Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Aug 14:2020.08.14.251207. [Version 1] doi: 10.1101/2020.08.14.251207

SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2

Brook E Heaton, Joseph D Trimarco, Cait E Hamele, Alfred T Harding, Aleksandra Tata, Xinyu Zhu, Purushothama Rao Tata, Clare M Smith, Nicholas S Heaton
PMCID: PMC7430567  PMID: 32817937

ABSTRACT

Antiviral therapeutics against SARS-CoV-2 are needed to treat the pandemic disease COVID-19. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. Here, we used a genome-wide loss of function CRISPR/Cas9 screen in human lung epithelial cells to identify potential host therapeutic targets. Validation of our screening hits revealed that the kinase SRPK1, together with the closely related SRPK2, were jointly essential for SARS-CoV-2 replication; inhibition of SRPK1/2 with small molecules led to a dramatic decrease (more than 100,000-fold) in SARS-CoV-2 virus production in immortalized and primary human lung cells. Subsequent biochemical studies revealed that SPRK1/2 phosphorylate the viral nucleocapsid (N) protein at sites highly conserved across human coronaviruses and, due to this conservation, even a distantly related coronavirus was highly sensitive to an SPRK1/2 inhibitor. Together, these data suggest that SRPK1/2-targeted therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES