou L, Tian X, Zhu C, Wang F, Higgins JM (2014) Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep 15: 273–281. 10.1002/embr.201338080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Higgins JM (2010) Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 119: 137–147. 10.1007/s00412-009-0250-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Rieder CL, Palazzo RE (1992) Colcemid and the mitotic cycle. J Cell Sci 102 (Pt 3): 387–392. [DOI] [PubMed] [Google Scholar]
  • 29.Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open Biol 2: 120136 10.1098/rsob.120136 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Remeseiro S, Losada A (2013) Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25: 63–71. 10.1016/j.ceb.2012.10.013 [DOI] [PubMed] [Google Scholar]
  • 31.Marasca F, Marullo F, Lanzuolo C (2016) Determination of Polycomb Group of Protein Compartmentalization Through Chromatin Fractionation Procedure. Methods Mol Biol 1480: 167–180. 10.1007/978-1-4939-6380-5_15 [DOI] [PubMed] [Google Scholar]
  • 32.Ong CT, Van Bortle K, Ramos E, Corces VG (2013) Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 155: 148–159. 10.1016/j.cell.2013.08.052 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, et al. (2009) Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci U S A 106: 20198–20203. 10.1073/pnas.0901989106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, et al. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485. 10.1038/nature09725 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5: a017780 10.1101/cshperspect.a017780 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Barges S, Mihaly J, Galloni M, Hagstrom K, Muller M, et al. (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127: 779–790. [DOI] [PubMed] [Google Scholar]
  • 37.Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, et al. (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucl Acids Res 22: 3138–3146. 10.1093/nar/22.15.3138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Perez-Lluch S, Cuartero S, Azorin F, Espinas ML (2008) Characterization of new regulatory elements within the Drosophila bithorax complex. Nucl Acids Res 36: 6926–6933. 10.1093/nar/gkn818 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Capdevila MP, Botas J, Garcia-Bellido A (1986) Genetic interactions between the Polycomb locus and the Antennapedia and Bithorax complexes of Drosophila. Roux Arch Dev Biol 195: 417–432. 10.1007/BF00375746 [DOI] [PubMed] [Google Scholar]
  • 40.Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570. 10.1038/276565a0 [DOI] [PubMed] [Google Scholar]
  • 41.Simon J, Chiang A, Bender W (1992) Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 114: 493–505. [DOI] [PubMed] [Google Scholar]
  • 42.Hagstrom K, Muller M, Schedl P (1997) A Polycomb and GAGA Dependent Silencer Adjoins the Fab-7 Boundary in the Drosophila Bithorax Complex. Genetics 146: 1365–1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Rank G, Prestel M, Paro R (2002) Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Molecular and cellular biology 22: 8026–8034. 10.1128/mcb.22.22.8026-8034.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zink D, Paro R (1995) Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. The EMBO journal 14: 5660–5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Canudas S, Perez S, Fanti L, Pimpinelli S, Singh N, et al. (2005) dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucl Acids Res 33: 4857–4864. 10.1093/nar/gki776 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Cuadrado A, Gimenez-Llorente D, Kojic A, Rodriguez-Corsino M, Cuartero Y, et al. (2019) Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cell Rep 27: 3500–3510 e3504. 10.1016/j.celrep.2019.05.078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Schaaf CA, Misulovin Z, Gause M, Koenig A, Gohara DW, et al. (2013) Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes. PLoS genetics 9: e1003560 10.1371/journal.pgen.1003560 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, et al. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181. 10.1016/j.cell.2005.01.001 [DOI] [PubMed] [Google Scholar]
  • 49.Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–318. 10.1038/ng1966 [DOI] [PubMed] [Google Scholar]
  • 50.Varier RA, Outchkourov NS, de Graaf P, van Schaik FM, Ensing HJ, et al. (2010) A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. The EMBO journal 29: 3967–3978. 10.1038/emboj.2010.261 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yi Q, Chen Q, Liang C, Yan H, Zhang Z, et al. (2018) HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep 19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ogiyama Y, Schuettengruber B, Papadopoulos GL, Chang JM, Cavalli G (2018) Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development. Molecular cell 71: 73–88 e75. 10.1016/j.molcel.2018.05.032 [DOI] [PubMed] [Google Scholar]
  • 53.Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, et al. (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143: 737–749. 10.1016/j.cell.2010.10.031 [DOI] [PubMed] [Google Scholar]
  • 54.Vaur S, Feytout A, Vazquez S, Javerzat JP (2012) Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep 13: 645–652. 10.1038/embor.2012.72 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Folco HD, McCue A, Balachandran V, Grewal SIS (2019) Cohesin Impedes Heterochromatin Assembly in Fission Yeast Cells Lacking Pds5. Genetics. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Dauban L, Montagne R, Thierry A, Lazar-Stefanita L, Bastie N, et al. (2020) Regulation of Cohesin-Mediated Chromosome Folding by Eco1 and Other Partners. Molecular cell 77: 1279–1293 e1274. 10.1016/j.molcel.2020.01.019 [DOI] [PubMed] [Google Scholar]
  • 57.Wutz G, Varnai C, Nagasaka K, Cisneros DA, Stocsits RR, et al. (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. The EMBO journal 36: 3573–3599. 10.15252/embj.201798004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Tark-Dame M, Jerabek H, Manders EM, van der Wateren IM, Heermann DW, et al. (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol 10: e1003877 10.1371/journal.pcbi.1003877 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Amoussou NG, Bigot A, Roussakis C, Robert JH (2018) Haspin: a promising target for the design of inhibitors as potent anticancer drugs. Drug Discov Today 23: 409–415. 10.1016/j.drudis.2017.10.005 [DOI] [PubMed] [Google Scholar]
  • 60.Nespoli A, Vercillo R, di Nola L, Diani L, Giannattasio M, et al. (2006) Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast. Cell Cycle 5: 1464–1471. 10.4161/cc.5.13.2914 [DOI] [PubMed] [Google Scholar]
  • 61.Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330: 239–243. 10.1126/science.1194498 [DOI] [PubMed] [Google Scholar]
  • 62.Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317. 10.1073/pnas.0611511104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ephrussi B, Herold JL (1944) Studies of Eye Pigments of Drosophila. I. Methods of Extraction and Quantitative Estimation of the Pigment Components. Genetics 29: 148–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Pai C-Y, Lei EP, Ghosh D, Corces VG (2004) The Centrosomal Protein CP190 Is a Component of the gypsy Chromatin Insulator. Molecular Cell 16: 737–748. 10.1016/j.molcel.2004.11.004 [DOI] [PubMed] [Google Scholar]
  • 65.Tulin A, Naumova NM, Menon AK, Spradling AC (2006) Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 172: 363–371. 10.1534/genetics.105.049239 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Cuartero S, Fresan U, Reina O, Planet E, Espinas ML (2014) Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. The EMBO journal 33: 637–647. 10.1002/embj.201386001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Font-Burgada J, Rossell D, Auer H, Azorin F (2008) Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes & development 22: 3007–3023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Torras-Llort M, Medina-Giro S, Moreno-Moreno O, Azorin F (2010) A conserved arginine-rich motif within the hypervariable N-domain of Drosophila centromeric histone H3 (CenH3) mediates BubR1 recruitment. PLoS One 5: e13747 10.1371/journal.pone.0013747 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W, et al. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One 5: e15013 10.1371/journal.pone.0015013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Vazquez J, Schedl P (1994) Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions. The EMBO journal 13: 5984–5993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Wendy A Bickmore, Kami Ahmad

17 Dec 2019

Dear Dr Espinás,

Thank you very much for submitting your Research Article entitled 'Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing' to PLOS Genetics. Your manuscript was fully evaluated at the editorial level and by independent peer reviewers. The reviewers appreciated the attention to an important problem, but raised some substantial concerns about the current manuscript. Based on the reviews, we will not be able to accept this version of the manuscript, but we would be willing to review again a much-revised version. We cannot, of course, promise publication at that time.

Should you decide to revise the manuscript for further consideration here, your revisions should address the specific points made by each reviewer. We will also require a detailed list of your responses to the review comments and a description of the changes you have made in the manuscript.

If you decide to revise the manuscript for further consideration at PLOS Genetics, please aim to resubmit within the next 60 days, unless it will take extra time to address the concerns of the reviewers, in which case we would appreciate an expected resubmission date by email to plosgenetics@plos.org.

If present, accompanying reviewer attachments are included with this email; please notify the journal office if any appear to be missing. They will also be available for download from the link below. You can use this link to log into the system when you are ready to submit a revised version, having first consulted our Submission Checklist.

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see our guidelines.

Please be aware that our data availability policy requires that all numerical data underlying graphs or summary statistics are included with the submission, and you will need to provide this upon resubmission if not already present. In addition, we do not permit the inclusion of phrases such as "data not shown" or "unpublished results" in manuscripts. All points should be backed up by data provided with the submission.

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool.  PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

PLOS has incorporated Similarity Check, powered by iThenticate, into its journal-wide submission system in order to screen submitted content for originality before publication. Each PLOS journal undertakes screening on a proportion of submitted articles. You will be contacted if needed following the screening process.

To resubmit, use the link below and 'Revise Submission' in the 'Submissions Needing Revision' folder.

[LINK]

We are sorry that we cannot be more positive about your manuscript at this stage. Please do not hesitate to contact us if you have any concerns or questions.

Yours sincerely,

Kami Ahmad

Guest Editor

PLOS Genetics

Wendy Bickmore

Section Editor: Epigenetics

PLOS Genetics

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: Haspin is a conserved kinase from yeast to human, known to play a role in centromere cohesion during mitosis. It has been mostly studied in yeast and human. In this article the authors analyze Haspin in Drosophila. While they confirm a role of the kinase during mitosis, the authors also document activity during interphase where Haspin is shown to be associated with euchromatin where it is involved in Position-Effect-Variegation and Polycomb-mediated silencing. Given the conservation of the kinase through evolution, and its implication in well-tried Drosophila genetic system used to analyze processes regulated by chromatin in general, I find these new informations of interest for the general readership of PLoS Genetics. I list below a number of comments that could improve the quality of the paper .

Sometimes, Suppression of enhancer blocking activity of insulators can be sensitive to the background. The authors describe a rescue construct for Haspin (Haspin-prom). If they have the rescue construct recombined on a chromosome carrying Haspin (86) it should be a simple cross to document reversion of the Suppressor effect. I usually hate to ask for additional experiments and the authors showed that knocking down Haspin by RNAi also leads to the suppression of Fab-7-mediated enhancer blocking activity. So my suggestion is not mandatory, but if the rescue experiment could be added, it would be perfect.

At page 5 the authors should inform right away the readers that flies apparently knocked down for haspin are viable. Are the homozygotes fertile? What is known about maternal contribution? Looking at Flybase (which by the way mentions the existence of 5 uncharacterized alleles), there is a moderate presence of the mRNA in 0-2 hours embryos. The authors mention semi fertility of the female. Do these eggs develop through adulthood?

I find difficult to monitor the increase in the distance between centromeres of mitotic chromosomes in metaphase in the Haspin mutant background (Fig.2). Somehow the green H3T3ph signal in between the cenp-C spots blur the aspect. It would be perhaps useful to display a red channel only panel for the WT chromosome.

In the middle of page 7, the authors describe the generation of an antibody against Haspin protein. Have they tried staining of salivary gland? It would be interesting to correlate it with the staining detecting phosphorytaled H3T3. By the way did the authors checked if the BX-C is decorated by H3T3ph? I was not able to recognize 3R on the spread displayed in FigS4, but the quality of their squash is fine and a direct observation under the microscope would perhaps allow to find the BX-C. I also wonder if it is possible to correlate the H3T3ph chipseq data with the staining on salivary gland.

Bottom of page 7 the authors mention no apparent change of Rad21 binding to salivary gland giant chromosome in the absence of Haspin. But it seems to me that there is a decrease in intensity and in the number of sites decorated by Rad21 in haspin mutant background. In general, I also find that the quality of the squashes generated in Haspin mutant background is lower, with thinner and less-well spread chromosomes. Is that a general trend or a coincidence? The authors should check if Rad21 expression is not decreased in haspin mutant background.

I am not entirely sure of what to do with the observation that Abd-B expression increases in the haspin(86) mutant background. If this increase originates from a weakening of the Pc-G mediated repression, one should also observe ectopic activation leading to slight gain-of-function phenotype such as the appearance of pigmentation on the 4th male tergite. I imagine that the authors would have noticed it. So the lack of extra-pigmentation is puzzling to me. Abd-B is hapo-insufficient (this is why it is written with an uppercase A). Thus Abd-B/+ males have often a few bristles on the 6th sternite as well as slightly extended genitalia. I wonder if this haplo-insufficiency can be compensated by introducing the haspin mutation? This could be also tested for the haplo-insufficient phenotype of Ubx mutations (Ubx/+ have slightly increase halters).

Regarding the remark in the middle of page 13 about the difference in extra sex comb formation during the 1st three generations, it is not necessary to invoke trans-generational inheritance. It is indeed a well-known fact that Pc-G stocks accumulate modifier mutation that suppress their haplol-insufficient phenotype. By simply out-crossing, these modifiers loci are diluted out. The authors should have observed the same phenomenon occurring even with the WT chromosome 2 control.

Finally, as a dosophilist, I am sensitive to the naming of mutations that most of the time relate to the process involved. As a matter of facts many geneticists were/are very creative in naming their favorite mutations. I am therefore curious to know why this kinase is named “Haspin”. I understand that in this case there will be no relationship between the name of the mutation and the phenotype. Given the fact that the homozygotes do not show an apparent phenotype, I suggest writing the genotype with a lowercase 1st letter “haspin”.

Reviewer #2: This manuscript aims to detail a novel role of the kinase Haspin in genome organisation. The authors confirm the previously described role of Haspin in protecting centromeric cohesion in mitosis, but they additionally suggest a new role during interphase. They show that Haspin, previously reported to be a mitosis specific kinase, is capable of phosphorylating its only well-defined target, H3T3, in Drosophila polytene chromosomes in interphase. Using mutant flies, they show that insulator activity is disrupted in the absence of Haspin and suggest that long range genome interactions may be affected due to a lack of chromosomal PDS5 binding in these mutants. The authors also suggest a role of Haspin in PEV and polycomb dependent gene silencing. There are several very interesting observations in this study that, if substantiated, would significantly broaden our understanding of where Haspin functions. However, there are key questions regarding the properties of the H3T3ph antibodies used, and the rigour of analysis of ChIP-seq data. In addition, the mechanisms underlying the phenotypes are unclear. It remains a question whether a new interphase function of Haspin has been revealed, or whether many of these observations can be explained through Haspin’s known function in mitosis.

Major points:

1. For readers who are not fly specialists, it would be useful to describe the eye-colour change assay more clearly. In addition, it is unclear how strong the observed phenotype is compared to other regulators of this system. Can controls without the insulator element or with a knockdown of a protein with known insulator activity be carried out?

2. The finding of H3T3ph during interphase is novel and exciting. However, all the data to support this are in polytene chromosomes while other aspects of this study are in other cell types. Can H3T3ph be detected in interphase in other cells types or is this a polytene chromosome specific phenomenon (nuclear H3T3ph staining should be simple to observe)? In addition, is H3T3ph on polytene chromosomes enriched at the centromeres as seen in mitosis?

3. The evidence that Haspin really functions in interphase (other than H3T3ph on polytene chromosomes is weak). The experiment in Figure S4E is not compelling because it is very indirect and in fact shows that the extent of Rad21 localisation actually correlates with the %mitotic cells in two populations.

4. The IF results in Figure 2 should be quantified to show the effects are consistent across many cells, and to give some idea of the extent of protein loss from chromosomes. Does PDS5 also disappear from chromosomes in Haspin mutant cells?

5. PDS5 proteins have been shown to bind to SCC1 directly. Figure 2C shows that, in the absence of haspin, PDS5 cannot bind to chromatin yet the absence of haspin does not prevent the binding of the majority of the core cohesin complex. This is interesting, but contrary to the popular model that PDS5 localises to chromatin through cohesin and Haspin is localised through PDS5. This raises the question of whether the loss of PDS5 is due to Haspin acting as a chromosome receptor for PDS5, or whether it is an indirect effect resulting from Haspin’s function in regulating cohesion. Can this be addressed For example, does haspin co-IP with PDS5? (It might also be interesting, but not essential, to know if the chromatin fraction in a haspin knockdown no longer contains PDS5 and it is instead found in the soluble fraction).

6. Biochemical fractionation (figure S5A) shows no Haspin in the chromatin fraction, which is somewhat surprising and perhaps should be explained/commented on.

7. It would be useful to know the extent to which Haspin-HA is overexpressed. It is surprising that Haspin-HA overexpression returns nuclear size to normal in the Haspin mutant (Fig 3C) when a single additional copy of the Haspin gene is sufficient to increase nuclear size (Fig 3B).

8. The antibody used in the H3T3ph ChIP-seq experiments has not been sufficiently validated for use in ChIP-seq. It is common that adjacent modifications can prevent histone antibody binding. In this case, H3K4me3 is of particular concern and the authors make several conclusions regarding K4me3, TFIID and RNA pol II. Without validation of the antibody’s ability to bind to H3T3ph adjacent to K4me3, these claims are not supported by the presented data. We suggest that the authors carry out an ELISA or similar assay to address this issue (in fact our own data indicate that JY325 is strongly affected by H3K4 methylation).

9. Visual inspection of ChIP-seq data is insufficient to draw conclusions about the colocalization of H3T3ph and other factors. Bioinformatics analysis showing the statistical significance of enrichment of multiple factors in various chromatin states or extent of peak overlap should be shown to validate this.

10. The authors typically equate Haspin action with H3T3 phosphorylation, but the difference should be made clear. Haspin has non-kinase dependent roles, and it also should be acknowledged that Haspin is likely to have substrates other than H3T3ph (eg Wapl).

11. Throughout, the number of repeats (n=?) should be provided in figure legends.

Minor Points:

1. There are several grammatical errors and typos. Examples include use of the word ‘being’ mid-sentence (abstract and several other sentences); commas after the word “both” are in all cases misplaced and confusing; hapin instead of haspin (p. 9), different not diferent (p.5).

2. Figure 1A legend does not match labels on the figure (B7 or F7 transgenic line)

3. Generally, the figure legends should provide a better description of the abbreviations used in the figures. Particular examples include figure 1 C and D

4. Molecular weight markers should be shown on the western.

5. In figure 3, details on how nuclear size is defined and quantified should be expanded. The same applies to figure S5C for relative DNA content.

6. The use of chromatin compaction (page 8) is misleading when referring to a change in nucleus size as the data does not address whether the chromatin itself changes.

7. In figure S6A, H3T3ph is not found in state 8 defined as “other heterochromatin” but is largely found in state 7 which is defined as “centromeric heterochromatin”. The authors should discuss these states in more detail and provide a suggestion as to why they believe this is not just the known mitotic centromeric H3T3ph signal. In addition, the authors claim a colocalization with HP1a or lamin – are these also enriched in these states?

8. P. 3. There is very good evidence that H3S10ph is not required for chromosome condensation, particularly in mammals. This sentence should be rephrased.

9. P.4. Haspin has not been shown to regulate cohesion in fission yeast.

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: No: I did not see a spreadsheet for underlying numerical data.

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Francois Karch

Reviewer #2: No

Decision Letter 1

Wendy A Bickmore, Kami Ahmad

29 Jun 2020

Dear Dr Espinás,

We are pleased to inform you that your manuscript entitled "Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing" has been editorially accepted for publication in PLOS Genetics. Congratulations!

Before your submission can be formally accepted and sent to production you will need to complete our formatting changes, which you will receive in a follow up email. Please be aware that it may take several days for you to receive this email; during this time no action is required by you. Please note: the accept date on your published article will reflect the date of this provisional accept, but your manuscript will not be scheduled for publication until the required changes have been made.

Once your paper is formally accepted, an uncorrected proof of your manuscript will be published online ahead of the final version, unless you’ve already opted out via the online submission form. If, for any reason, you do not want an earlier version of your manuscript published online or are unsure if you have already indicated as such, please let the journal staff know immediately at plosgenetics@plos.org.

In the meantime, please log into Editorial Manager at https://www.editorialmanager.com/pgenetics/, click the "Update My Information" link at the top of the page, and update your user information to ensure an efficient production and billing process. Note that PLOS requires an ORCID iD for all corresponding authors. Therefore, please ensure that you have an ORCID iD and that it is validated in Editorial Manager. To do this, go to ‘Update my Information’ (in the upper left-hand corner of the main menu), and click on the Fetch/Validate link next to the ORCID field.  This will take you to the ORCID site and allow you to create a new iD or authenticate a pre-existing iD in Editorial Manager.

If you have a press-related query, or would like to know about one way to make your underlying data available (as you will be aware, this is required for publication), please see the end of this email. If your institution or institutions have a press office, please notify them about your upcoming article at this point, to enable them to help maximise its impact. Inform journal staff as soon as possible if you are preparing a press release for your article and need a publication date.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Genetics!

Yours sincerely,

Kami Ahmad

Guest Editor

PLOS Genetics

Wendy Bickmore

Section Editor: Epigenetics

PLOS Genetics

www.plosgenetics.org

Twitter: @PLOSGenetics

----------------------------------------------------

Comments from the reviewers (if applicable):

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: The authors have given satisfactory answers to my questions. Regarding the experiments displayed in Figure 5A, it does not really make sense to document Abd-B expression from ovaries, a tissue in which the expression of this gene is not well documented. Authors MUST indicate at which stage they have dissected out the brains. I suspect larvae. In the unlikely case they dissected them out of adult,, they should then indicate if it is nerve chord or brain.

Reviewer #2: The manuscript is considerably improved since the first submission, particularly by the inclusion of some statistical testing of the ChIP-seq results. It provides novel and very interesting information on the function of Haspin in flies that is highly likely to stimulate work in other organisms.

I think the authors could be given the opportunity to address some minor points prior to publication:

1. In the introduction it is stated that H3T3ph has been shown to have a role in cohesion regulation, but the cited reference only shows a role for Haspin, not for H3T3ph.

2. In my view, Fig S4C would be better included in the relevant main figure.

3. The decline in Pds5 protein levels when Haspin is reduced is shown only by IF. This seems less than ideal, because delocalisation of haspin could lead to it becoming more extractable in IF conditions. Furthermore, if total Pds5 protein levels do fall substantially, how can the authors be sure that Haspin depletion really prevents Pds5 binding chromatin? If there is no Pds5 protein, then it won't be seen on chromatin. Because of these points, I think the relevant Results and Discussion sections need to be more carefully worded.

4. I think the authors perhaps should be more conscious of the distinction between observing phenotypes in interphase cells, and whether the cause of these changes has to be due to events directly regulated by Haspin in interphase. It seems conceivable to me that Haspin might have a function only in mitosis, but these have knock-on effects on PEV etc. For example, if Haspin is involved in the appropriate maintenance of heterochromatin or insulator function through mitosis, then similar phenotypes to those observed may emerge in interphase. This goes back to my original point about H3T3ph not being directly observed in interphase cells except on polytene chromosomes. Of course the authors' own very interesting model is also consistent with the data, but the published work on Haspin to date is very much focused on mitosis.

5. Although the paper is generally well referenced, it is a bit surprising that the original study showing that Haspin is an H3T3 kinase (Dai et al, Genes Dev 2005) is not mentioned.

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: François Karch

Reviewer #2: No

----------------------------------------------------

Data Deposition

If you have submitted a Research Article or Front Matter that has associated data that are not suitable for deposition in a subject-specific public repository (such as GenBank or ArrayExpress), one way to make that data available is to deposit it in the Dryad Digital Repository. As you may recall, we ask all authors to agree to make data available; this is one way to achieve that. A full list of recommended repositories can be found on our website.

The following link will take you to the Dryad record for your article, so you won't have to re‐enter its bibliographic information, and can upload your files directly: 

http://datadryad.org/submit?journalID=pgenetics&manu=PGENETICS-D-19-01708R1

More information about depositing data in Dryad is available at http://www.datadryad.org/depositing. If you experience any difficulties in submitting your data, please contact help@datadryad.org for support.

Additionally, please be aware that our data availability policy requires that all numerical data underlying display items are included with the submission, and you will need to provide this before we can formally accept your manuscript, if not already present.

----------------------------------------------------

Press Queries

If you or your institution will be preparing press materials for this manuscript, or if you need to know your paper's publication date for media purposes, please inform the journal staff as soon as possible so that your submission can be scheduled accordingly. Your manuscript will remain under a strict press embargo until the publication date and time. This means an early version of your manuscript will not be published ahead of your final version. PLOS Genetics may also choose to issue a press release for your article. If there's anything the journal should know or you'd like more information, please get in touch via plosgenetics@plos.org.

Acceptance letter

Wendy A Bickmore, Kami Ahmad

28 Jul 2020

PGENETICS-D-19-01708R1

Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing

Dear Dr Espinás,

We are pleased to inform you that your manuscript entitled "Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing" has been formally accepted for publication in PLOS Genetics! Your manuscript is now with our production department and you will be notified of the publication date in due course.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript.

Soon after your final files are uploaded, unless you have opted out or your manuscript is a front-matter piece, the early version of your manuscript will be published online. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting PLOS Genetics and open-access publishing. We are looking forward to publishing your work!

With kind regards,

Matt Lyles

PLOS Genetics

On behalf of:

The PLOS Genetics Team

Carlyle House, Carlyle Road, Cambridge CB4 3DN | United Kingdom

plosgenetics@plos.org | +44 (0) 1223-442823

plosgenetics.org | Twitter: @PLOSGenetics

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Transgenic lines used in enhancer-blocking assays.

    A) Diagram of the reporter used in enhancer-blocking assays. E corresponds to White enhancer sequences (X: 2798339–2796777) that contain the eye enhancer [70]. RE indicates the different regulatory elements and mini-white is the reporter gene. B) Scheme of Abd-B genomic region with the regulatory elements used in this study. B indicates boundary/insulator element and P indicates PRE. C) Locations of the fragments corresponding to the regulatory elements in the different transgenic lines are indicated.

    (TIF)

    S2 Fig. Phenotypes of Drosophila haspin mutant alleles.

    A) Scheme of haspin genomic organization in haspin86 and haspin128 mutant lines. Location of the P element is indicated by a triangle and deleted sequences in line haspin128 are indicated in grey. B) Haspin transcriptional levels normalized to Actin5C as fold changes relative to control in haspin86 and haspin128 mutant larvae. n = 3, means and s.d. are shown. C) Survival curves for wild-type and haspin128 adult flies. n≥5, means and s.d. are shown. D) Fertility test: progenies of wild-type and haspin128 flies of the indicated ages were counted and plotted (n≥20). In these tests haspin128 females did not survive more than 15–20 days. Statistical significance (*p<0.05, **p<0.01 and ***p<0.001) was determined by Student’s t-test (panels in B and C) or Wilcoxon test (panels in D).

    (TIF)

    S3 Fig. Mitotic defects in haspin mutant backgrounds.

    A) Immunolocalization at higher magnification of H3T3ph (green) and Cenp-C (red) on chromosome spreads prepared from wild-type and haspin128 Drosophila larval brains arrested in mitosis with colcemid. DNA is stained with DAPI (blue). Scale bars are 2 μm. B) Box plot showing quantification of inter-kinetochore distances in wild-type and haspin128 chromosome spreads. The inter-kinetochore distance was measured using the centromere marker Cenp-C in over 15 chromosomes. Distance was determined by drawing lines which length was calculated using the imageJ software. ***p<0.001 as determined by Wilcoxon test.

    (TIF)

    S4 Fig. Haspin is required for Pds5-chromatin interaction.

    A) Western blot analysis using αHA of salivary gland extracts from larvae that express haspin-HA under the control of Actin5C promoter that were subjected to immunoprecipitation with αhaspin. Input corresponds to 10% of the immunoprecipitated material. B) Western blot analysis using αFlag of salivary gland extracts from larvae that express Pds5-HA-Flag under the control of nubbin promoter that were subjected to immunoprecipitation with αhaspin or αFlag. Input corresponds to 10% of the immunoprecipitated material. C) Pds5 transcriptional levels normalized to Actin5C as fold changes relative to control in haspin128 mutant Drosophila third-instar larvae (L) and salivary glands of third-instar larvae (SG). n = 3, means and s.d. are shown. D) Drosophila salivary glands of third-instar larvae that express Pds5-HA under the control of nubbin promoter in wild-type (upper panels) or haspin RNAi background (lower panels) immunostained with antibodies against HA. DNA is stained with DAPI.

    (TIF)

    S5 Fig. Haspin modulates cohesin-chromatin interactions.

    A) Western blot analysis using αmyc of salivary gland extracts from larvae that express ubiquitously Rad21-myc in a Rad21 mutant background that were subjected to immunoprecipitation with αhaspin. Input corresponds to 10% of the immunoprecipitated material. B) Representative polytene chromosome spreads from salivary glands of third-instar larvae that express Rad21-myc, under the control of tubulin promoter in a Rad21 mutant background (Vtdex3), in control (upper panels) or haspin128 mutant background (lower panels) immunostained with antibodies against myc (red) and CP190 (green). C) Rad21 transcriptional levels normalized to Actin5C as fold changes relative to control in haspin128 mutant Drosophila third-instar larvae (L) and salivary glands of third-instar larvae (SG). n = 3, means and s.d. are shown. D) Western blot analysis using αmyc (upper row) of chromatin extracts from Drosophila embryos from 0–4 h (left panel) and 20–24 h (right panel) after egg laying that express Rad21-myc in a Rad21 mutant background (Vtdex3) in control or haspin128 mutant backgrounds. Antibodies to H3 were used for the loading control (bottom row). E) Rad21-myc protein levels normalized to H3 in chromatin extracts of control or haspin128 mutant Drosophila embryos. Error bars are s.d. of three independent biological replicates. Differences in chromatin associated Rad21 are statically significant (*p<0.05 and **p<0.01 as determined by Student’s t-test).

