Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Jun 18;52(3):564–569. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2020.03.025

复层猪小肠黏膜下层可吸收膜的降解性能

Biodegradation properties of multi-laminated small intestinal submucosa

Wei-yi WU 1, Bo-wen LI 1, Yu-hua LIU 1,, Xin-zhi WANG 1
PMCID: PMC7433422  PMID: 32541993

Abstract

目的

通过体内外实验研究复层猪小肠黏膜下层(multi-laminated small intestinal submucosa,mSIS)可吸收膜的降解性能,并与应用最为广泛的Bio-Gide可吸收生物膜进行比较,为其进一步应用于临床提供实验依据。

方法

体外模拟降解采用胶原酶配制降解液,对mSIS膜和Bio-Gide膜进行降解,分别于不同时间点观察二者在降解液中的形态并取出称重,计算降解率。体内皮下埋植采用9只新西兰兔,每只动物背部皮下制备6个皮囊,分别埋入mSIS膜和Bio-Gide膜。于术后4、8、12周取材,通过肉眼观察及HE染色观察不同时间二者的降解程度及组织相容性。

结果

体外降解实验显示mSIS膜在第12天降解完全,而Bio-Gide膜在第7天降解完全,且mSIS在降解液中维持形状的时间更长。皮下埋植4周时,mSIS膜和Bio-Gide膜形态相对完整,镜下观二者胶原纤维连续,膜周围少许炎症细胞浸润,Bio-Gide膜部分胶原纤维与周围组织融合。术后8周,mSIS膜形态基本完整,镜下观部分区域与结缔组织融合;肉眼观Bio-Gide膜已破碎,镜下仅可见部分残留纤维与周围组织结合,无完整膜的形态。术后12周时肉眼仅见少量mSIS膜残留碎片,镜下可见mSIS膜残留纤维,与周围结缔组织基本融合;肉眼及镜下观Bio-Gide膜均已消失。

结论

mSIS膜皮下埋植降解时间约为12周,Bio-Gide膜约为8周,植入体内生物相容性良好。体外降解mSIS比Bio-Gide膜降解时间延长,且空间维持能力更佳。

Keywords: 小肠黏膜下层膜, 生物相容性材料, 引导骨组织再生术


近年来,种植已成为修复牙齿缺失的重要治疗手段,但对于因牙周疾病、牙体疾病、外伤等原因[1]造成骨缺损较多的患者,种植治疗的风险增大。种植区域牙槽骨局部骨量不足常采用引导性骨组织再生技术(guided bone regeneration,GBR)实行骨增量。屏障膜作为影响GBR技术成功与否的关键材料,主要分为不可吸收膜和可吸收膜,其中可吸收膜中的胶原膜具有优良的生物相容性,在临床应用效果良好,因此已成为目前最常用的屏障膜材料之一。在众多胶原膜产品中,临床使用最广泛的是瑞士Geistlich公司生产的Bio-Gide®可吸收生物膜(以下简称Bio-Gide膜), 已有研究证实其使用效果[2,3,4,5],但有学者发现,Bio-Gide膜的单一胶原成分可能会造成降解速度快的问题[4, 6-7],在体内维持特定形状和强度的时间与缺损内骨再生的时间不相匹配。

细胞外基质(extracellular matrix,ECM)为去细胞的生物网架材料,主要成分除胶原外还含有糖蛋白和糖胺聚糖等,近年来成为组织工程支架材料的热点。其中,猪小肠黏膜下层膜(small intestinal submucosa,SIS)因来源广泛而易于获得,是最常用的ECM材料之一。SIS膜具有良好的三维网架结构,对酶解作用的抗性增强。本课题组前期研究已证实SIS膜具有良好的多孔性结构,能有效促进体内骨再生进程[8],但SIS膜是否能有效改善胶原膜的降解性能尚有待研究。为此,本实验拟采用复层猪小肠黏膜下层膜(multilaminated SIS,mSIS),对其降解性能进行研究,并与临床应用最为广泛的Bio-Gide膜进行比较,为其进一步应用于临床提供依据。

1. 材料与方法

1.1. 体外降解实验

1.1.1 主要材料与试剂 mSIS膜(北京大清生物技术股份有限公司)、Bio-Gide膜(瑞士Geistlich公司)、胶原酶Ⅰ(美国Sigma公司)、Tris-HCl缓冲液(合肥博美生物科技公司)、氯化钙颗粒(CaCl2,国药集团化学试剂有限公司)。

1.1.2 主要实验仪器 冻干机(SPEX 6770,美国SPEX)、-80 ℃冰箱(MDF-U73V,日本Sanyo)、精密电子天平(AL104-IC,瑞士Mettler-Toledo)、台式恒温振荡器(培英2-1,苏州培英实验设备有限公司)。

1.1.3 实验方法 将mSIS膜和Bio-Gide膜裁剪为1 cm×2 cm大小,精密电子天平称重,记录起始重量,记为m0。将试样放入离心管中,倒入降解液[含12.5 U/mL Ⅰ型胶原酶的Tris-HCl(50 mmol/L,pH 7.4,含10 mmol /L CaCl2)溶液]至浸没试样,置于恒温振荡器中震荡,设置参数为37 ℃、80 r/min。在第0、1、3、5、10天时肉眼观察膜材料在降解液中的形态,拍照记录。分别于第1、2、3、4、5、7、10、12、14天时将试样取出,蒸馏水漂洗3次,置于-80 ℃冰箱内预冷1 h小时后,置于冻干机内冷冻干燥3 h,取出称重,记为mn(n为取出第n天)。每个试样做3个平行重复,结果取平均值。根据如下公式计算第n天材料的降解率(pn):pn=(m0- mn)/ m0×100%。

1.2. 皮下埋植实验

1.2.1 实验动物 新西兰大白兔9只,雄性,普通级,5~6月龄,2.5~3.5 kg,由北京大学口腔医学院实验动物中心管理并饲养。实验动物的使用及其相关操作经北京大学生物医学伦理委员会实验动物福利伦理分会批准(LA2016264)。

1.2.2 主要材料与试剂 mSIS(北京大清生物技术股份有限公司)、Bio-Gide膜(瑞士Geistlich公司)、戊巴比妥钠(美国Sigma公司)、盐酸利多卡因注射液(北京益民药业有限公司)、青霉素钠(80万单位,华北制药股份有限公司)、苏木素染液(北京中杉金桥生物有限公司)、伊红染液(北京中杉金桥生物有限公司)。

1.2.3 主要实验仪器 石蜡包埋机(EC350,德国Microm)、轮转式组织切片机(HM200,德国Microm)、精密鼓风干燥箱(BPG-9040A,上海一恒科学仪器有限公司)、光学显微镜(CKX-41,日本OLYMPUS)。

1.2.4 实验方法 以9只新西兰兔为研究对象,按术后观察时间点随机分为4周组、8周组和12周组,每组3只动物,在每只兔的背部皮下分别对称设计6个埋植部位。手术当日对动物称重后按剂量30 mg/kg给予2%(质量分数)的戊巴比妥钠溶液耳缘静脉注射至角膜反射消失。背部备皮,在脊部正中两侧用记号笔标记手术切口位置,左右各3个,每个切口相距至少5 cm。常规消毒铺巾,切口区局部注射利多卡因浸润麻醉,切开背部皮肤后钝性分离皮下组织,在背部左侧3个切口内分别埋入1 cm×1 cm的mSIS膜,右侧3个切口埋入相同大小的Bio-Gide膜(图1)。皮下组织和皮肤分层缝合关闭伤口,记录埋植材料的分布。术后3天肌肉注射80万单位青霉素,以预防感染。分别于术后4周、8周和12周对3只实验动物进行空气栓塞处死,观察材料植入部位有无红肿、溢脓及膜材料的排出。分离皮下植入材料时观察膜的完整程度及与周围组织粘连程度等。将剩余膜材料和周围软组织一起取出,浸泡于10%中性甲醛溶液中24~48 h,常规脱水透明、石蜡包埋、切片,进行苏木素-伊红(hematoxylin and eosin,HE)染色,光学显微镜下观察mSIS膜和Bio-Gide膜降解程度及周围组织相容性。

1.