    (TIF)

    S6 Fig. Haspin Kinase is localized at the nuclear matrix and modulates nuclear architecture.

    A) Biochemical fractionation of Drosophila embryos that express haspin-HA under the control of Actin5C promoter. Aliquots of cytoplasm + nuclear soluble (lane 1), nuclear soluble (lane 2), chromatin (lane 3) and nuclear matrix (lane 4) fractions were subjected to SDS-PAGE and immunoblotted with the indicated antibodies. B) Immunostaining of Drosophila salivary glands with DAPI in larvae of the indicated genotypes. Scale bars represent 50 μm. C) Relative DNA content in wild-type and haspin86 Drosophila larval salivary glands. n = 3, means and s.d. are shown. D) Western blot analysis of larval salivary gland protein extracts of control and overexpression of either wild-type protein (nub > haspin-HA) or mutated proteins in the kinase domain (nub > haspinH420AHA and nub > haspinK282MHA) using antibodies to HA (upper row). Antibodies to H3 were used for the loading control (bottom row).

    (TIF)

    S7 Fig. Genomic distribution of H3T3ph.

    A) Proportion of H3T3ph peaks that overlap modENCODE HP1a enriched regions. Association was analyzed using overlap permutation tests with the overlapPermTest function from the regioneR package version 1.14.0 using 5000 permutations and default options. The z-score numerical measurement indicates the strength of the association. B) Proportion of H3T3ph peaks in the 9 chromatin states characterized by [34]. State 1 (red) active promoters and transcription start sites; state 2 (yellow) transcript elongation; states 3 and 4 (light and bright green) regulatory regions; state 5 (green-blue) active male X chromosome; state 6 (light blue) PcG regions; state 7 (dark blue) centromeric heterochromatin and chromosome 4; state 8 (purple) other heterochromatin; state 9 (pink) other silent domains. z-score in permutation tests is indicated below (blue and red indicate negative and positive values respectively). C) Proportion of euchromatic H3T3ph peaks, which were defined as those not overlapping with chromatin state 7, in chromatin states characterized by [34].

    (TIF)

    S8 Fig. Genomic distribution of H3T3ph at euchromatin.

    A) ChIP-seq data for H3T3ph over a region of 800 kb in chromosome 3 that contains the Antennapedia complex. Binding profiles of CP190 and Ibf2 [66], Pol II S5ph and H3K27me3 (modENCODE data) and lamin Dm0 [69] are depicted. High, low and no signal for H3T3ph, H3K27me3 and lamin Dm0 are indicated below by black, grey and white bars respectively. B) Whole genome colocalization of H3T3ph with Pol II S2ph/S5ph.

    (TIF)

    S9 Fig. Haspin mutant backgrounds enhance Pc-associated phenotypes.

    A) Frequencies of male L2-L1 and female W-H homeotic transformations in a Pc3 heterozygous mutant background either expressing or not haspinRNAi under the control of the Actin5C promoter at 25°C. Increasing temperature to 29°C caused male lethality and only female W-H transformations were scored. n = 3, over 50 and 8 individuals scored at 25°C and 29°C respectively. ***p<0.001 as determined by z-test. B) The percentage of homozygous F75F24 transgenic females at 25°C showing normal wings (0) and wing blade destruction in one (1) or both (2) wings in wild-type and haspin mutant flies is presented. n indicates number of females scored. C) Frequencies of homeotic transformations in flies heterozygous for Pc3 mutation in either wild-type or heterozygous mutant backgrounds for cohesin complex components. n = 3, over 50 individuals scored. No significant differences as determined by z-test.

    (TIF)

    S1 Table. Primers used in RT-qPCR and ChIP-qPCR.

    (DOCX)

    S1 Text. Bioinformatics analyses of ChIP-Seq data.

    (DOCX)

    S1 Data. Spreadsheet with numerical data used to generate graphs in all Figures.

    (XLSX)

    Attachment

    Submitted filename: Response to reviewers.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files except ChIP-seq files that are available from the NCBI GEO database (accession number GSE98223).


    Articles from PLoS Genetics are provided here courtesy of PLOS

    RESOURCES