皮下埋植材料分布示意图

Distribution of mSIS and Bio-Gide in subcutaneous implantation

a, b, c, mSIS; d, e, f, Bio-Gide.

1

1.3. 统计学分析

采用统计软件SPSS 23.0对相关实验数据进行统计学分析,计量资料以均数±标准差表示,采用独立样本t检验的统计方法进行分析。检验水平为α=0.05,统计单位为每个试样,P<0.05为差异有统计学意义。

2. 结果

2.1. 体外降解实验

2.1.1 降解形态观察 降解开始时,mSIS膜和Bio-Gide膜均位于离心管中下部,保持直立状态(图2A、2a)。降解1天后,mSIS膜保持良好的直立状态,空间维持能力良好(图2B),Bio-Gide膜基本保持直立,稍显柔软(图2b)。降解3天后,mSIS膜开始趋于柔软,但基本还能在降解液中保持直立(图2C),而Bio-Gide膜已发生蜷曲皱缩,可见有分层,不能维持空间形状,肉眼观形态较降解初期明显缩小(图2c)。降解5天后,mSIS膜呈卷曲状态,但形态仍基本完整,肉眼观未见明显缩小破碎或分层现象(图2D),而Bio-Gide膜已破碎,呈碎块状沉入管底,仅有部分残留(图2d)。降解10天后,mSIS膜肉眼观较降解初期明显缩小,呈卷曲状贴附于管壁或沉于管底(图2E),Bio-Gide膜已完全降解,降解液澄清(图2e)。

2.

mSIS膜和Bio-Gide膜体外降解第0、1、3、5、10天后形态观察

Morphological observation of mSIS and Bio-Gide at 0, 1, 3, 5, 10 days after in vitro degradation

A-E, mSIS; a-e, Bio-Gide.

2

2.1.2 体外降解率 mSIS膜和Bio-Gide膜的体外降解不同时期剩余质量的实验数据见表1,从降解第3天起,mSIS膜的剩余质量明显大于Bio-Gide膜,且差异有统计学意义(P<0.05)。计算体外降解不同时期降解率,并将降解率绘制成折线图(图3)。mSIS膜在第12天时降解率达到100%,表明降解完全,而Bio-Gide膜在第7天时即降解完全。由折线图可知,在降解初期,二者的降解速率均较快,在随后几天中降解速率趋于平缓,最终达到完全降解。

1.

降解不同时期mSIS膜和Bio-Gide膜剩余材料质量

Remaining weight of mSIS and Bio-Gide at different time after in vitro degradation /g

Group 0 d 1 d 2 d 3 d 4 d 5 d 7 d 10 d 12 d
mSIS 0.027±0.008 0.025± 0.008 0.024±0.006 0.023±0.004 0.022±0.004 0.021±0.003 0.016±0.004 0.005±0.003 0
Bio-Gide 0.022±0.007 0.017±0.003 0.016±0.003 0.013±0.002 0.007±0.002 0.003±0.002 0 0 0
P 0.437 0.238 0.104 0.023 0.004 <0.001 0.001 0.048

3.

3

mSIS膜和Bio-Gide膜降解率曲线图

Curve of degradation rate of mSIS and Bio-Gide

2.2. 皮下埋植实验

2.2.1 植入材料解剖学观察 观察期内所有动物均成活,膜材料植入区域均无明显炎症反应,未见明显红肿、感染及膜材料排出。皮下埋植4周时,mSIS膜维持相对完整的形态,周围包裹一层极薄的纤维包膜,与周围组织易剥离,膜大小及厚度与植入时基本相同;Bio-Gide膜形态较为完整,与周围组织有部分粘连,剥离时易出现分层,肉眼观未见明显降解。术后8周,mSIS膜形态完整,剥离时与周围组织部分有粘连;Bio-Gide膜8周时肉眼观明显变薄,部分已出现破碎,形态不完整,几乎无法与周围组织分离。术后12周时部分mSIS膜已破碎,仅可见少量mSIS膜残留,与周围组织粘连紧密;Bio-Gide膜已肉眼不可见,基本消失。

2.2.2 组织学染色观察 皮下埋植4周时,mSIS膜结构完整,胶原纤维连续,与周围结缔组织分界清楚,膜周围存在少许炎症细胞浸润(图4A);Bio-Gide膜结构也相对完整,未见明显降解迹象,但部分区域胶原纤维与周围组织有融合,周围可见少量炎性细胞浸润(图4a)。术后8周时,mSIS膜结构较为完整,部分区域与周围结缔组织融合,膜胶原纤维内部开始长入成纤维细胞,内部未见明显炎性细胞浸润(图4B);Bio-Gide膜仅可见部分残留纤维与与周围组织结合,已无完整膜的形态(图4b)。皮下埋植12周时,镜下仍可观察到mSIS膜残留纤维,但已基本与周围结缔组织融合,无连续的胶原纤维形态,难以辨别(图4C);Bio-Gide膜已在镜下不可见,完全与周围结缔组织融合(图4c),二者结缔组织内均未见明显炎症细胞浸润。因此,可以认为,mSIS膜皮下埋植在12周时降解完全,而Bio-Gide膜在埋植后8周已降解完全,mSIS膜降解时间较Bio-Gide膜延长。二者仅在埋植初期引发周围组织一过性炎症反应,随着植入时间延长,炎症状态消失,表明生物相容性良好。

4.

mSIS膜和Bio-Gide膜皮下埋植4、8、12周时HE染色

HE staining of mSIS and Bio-Gide at weeks 4, 8, and 12 after subcutaneous implantation

A-C, mSIS; a-c, Bio-Gide. * remaining mSIS or Bio-Gide.

4

3. 讨论

GBR技术是基于通过使用屏障膜来遮挡骨缺损,以防止快速增殖的上皮或结缔组织生长,从而促进骨或牙周组织未受干扰的再生。有研究表明,依缺损大小不同,屏障膜至少须维持6周以上的时间[9,10],以便骨缺损内新骨形成。在大尺寸的骨缺损中,有学者甚至推荐更长的时间(例如长达4~6个月)用于骨再生[11,12]。而屏障膜的快速降解会造成软组织侵入骨缺损,从而影响新生骨形成的进程,因此,良好的屏障膜必须在上述新生骨形成期间维持稳定的形状来发挥其屏障功能。目前临床中最常应用的可吸收屏障膜是胶原膜,回顾以往的研究,从实验数据中可以看出胶原膜的降解周期并未达到一致,一般在2周到8个月不等[13,14,15]

目前已经开发了各种交联技术,通过增加胶原分子之间的天然连接来减缓酶解作用的速度,在延长降解时间的同时可以提高胶原膜的机械性能。这些交联技术包括物理方法(如紫外线照射)和化学交联剂处理(如二亚胺、戊二醛等)[16,17]。但与此同时,交联后的胶原膜可能会导致植入后产生细胞毒性和钙化,也会不同程度的影响血管化进程,从而延缓新生骨的形成[18,19]。另外一项临床试验还观察到,化学交联过的胶原膜在植入后发生暴露的可能性更高[20]

ECM支架与纯胶原膜相比,除含有胶原成分外,还含有糖蛋白、糖胺聚糖等成分,与胶原组分共同构成纵横交错的网格结构,对于酶促降解作用有更好的抗性。对于ECM的降解机制,Valentin等[21]研究发现,ECM结构完整性的丧失多是由于巨噬细胞和多形核白细胞衍生出的酶进行的酶解作用所引起。而大量研究表明,ECM支架的降解是实现ECM介导组织重建过程所必需的步骤[22,23]。其中血源性单核巨噬细胞在ECM早期体内降解过程中起到必要的作用,可以通过包括血管生成在内的机制促进损伤组织的构建性重构,在组织重建部位募集多能祖细胞,释放抗微生物肽,激活免疫替代途径[24,25]

对于屏障膜降解性能,目前研究中采用的方法主要包括体内降解和模拟体外降解。体内降解即采用动物模型,将膜埋植入动物体内,一定时间后取材观察降解程度或干燥后对剩余材料称重,计算降解部分重量。体内埋植部位包括上颚黏膜或皮下,上颚黏膜埋植多采用犬作为实验动物[7],对上颚黏膜翻全厚瓣后将膜材料植入,其优点是可以最大程度地模拟膜在口腔环境中的降解行为,但采用犬作为实验模型,价格较为昂贵,饲养空间和条件限制较多,且上颚黏膜翻瓣技术敏感性高,操作相对复杂。而皮下埋植操作相对更为简单,为学者们所广泛使用[15, 26-27]

由于体内降解需借助动物模型实现,实验周期相对较长,操作相对复杂,另有研究证实,体外降解与体内降解速率之间存在良好的相关性[28],因此,可以在体外配制降解液,模拟体内降解过程。由于Bio-Gide膜和mSIS膜主要组成成分均为Ⅰ型胶原,因此可以采用Ⅰ型胶原酶[29,30]配制降解液,对mSIS膜和Bio-Gide膜进行体外模拟降解过程。

对于Bio-Gide膜的降解,已有学者对其进行过研究,如Kozlovsky等[31]在大鼠颅骨制造圆形骨缺损,采用单层或双层Bio-Gide膜覆盖,术后4周质量丧失率约60%,9周时达80%。Owens等[7]在犬上颚黏膜埋植Bio-Gide膜,术后4周组织学染色观察已有轻至中度降解,术后8周检测已达到中至重度降解。上述研究结果与本实验Bio-Gide膜的降解时间基本一致,皮下埋植8周左右降解完全。

本研究对mSIS膜的降解性能进行检测,结果显示其皮下埋植降解时间约为12周,与Gilbert等[32]采用14C标记SIS膜间接研究其降解性能的结果基本一致,术后1个月降解约60%,术后3个月SIS膜移植体已完全被替代。另外,有学者对SIS膜的降解产物进行研究,采用 14C标记的SIS膜材料修复犬膀胱缺损,追踪 14C发现SIS膜的代谢产物进入了循环血液中并最终通过尿液排出了体外,证明SIS膜材料植入后在修补区几乎可以被新合成的基质完全替代,绝大部分的SIS膜被降解为小分子物质排出体外[33]

此外,对于复层SIS膜降解性能的研究,Mewaldt等[34]曾使用含胶原酶等模拟伤口环境的蛋白水溶液对不同层数SIS膜进行体外模拟降解,结果表明SIS膜的降解速率与层数成反比,说明对SIS膜进行多层叠加处理有助于减缓胶原酶对SIS膜的降解作用。

通过以上研究可知,与Bio-Gide膜相比,mSIS膜降解时间延长,空间维持能力更佳,且生物相容性良好,基本满足GBR技术中对于屏障膜降解性能的要求。

References

  • 1.Lopez-Martinez F, Gomez Moreno G, Olivares-Ponce P, et al. Implants failures related to endodontic treatment. An observational retrospective study. Clin Oral Implants Res. 2015;26(9):992–995. doi: 10.1111/clr.12415. [DOI] [PubMed] [Google Scholar]
  • 2.Palachur D, Prabhakara Rao KV, Murthy KR, et al. A comparative evaluation of bovine-derived xenograft (Bio-Oss collagen) and type Ⅰ collagen membrane (Bio-Gide) with bovine-derived xenograft (Bio-Oss collagen) and fibrin fibronectin sealing system (tisseel) in the treatment of intrabony defects: A clinico-radiographic study. J Indian Soc Periodontol. 2014;18(3):336–343. doi: 10.4103/0972-124X.134572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Amoian B, Moudi E, Majidi MS, et al. A histologic, histomorphometric, and radiographic comparison between two complexes of cenoboen/cenomembrane and bio-oss/Bio-Gide in lateral ridge augmentation: A clinical trial. Dent Res J (Isfahan) 2016;13(5):446–453. doi: 10.4103/1735-3327.192304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Oortgiesen DA, Plachokova AS, Geenen C, et al. Alkaline phosphatase immobilization onto Bio-Gide® and Bio-Oss® for periodontal and bone regeneration . J Clin Periodontol. 2012;39(6):546–555. doi: 10.1111/j.1600-051X.2012.01877.x. [DOI] [PubMed] [Google Scholar]
  • 5.詹 雅琳, 胡 文杰, 甄 敏, et al. 去蛋白牛骨基质与可吸收胶原膜的磨牙拔牙位点保存效果影像学评价. 北京大学学报(医学版) 2015;47(1):19–26. [PubMed] [Google Scholar]
  • 6.Strietzel FP, Khongkhunthian P, Khattiya R, et al. Healing pattern of bone defects covered by different membrane types: a histologic study in the porcine mandible. J Biomed Mater Res B Appl Biomater. 2006;78(1):35–46. doi: 10.1002/jbm.b.30452. [DOI] [PubMed] [Google Scholar]
  • 7.Owens KW, Yukna RA. Collagen membrane resorption in dogs: A comparative study. Implant Dent. 2001;10(1):49–58. doi: 10.1097/00008505-200101000-00016. [DOI] [PubMed] [Google Scholar]
  • 8.吴唯伊, 李博文, 刘玉华, 等. 猪小肠黏膜下层可吸收膜性能及修复骨缺损的效果评价[C]. 中华口腔医学会口腔修复学专业委员会.第十一次全国口腔修复学学术会议论文汇编.南京: 2017.
  • 9.Olaechea A, Doza-Azpur GM, Valdivia E, et al. Biodegradation of three different collagen membranes: A histological study. Journal of Osseointegration. 2016;8(2):15–19. [Google Scholar]
  • 10.Pilipchuk SP, Plonka AB, Monje A, et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 2015;31(4):317–338. doi: 10.1016/j.dental.2015.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Mcallister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007;78(3):377–396. doi: 10.1902/jop.2007.060048. [DOI] [PubMed] [Google Scholar]
  • 12.Bresaola MD, Matsumoto MA, Zahoui A, et al. Influence of rapid- and slow-rate resorption collagen membrane in maxillary sinus augmentation. Clin Oral Implants Res. 2017;28(3):320–326. doi: 10.1111/clr.12801. [DOI] [PubMed] [Google Scholar]
  • 13.Moses O, Vitrial D, Aboodi G, et al. Biodegradation of three different collagen membranes in the rat calvarium: A comparative study. J Periodontol. 2008;79(5):905–911. doi: 10.1902/jop.2008.070361. [DOI] [PubMed] [Google Scholar]
  • 14.Sheikh Z, Hamdan N, Ikeda Y, et al. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater Res. 2017;21:9. doi: 10.1186/s40824-017-0095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bozkurt A, Apel C, Sellhaus B, et al. Differences in degradation behavior of two non-cross-linked collagen barrier membranes: An in vitro and in vivo study. Clin Oral Implants Res. 2014;25(12):1403–1411. doi: 10.1111/clr.12284. [DOI] [PubMed] [Google Scholar]
  • 16.Bozkurt A, Lassner F, O’dey D, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–1375. doi: 10.1016/j.biomaterials.2011.10.069. [DOI] [PubMed] [Google Scholar]
  • 17.Bozkurt A, Deumens R, Beckmann C, et al. In vitro cell alignment obtained with a schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30(2):169–179. doi: 10.1016/j.biomaterials.2008.09.017. [DOI] [PubMed] [Google Scholar]
  • 18.Verissimo DM, Leitao RF, Ribeiro RA, et al. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation. Acta Biomater. 2010;6(10):4011–4018. doi: 10.1016/j.actbio.2010.04.012. [DOI] [PubMed] [Google Scholar]
  • 19.Glynn JJ, Polsin EG, Hinds MT. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. doi: 10.1016/j.actbio.2014.11.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Moses O, Pitaru S, Artzi Z, et al. Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin Oral Implants Res. 2005;16(2):210–219. doi: 10.1111/j.1600-0501.2004.01100.x. [DOI] [PubMed] [Google Scholar]
  • 21.Valentin JE, Stewart-Akers AM, Gilbert TW, et al. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A. 2009;15(7):1687–1694. doi: 10.1089/ten.tea.2008.0419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Valentin JE, Badylak JS, Mccabe GP, et al. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am. 2006;88(12):2673–2686. doi: 10.2106/JBJS.E.01008. [DOI] [PubMed] [Google Scholar]
  • 23.Bai H, Wang D, Delattre B, et al. Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomater. 2015;20:113–119. doi: 10.1016/j.actbio.2015.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20(2):109–116. doi: 10.1016/j.smim.2007.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Yan HJ, Casalini T, Hulsart-Billstrom G, et al. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials. 2018;161:190–202. doi: 10.1016/j.biomaterials.2018.01.041. [DOI] [PubMed] [Google Scholar]
  • 26.Rothamel D, Benner M, Fienitz T, et al. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices: An experimental study in the rat. Head Face Med. 2014;(10):10. doi: 10.1186/1746-160X-10-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Siar CH, Toh CG, Romanos G, et al. Subcutaneous reactions and degradation characteristics of collagenous and noncollagenous membranes in a macaque model. Clin Oral Implants Res. 2011;22(1):113–120. doi: 10.1111/j.1600-0501.2010.01970.x. [DOI] [PubMed] [Google Scholar]
  • 28.Olde Damink LH, Dijkstra PJ, Van Luyn MJ, et al. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials. 1996;17(7):679–684. doi: 10.1016/0142-9612(96)86737-8. [DOI] [PubMed] [Google Scholar]
  • 29.Li J, Ren N, Qiu J, et al. Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold. Int J Biol Macromol. 2013;61:69–74. doi: 10.1016/j.ijbiomac.2013.06.038. [DOI] [PubMed] [Google Scholar]
  • 30.闫 建伟. 牙种植引导骨再生心包胶原膜的制备及理化性能研究. 济南: 山东大学. 2017 [Google Scholar]
  • 31.Kozlovsky A, Aboodi G, Moses O, et al. Bio-degradation of a resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin Oral Implants Res. 2009;20(10):1116–1123. doi: 10.1111/j.1600-0501.2009.01740.x. [DOI] [PubMed] [Google Scholar]
  • 32.Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, et al. Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair. J Bone Joint Surg Am. 2007;89(3):621–630. doi: 10.2106/JBJS.E.00742. [DOI] [PubMed] [Google Scholar]
  • 33.Record RD, Hillegonds D, Simmons C, et al. In vivo degradation of c-14-labeled small intestinal submucosa (sis) when used for urinary bladder repair. Biomaterials. 2001;22(19):2653–2659. doi: 10.1016/s0142-9612(01)00007-2. [DOI] [PubMed] [Google Scholar]
  • 34.Mewaldt R, Shi L, Carson D. Enzymatic degradation study of single layer and multi-layer small intestine submucosa (sis) matrices. Wound Repair Regen. 2011;19(2):A39. [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES