Abstract
目的
通过回顾性研究分析中青年股骨颈骨折患者内固定术后发生缺血性股骨头坏死(avascular necrosis of femoral head, ANFH)的危险因素.
方法
对北京大学第三医院2007年1月至2017年12月期间采用骨折复位内固定术治疗的中青年(18~60岁)股骨颈骨折患者进行回顾性研究.记录患者的性别,年龄,体重指数(body mass index, BMI),美国麻醉协会分级(American Society of Anesthesiology,ASA),受伤原因,骨折侧别,受伤至手术间隔时间,骨折线部位,Garden分型,Pauwels分型,复位方式(切开或闭合),内固定方式及复位质量等资料.依据患者随访的X线及MRI影像资料明确ANFH的诊断.内固定方式采用空心加压螺钉(cannulated compression screw, CCS)或动力髋螺钉(dynamic hip screw, DHS,加或不加抗旋转螺钉).采用单因素卡方检验及Logistic回归方程分析各因素与术后发生ANFH的相关性.
结果
纳入研究的患者共113例,包括男性63例,女性50例,平均年龄(43.17±12.34)岁,平均随访时间(25.08±16.17)个月.ASA分级包括Ⅰ级21例,Ⅱ级55例和Ⅲ级37例.受伤原因包括低能量创伤76例及高能量创伤37例.骨折侧别包括左侧61例,右侧52例.骨折线部位包括头下型37例,经颈型74例及基底型2例.Garden分型包括Ⅰ型3例,Ⅱ型46例,Ⅲ型39例及Ⅳ型25例.Pauwels分型包括Ⅰ型21例,Ⅱ型55例及Ⅲ型37例.患者受伤至手术间隔时间为(3.88±3.66) d,采用闭合及切开复位的患者分别有108例及5例,内固定采用CCS的患者63例,DHS的患者50例.骨折复位质量包括A级91例,B级18例,C级4例.术后共发生ANFH 18例,发生率为15.93%(18/113).单因素卡方检验结果显示受伤原因(OR=0.19, P < 0.01),Garden分型(OR=0.13, P < 0.01),Pauwels分型(OR=0.12, P = 0.02),内固定方式(OR=3.29, P = 0.04)及骨折复位质量(OR=0.33, P < 0.01)等5种因素与术后ANFH有显著相关性, 将这5种因素进一步纳入Logistic回归方程,结果显示受伤原因(OR=4.11, P = 0.03)与Garden分型(OR=4.85, P = 0.04)与术后ANFH有显著相关性.
结论
受伤原因,Garden分型,Pauwels分型,内固定方式及骨折复位质量等因素会增加中青年股骨颈骨折患者复位内固定术后发生ANFH的风险,其中受伤原因和骨折Garden分型的相关性更加显著.
Keywords: 股骨颈骨折, 股骨头坏死, 危险因素
Abstract
Objective
To retrospectively analyze the risk factors of avascular necrosis of femoral head (ANFH) after internal fixation in young and mid-aged adults.
Methods
From January 2007 to December 2017, femoral neck fracture patients (18-60 years old) treated by reduction and internal fixation were retrospectively studied in Peking University Third Hospital. We recorded their gender, age, body mass index (BMI), American Society of Anesthesiology (ASA) grade, reason of injury, fracture side, interval between injury and surgery, location of fracture line, Garden classification, Pauwels classification, reduction method (open or closed), internal fixation and reduction quality. The diagnosis of ANFH was confirmed based on X-ray and MRI images during the follow-up. The internal fixation method inclu-ded cannulated compression screw (CCS) or dynamic hip screw (DHS, with or without anti-rotation screw). χ 2 test and Logistic regression analysis were used to analyze the relationship between the various factors and postoperative ANFH.
Results
A total of 113 patients were included in this study, including 63 males and 50 females with an average age of (43.17 ± 12.34) years. They were followed up by (25.08 ± 16.17) months. ASA grade included grade Ⅰ (21 cases), grade Ⅱ (55 cases) and grade Ⅲ (37 cases). The reasons of injury included low-energy trauma (76 cases) and high-energy (37 cases). The fracture line included subcapital type (37 cases), transverse type (74 cases) and basal type (2 cases). Garden classification included type Ⅰ (3 cases), type Ⅱ (46 cases), type Ⅲ (39 cases) and type Ⅳ (25 cases). Pauwels classification included type Ⅰ (21 cases), type Ⅱ (55 cases) and type Ⅲ (37 cases). Interval between injury and surgery was (3.88 ± 3.66) days, 108 patients and 5 patients performed closed and open reduction respectively. 63 patients performed CCS, and 50 patients performed DHS. The reduction quality included grade A (91 cases), grade B (18 cases) and grade C (4 cases). 18 patients developed ANFH after surgery, the incidence rate was 15.93%(18/113). The result of χ 2 test showed the reason of injury (OR=0.19, P < 0.01), Garden classification (OR=0.13, P < 0.01), Pauwels classification (OR=0.12, P = 0.02), internal fixation method (OR=3.29, P = 0.04) and reduction quality (OR=0.33, P < 0.01) were significantly associated with ANFH. These five factors were further included into the Logistic regression analysis, and its results showed that the reason of injury (OR=4.11, P = 0.03) and Garden classification (OR=4.85, P = 0.04) were statistically significant.
Conclusion
The reason of injury, Garden classification, Pauwels classification, internal fixation and reduction quality may increase the risk of ANFH after surgery, and the reason of injury and Garden classification were much more significant.
Keywords: Femoral neck fracture, Necrosis of femoral head, Risk factors
股骨颈骨折是骨科常见的急症之一,发病以老年人为主,60岁以下的中青年患者并不常见.高能量创伤(如交通伤,高处坠落伤等)是中青年人群发生股骨颈骨折的主要原因,患者可合并其他部位骨折以及头部或胸腹部创伤,其治疗策略成为每位医师所面临的棘手难题.与老年人不同的是,中青年患者股骨颈骨折的手术治疗以骨折复位内固定为主,这样既能保留患者髋关节解剖结构并恢复髋关节功能,又避免了因关节置换假体寿命限制而需要二次手术的风险[1].
采用复位内固定治疗中青年股骨颈骨折也有一定的缺点,术后常伴有各类并发症的发生,如骨折移位,内固定松动,骨折不愈合及股骨头缺血性坏死(avascular necrosis of femoral head, ANFH)等[2,3,4].一篇纳入564例囊内髋部骨折的Meta分析指出,各类并发症的总体发生率接近28%[5],同时伴随着较高的二次手术概率[6].ANFH是各类并发症中较为严重的一种,其发生率高达10%~43%[7],ANFH一旦发生将引起髋关节疼痛及功能障碍,严重时需行关节置换术治疗.有研究报道了如骨折类型,复位固定质量,手术时机等多种因素都与术后ANFH[8,9,10]相关,但尚未有确切的定论.
本研究汇总了北京大学第三医院治疗的中青年股骨颈骨折的病例,观察骨折复位内固定的临床疗效,并分析造成术后ANFH的危险因素,总结治疗经验,为骨科医师的临床决策提供参考.
1. 资料与方法
1.1. 临床资料
回顾性总结2007年1月至2017年12月北京大学第三医院骨科完成的中青年股骨颈骨折患者的临床资料.病例纳入标准:(1)年龄18~60岁;(2)手术方式采用复位内固定术;(3)随访时间>1年.病例排除标准:(1)病理性骨折;(2)存在诱发ANFH的不良因素(如大剂量激素应用,长期酗酒等);(3)合并ANFH病史及严重的髋关节疾病;(4)合并严重的同侧下肢骨折;(5)术后感染并发股骨头坏死;(6)陈旧性股骨颈骨折患者;(7)随访资料不完整的病例.
1.2. 评定指标
记录患者的性别及年龄,体重指数(body mass index, BMI)及美国麻醉协会分级(American Society of Anesthesiology, ASA), 用于评估患者的身体状况及麻醉手术风险.患者的受伤原因,骨折侧别及受伤至手术间隔时间用于描述患者的受伤状况,其中受伤原因分为高能量损伤及低能量损伤,前者主要包括交通伤及高处坠落伤(>2 m)等,后者主要包括低处坠落伤(<2 m)及平地摔伤等.骨折线部位(包括头下型,经颈型及基底型),Garden分型及Pauwels分型用于描述患者的骨折类型,其中,Garden Ⅲ型及Ⅳ型属于有移位的不稳定型骨折,Pauwels Ⅲ型(Pauwels角>50°)属于不稳定型骨折.复位方式包括切开及闭合复位,内固定方式包括空心加压螺钉(cannulated compression screw, CCS)和动力髋螺钉(dynamic hip screw, DHS,加或不加抗旋转螺钉).基于Garden指数,将骨折复位后对位力线与正常的160°/180°相比,将其偏差度相加或以颈干角进行分级,复位质量可分为A,B,C三级[11](表1).
1.
股骨颈骨折复位质量分级
Reduction quality classification of femoral neck fracture
| Classification | Angle of deviationa | Neck-shaft angle |
| a, the normal Garden classification on anteroposterior vs. lateral radiographs is 160° vs. 180°. | ||
| A | < 15° | 125° - 140° |
| B | 15° - 30° | 120° - 140° or 140° -150° |
| C | > 30° | <125° or >150° |
1.3. ANFH的诊断标准
依据X线及MRI检查结果可对ANFH进行确诊[12],在X线上股骨头坏死主要表现为:骨密度降低,钙化带,低密度囊性变,软骨下骨的新月形缺损,股骨头变形及髋关节间隙狭窄.在MRI上主要表现为:股骨头坏死早期出现软骨下条带样灶周反应,伴随T1加权像上低信号和T2加权像上典型的"双线征", 晚期出现股骨头塌陷变形.
1.4. 统计学分析
应用SPSS 20.0软件进行统计分析,采用单因素卡方检验分析各因素与术后发生ANFH的相关性, P<0.05为差异有统计学意义.将差异有统计学意义的因素进一步纳入Logistic回归方程进行多因素分析,模型筛选方法选择全部进入,采用比值比(oods ratio, OR)及其95% 可信区间(95% CI)表示关联强度,P<0.05为差异有统计学意义.
2. 结果
纳入本研究的患者共113例,平均随访时间(25.08±16.17)个月,其中男性63例,女性50例,平均年龄(43.17±12.34)岁,BMI平均为(22.64±3.45)kg/m2,ASA分级包括Ⅰ级21例,Ⅱ级55例和Ⅲ级37例.受伤原因包括低能量创伤76例及高能量创伤37例.骨折侧别包括左侧61例,右侧52例.骨折线部位包括头下型37例,经颈型74例及基底型2例.Garden分型包括Ⅰ型3例,Ⅱ型46例,Ⅲ型39例及Ⅳ型25例.Pauwels分型包括Ⅰ型21例,Ⅱ型55例及Ⅲ型37例.患者受伤至手术间隔时间为(3.88 ± 3.66) d,采用闭合及切开复位的患者分别有108例及5例,内固定采用CCS的患者63例,DHS的患者50例.骨折复位质量包括A级91例,B级18例,C级4例.术后共发生ANFH 18例,发生率为15.93%(18/113).
将性别,年龄,BMI,ASA分级,受伤原因,受伤至手术间隔时间,骨折侧别,骨折线部位,Garden分型,Pauwels分型,复位方式,内固定方式,复位质量等纳入单因素卡方检验(表2),结果显示,受伤原因(P<0.01),Garden分型(P<0.01),Pauwels分型(P=0.02),内固定方式(P=0.04)及骨折复位质量(P<0.01)等5种因素与术后ANFH有显著相关性,其他因素与术后ANFH关系不密切(P>0.05).
2.
股骨颈骨折内固定术后发生股骨头坏死的单因素卡方检验
χ2 test for necrosis of femoral head after internal fixation
| Parameter | Total(n=113) | Necrosis(n=18) | Non-necrosis(n=95) | OR | P value | 95%CI |
| BMI, body mass index; ASA, American Society of Anesthesiology; CCS, cannulated compression screw; DHS, dynamic hip screw. a, ASA Ⅲ was set as the standard; b, basal was set as the standard; c, Pauwels Ⅲ was set as the standard; d, reduction quality C was set as the standard. | ||||||
| Gender | 1.29 | 0.62 | 0.46, 3.64 | |||
| Male | 63 | 11 | 52 | |||
| Female | 50 | 7 | 43 | |||
| Age/years | 0.91 | 0.86 | 0.33, 2.57 | |||
| < 40 | 46 | 7 | 39 | |||
| 40-60 | 67 | 11 | 56 | |||
| BMI/(kg/m2) | 0.69 | 0.53 | 0.22, 2.18 | |||
| ≤25 | 88 | 13 | 75 | |||
| >25 | 25 | 5 | 20 | |||
| ASA gradea | 0.24 | |||||
| Ⅰ | 21 | 1 | 20 | 0.16 | 0.06 | 0.02, 1.37 |
| Ⅱ | 55 | 9 | 46 | 0.71 | 0.52 | 0.25, 2.05 |
| Ⅲ | 37 | 8 | 29 | |||
| Reason of fracture | 0.19 | <0.01 | 0.06, 0.55 | |||
| Low-energy trauma | 75 | 6 | 69 | |||
| High-energy trauma | 38 | 12 | 26 | |||
| Interval between injury and surgery | 1.09 | 0.86 | 0.39, 3.07 | |||
| ≤ 3 d | 67 | 11 | 56 | |||
| >3 d | 46 | 7 | 39 | |||
| Side of fracture | 0.63 | 0.38 | 0.23, 1.75 | |||
| Left | 61 | 8 | 53 | |||
| Right | 52 | 10 | 42 | |||
| Location of fracture lineb | 0.71 | |||||
| Subcapital | 37 | 7 | 30 | 1.07 | 0.50 | 0.98, 1.17 |
| Transverse | 74 | 11 | 63 | 1.03 | 0.56 | 0.99, 1.08 |
| Basal | 2 | 0 | 2 | |||
| Garden classification | 0.13 | <0.01 | 0.03, 0.59 | |||
| Ⅰ and Ⅱ | 49 | 2 | 47 | |||
| Ⅲ and Ⅳ | 64 | 16 | 48 | |||
| Pauwels classificationc | 0.02 | |||||
| Ⅰ | 21 | 1 | 20 | 0.12 | 0.02 | 0.01, 0.99 |
| Ⅱ | 55 | 6 | 49 | 0.29 | 0.02 | 0.10, 0.87 |
| Ⅲ | 37 | 11 | 26 | |||
| Reduction method | 0.75 | 0.80 | 0.08, 7.10 | |||
| Closed | 108 | 17 | 91 | |||
| Open | 5 | 1 | 4 | |||
| Internal fixation | 3.29 | 0.04 | 1.01, 10.71 | |||
| CCS | 63 | 14 | 49 | |||
| DHS | 50 | 4 | 46 | |||
| Reduction qualityd | <0.01 | |||||
| A | 91 | 9 | 82 | 0.33 | 0.34 | 0.03, 3.51 |
| B | 18 | 8 | 10 | 2.40 | 0.47 | 0.21, 27.72 |
| C | 4 | 1 | 3 | |||
将单因素卡方检验差异有统计学意义的5种因素进一步纳入Logistic回归方程,结果显示受伤原因(P = 0.03)与Garden分型(P = 0.04)与术后ANFH有显著相关性(表3).
3.
股骨颈骨折内固定术后股骨头坏死危险因素的多因素Logistic回归分析
Multivariate Logistic regression analysis of risk factors for necrosis of femoral head after internal fixation
| Parameter | OR | P value | 95%CI |
| Dummy variable was applied in the Logistic regression analysis. a, Pauwels Ⅲ was set as the standard; b, reduction quality C was set as the stan-dard. | |||
| Reason of fracture | 4.11 | 0.03 | 1.19, 14.24 |
| Garden classification | 4.85 | 0.04 | 1.08, 21.75 |
| Pauwels classificationa | |||
| Ⅰ vs. Ⅲ | 1.95 | 0.57 | 0.19, 20.05 |
| Ⅱ vs. Ⅲ | 1.65 | 0.45 | 0.45, 6.08 |
| Internal fixation | 0.28 | 0.06 | 0.07, 1.06 |
| Reduction qualityb | |||
| A vs. C | 2.13 | 0.56 | 0.16, 27.59 |
| B vs. C | 0.29 | 0.37 | 0.02, 4.54 |
图1和图2是应用CCS及DHS术后发生缺血性股骨头坏死的典型病例.
1.
典型病例,患者男,55岁,左股骨颈骨折
Typical case, 55 years old, male, left femoral neck fracture
A, X-ray image before surgery; B1,B2, CT images before surgery; C,D, X-ray images at 1 day after surgery; E,F, X-ray images at 6 and 12 months after surgery; G, X-ray image at 18 months after surgery; H, MRI image at 18 months after surgery (the yellow circle shows obvious subchondral low signal line; I, X-ray image at 39 months after surgery; J1,J2, range of hip motion at 39 months after surgery.
2.
典型病例,患者男,50岁,右股骨颈骨折
Typical case, 50 years old, male, right femoral neck fracture
A, X-ray image before surgery; B1,B2, CT images before surgery; C,D, X-ray images at 1 day after surgery; E,F,G,H,I, X-ray images at 6, 12, 23, 40, 48 months after surgery; J,K,L, range of hip motion at 48 months after surgery.
3. 讨论
年龄<60岁的中青年人群骨骼质量相对较好,发生股骨颈骨折的概率相对较低.一项包含了540名外科医师的调查显示,大部分医师每年治疗的中青年股骨颈骨折患者的数量少于5例[13],可见这类骨折在临床上并不十分常见.中青年股骨颈骨折多继发于高能量创伤,但也有研究报道了低能量创伤的患者数量逐渐增加[14],此研究中低能量创伤占66.37%, 成为主要致伤原因.中青年股骨颈骨折的治疗,除了部分患者因严重的合并症难以承受手术外,均应采取手术治疗.手术治疗的目的主要包括三个方面:(1)力求恢复髋关节功能达受伤前状态;(2)力求实现骨折断端的解剖复位,最大限度减少囊内血供及周围软组织的破坏;(3)骨折断端稳定固定以实现骨折愈合[8].手术后发生ANFH是一类灾难性的并发症,患者不仅要承受髋关节疼痛及功能下降的痛苦,必要时还需接受二次关节置换手术,对患者的心理及经济上带来沉重的负担.本研究中ANFH的发生率为15.93%,接近于其他研究报道[7,15],明确发生ANFH的危险因素,有助于临床医师为患者制定个性化的治疗策略,以获得更满意的临床疗效.
3.1. 性别及年龄对内固定术后发生ANFH的影响
本研究中,单因素卡方检验的结果表明性别及年龄与术后ANFH无显著相关性(P > 0.05), 但结合既往研究[1,4,6,8]及本课题组的临床经验,认为年龄越大的患者发生ANFH的风险可能越低,这可能与受伤机制有关.老年人群多存在不同程度的骨质疏松,低能量创伤即可造成股骨颈骨折,血供破坏程度相对较轻,而中青年股骨颈骨折多由高能量创伤所致,骨折类型复杂,血运破坏严重,复位较为困难,术后易继发ANFH.
3.2. BMI及ASA等级对内固定术后发生ANFH的影响
BMI是与体内脂肪总量密切相关的指标,一方面BMI升高使得髋关节负重增加,股骨头血运的重建和关节囊内压可能受到影响;另一方面超重患者高血脂发生率高,血运黏稠度增加会造成血流迟缓,进一步影响股骨头微循环血供.ASA等级是对患者身体状况及麻醉手术风险的总体评估,ASA等级升高的危险因素如基础疾病,吸烟,酗酒,药物服用史等都可能会造成术后骨折不愈合或ANFH的风险增高.Duckworth等[16]研究发现肾衰竭,呼吸系统疾病,酗酒3种合并症与中青年股骨颈骨折术后发生内固定失败有较强的相关性,进而可导致骨折不愈合或ANFH,并且有研究表明,如卡马西平这类抗癫痫药物与股骨颈骨折内固定失败相关[17],但此研究中BMI与ASA分级对术后ANFH无显著影响(P>0.05),并且针对BMI及ASA等级对股骨颈骨折预后的影响报道较少,相互之间的确切关系尚无定论.
3.3. 受伤原因及手术时机对内固定术后发生ANFH的影响
股骨头血液供应受到破坏是发生ANFH的主要原因,骨折造成不同程度的血管离断,血管痉挛及栓塞等,最终引起ANFH.高能量创伤多造成较严重的骨折移位,骨折端周围软组织破坏程度大,引起股骨头血供破坏的程度更高,更容易造成股骨头缺血性坏死.本研究中,术后股骨头坏死的患者中,高能量创伤占66.67%,并且单因素卡方分析及Logistic回归分析结果都表明高能量创伤与术后发生ANFH有显著相关性.
一些医师认为手术应在受伤后8 h内完成,但更多医师认为在伤后8~24 h内完成手术即可达到满意的临床疗效[13].理论上早期行骨折复位并坚强固定,有助于恢复骨折部位的血管扭曲,受压及痉挛,减少血液供应破坏,从而降低骨坏死及不愈合的风险[18].但Razik等[19]发现在60岁以下的患者中,受伤至手术间隔时间并不会影响术后的骨坏死率.Papakostidis等[20]的Meta分析结果也没有发现受伤至手术间隔时间和股骨头坏死率之间有显著的相关性.我们研究的受伤至手术间隔时间为(3.88±3.66) d,单因素卡方检验结果显示,时间间隔>3 d与术后ANFH无显著相关性(P>0.05).
3.4. 骨折类型对内固定术后发生ANFH的影响
以往的研究认为,由于股骨颈骨内动脉,颈升动脉及圆韧带动脉在头颈交界骨折时易受到损伤,导致股骨头血供受到破坏,所以头下型股骨颈骨折的ANFH发生率较高.本研究中头下型骨折发生ANFH的概率为18.92%,高于经颈型(14.86%)与基底型(0%), 但是,单因素卡方检验结果显示骨折线位置与内固定术后股骨头坏死率无相关性(P = 0.71), 这可能与总体病例量及基底型病例量偏少有关.Garden分型反映了骨折的移位程度,稳定性及外伤暴力大小,这些因素直接决定了血管损伤程度, 故Garden分型被视为是术后发生ANFH的一个重要影响因素[21],并且临床结果已证实移位型(Garden Ⅲ,Ⅳ型)股骨颈骨折的股骨头坏死率明显高于非移位型(Garden Ⅰ,Ⅱ型)[22].本研究中,GardenⅢ,Ⅳ型发生ANFH的概率(25.00%)也明显高于Ⅰ,Ⅱ型(4.08%), 单因素卡方检验及Logistic 回归分析结果均表明Garden Ⅲ,Ⅳ型与术后ANFH 有明显的相关性(P < 0.05).Pauwels角增大造成骨折不稳定性提高,螺钉承受的轴向剪切应力增大,术后易发生骨折移位,内固定松动或断裂,进而影响骨折愈合.本研究中Pauwels Ⅲ型坏死率29.73%高于Ⅰ型(4.76%)及Ⅱ型(10.91%),同样证实了Pauwels角大于50°会明显影响手术效果,但Pauwels分型在Logistic回归方程中未表现显著相关性,并且曾有研究质疑了Pauwels角来评估骨折严重程度的准确性,因为水平线及骨折线的位置都会因患者股骨位置的改变而变化[23,24].我们的经验是可同时应用这三类骨折分型以提高对术后ANFH预测的准确率,从而制定更有效的手术方案及康复计划.
3.5. 骨折复位及内固定方式对术后发生ANFH的影响
对于无移位或移位不严重的股骨颈骨折,闭合复位有助于最大限度地减少血液供应及软组织破坏[13].切开复位多适用于移位严重及粉碎性股骨颈骨折,复位过程中如遇到困难,可借助Schanz钉或克氏针的帮助以实现满意复位[25],中青年股骨颈骨折的内固定以CCS及DHS为主[8-9,13].Parker等[26]做了一项包含4 925例患者的关于股骨颈骨折内固定选择的Meta分析,结果显示DHS与CCS的治疗效果及并发症发生率差异无明显统计学,Bhandari等[27]的研究结果同样表明两种内固定方式的治疗效果无明显区别,但同时也指出应用DHS的患者二次手术的风险相对更低.然而,Gardner等[28]报道了采用DHS治疗中青年(年龄<60岁)股骨颈患者的短期失败率更低,大量的尸体实验也证实了DHS具有更好的生物力学强度,尤其是对于高能量损伤及垂直型骨折[29,30].DHS可更有效地防止髋关节内翻,其主钉具有动力及静力加压作用,可通过滑动将骨折近端的剪切力转化为加压应力,促进骨折愈合.在DHS中加用抗旋转螺钉,可实现内固定的角稳定并提高内固定的力学强度[31].本研究中,内固定采用CCS术后发生ANFH的概率(22.22%)高于应用DHS的患者(8.00%),并且单因素卡方检验结果也显示不同的内固定方式对术后发生ANFH有显著影响(P = 0.04).在临床实践中,内固定的选择应充分考虑不同类型股骨颈骨折的解剖及损伤特点,对于高风险骨折应积极选择DHS+抗旋转螺钉内固定,可有效抵抗骨折端纵向剪切力,并提供更可靠的力学强度.
3.6. 复位质量对内固定术后发生ANFH的影响
良好的解剖复位既有利于解除血管的压迫又可以保持骨折断端的稳定,从而有利于股骨颈骨折的愈合.Min等[32]报道股骨颈骨折满意复位发生股骨头坏死率为20.00%(26/130), 而不满意复位坏死率高达68.75%(11/16).在此研究中,复位质量A,B,C三级发生ANFH的概率分别为 9.89%,44.44%及25.00%,复位质量不良(B和C级)的坏死率明显更高.骨折复位不佳,使周围残存的血管受到持续牵张拉力,造成残留的跨越骨折端的血液供应发生痉挛,栓塞,易发生骨折不愈合及股骨头坏死.而骨折的解剖复位不仅为断端表面血管爬行重建创造了条件,同时也为骨骼内部骨小梁的重建再塑提供了结构基础.
3.7. 中青年股骨颈骨折的治疗与并发症预防要点
本课题组综合临床治疗经验及文献回顾[8-9,13,25,33-37],总结出中青年股骨颈骨折的治疗及并发症预防要点主要包括:(1)高能量创伤可合并多发伤,治疗选择应以抢救生命优先;(2)解剖复位及稳定内固定是良好手术效果的保障;(3)手术选择以内固定为主,DHS+抗旋转螺钉可提供更稳定的力学强度;(4)对于移位明显,骨折线垂直走行大及粉碎性等高风险骨折,需增加角稳定及旋转稳定,必要时可进行植骨;(5)术后适时负重,正确进行康复锻炼;(6)明确并发症发生的高危因素,术后规律复查,发现问题及时处理,必要时行二次手术治疗.
3.8. 本研究的不足
本项研究的病例收集跨越了10年的周期,虽然手术医师团队人员未发生变化,但医师的手术技术及经验逐渐增长,可能会对手术治疗的最终效果产生一定的影响.整体病例量偏少,从中筛选出规律说服力稍显不足,进一步的研究会以多中心合作为主,以纳入更多的病例量使研究结果更具临床实践指导意义.
中青年股骨颈骨折复位内固定后ANFH的发生受多种因素影响,受伤原因,Garden分型,Pauwels分型,内固定方式及骨折复位质量等因素会增加发生ANFH的风险,其中受伤原因和骨折Garden分型的相关性更加显著.明确高危因素,为每位患者制定个性化的治疗方案,有助于取得满意的临床治疗效果.
References
- 1.Sprague S, Slobogean GP, Scott T, et al. Young femoral neck fractures: are we measuring outcomes that matter? Injury. 2015;46(3):507–514. doi: 10.1016/j.injury.2014.11.020. [DOI] [PubMed] [Google Scholar]
- 2.Rodriguez-Merchan EC, Gomez-Cardero P, Jimenez-Yuste V. Late avascular necrosis of the femoral head (anfh) after the percutaneous fixation of a non-displaced fracture of the femoral neck in a haemophilic patient with inhibitors: a non-reported association. Haemophilia. 2012;18(1):e4–e5. doi: 10.1111/j.1365-2516.2011.02618.x. [DOI] [PubMed] [Google Scholar]
- 3.Murphy DK, Randell T, Brennan KL, et al. Treatment and displacement affect the reoperation rate for femoral neck fracture. Clin Orthop Relat Res. 2013;471(18):2691–2702. doi: 10.1007/s11999-013-3020-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Schweitzer D, Melero P, Zylberberg A, et al. Factors associated with avascular necrosis of the femoral head and nonunion in patients younger than 65 years with displaced femoral neck fractures treated with reduction and internal fixation. Eur J Orthopaedic Surg Traumatol. 2013;23(1):61–65. doi: 10.1007/s00590-011-0936-1. [DOI] [PubMed] [Google Scholar]
- 5.Damany DS, Parker MJ, Chojnowski A. Complications after intracapsular hip fractures in young adults: a meta-analysis of 18 published studies involving 564 fractures. Injury. 2005;36(1):131–141. doi: 10.1016/j.injury.2004.05.023. [DOI] [PubMed] [Google Scholar]
- 6.Stacey SC, Renninger CH, Hak D, et al. Tips and tricks for ORIF of displaced femoral neck fractures in the young adult patient. Eur J Orthop Surg Traumatol. 2016;26(4):355–363. doi: 10.1007/s00590-016-1745-3. [DOI] [PubMed] [Google Scholar]
- 7.Zielinski SM, Meeuwis MA, Heetveld MH, et al. Adherence to a femoral neck fracture treatment guideline. Int Orthop. 2013;37(7):1327–1334. doi: 10.1007/s00264-013-1888-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Pauyo T, Drager J, Albers A, et al. Management of femoral neck fractures in the young patient: a critical analysis review. World J Orthop. 2014;5(3):204–217. doi: 10.5312/wjo.v5.i3.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bhandari M, Swiontkowski M. Management of acute hip fracture. N Engl J Med. 2017;377(21):2053–2062. doi: 10.1056/NEJMcp1611090. [DOI] [PubMed] [Google Scholar]
- 10.曹 发奇, 周 武, 刘 国辉, et al. 股骨颈骨折复位内固定术后股骨头坏死的相关因素分析. 中华骨科杂志. 2017;37(17):1088–1092. [Google Scholar]
- 11.Wang T, Sun JY, Zha GC, et al. Analysis of risk factors for femoral head necrosis after internal fixation in femoral neck fractures. Orthopedics. 2014;37(12):1117–1123. doi: 10.3928/01477447-20141124-60. [DOI] [PubMed] [Google Scholar]
- 12.Zhao DW, Hu YC. Chinese experts' consensus on the diagnosis and treatment of osteonecrosis of the femoral head in adults. Orthop Surg. 2012;4(3):125–130. doi: 10.1111/j.1757-7861.2012.00192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Slobogean GP, Sprague SA, Scott T, et al. Management of young femoral neck fracutures; is there a consensus. Injury. 2015;43(3):435–440. doi: 10.1016/j.injury.2014.11.028. [DOI] [PubMed] [Google Scholar]
- 14.Al-Ani AN, Neander G, Samuelsson B, et al. Risk factors for osteoporosis are common in young and middle-aged patients with femoral neck fractures regardless of trauma mechanism. Acta Orthop. 2013;84(1):54–59. doi: 10.3109/17453674.2013.765639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Slobogean GP, Sprague SA, Scott T, et al. Complications fol-lowing young femoral neck fractures. Injury. 2015;46(3):484–491. doi: 10.1016/j.injury.2014.10.010. [DOI] [PubMed] [Google Scholar]
- 16.Duckworth AD, Bennet SJ, derinto JA, et al. Fixation of intracapsular fractures of the femoral neck in young patients. J Bone Joint Surg. 2011;93(6):811–816. doi: 10.1302/0301-620X.93B6.26432. [DOI] [PubMed] [Google Scholar]
- 17.Lee RH, Lyles KW, Colon-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46. doi: 10.1016/j.amjopharm.2010.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Guimarães JAM, Rocha LR, Noronha Rocha TH, et al. Vertical femoral neck fractures in young adults: a closed fixation strategy using a transverse cancellous lag screw. Injury. 2017;48(Suppl 4):S10–S16. doi: 10.1016/S0020-1383(17)30769-6. [DOI] [PubMed] [Google Scholar]
- 19.Razik F, Alexopoulos A, EI-Osta B, et al. Time to internal fixation of femoral neck fractures in patients under sixty years: does this matter in the development of osteonecrosis of femoral head? Int Orthop. 2012;36(10):2127–2132. doi: 10.1007/s00264-012-1619-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Papakostidis C, Panagiotopoulos A, Piccioli A, et al. Timing of internal fixation of femoral neck fractures. A systematic review and meta-analysis of the final outcome. Injury. 2015;46(3):459–466. doi: 10.1016/j.injury.2014.12.025. [DOI] [PubMed] [Google Scholar]
- 21.Lamb JN, Panteli, Pneumaticos SG, et al. Epidemiolog of pertrochanteric fractures: our institutional experience. Eur J Trauma Emerg Surg. 2014;40(3):225–232. doi: 10.1007/s00068-014-0375-x. [DOI] [PubMed] [Google Scholar]
- 22.Basso T, Klaksvik J, Syversen U, et al. Biomechanical femoral neck fracture experiments: a narrative review. Injury. 2012;43(10):1633–1639. doi: 10.1016/j.injury.2012.03.032. [DOI] [PubMed] [Google Scholar]
- 23.van Embden D, Roukema GR, Rhemrev SJ, et al. The Pauwels classification for intracapsular hip fractures: is it reliable? Injury. 2011;42(11):1238–1240. doi: 10.1016/j.injury.2010.11.053. [DOI] [PubMed] [Google Scholar]
- 24.Wang SH, Yang JJ, Shen HC, et al. Using a modified Pauwels method to predict the outcome of femoral neck fracture in relatively young patients. Injury. 2015;46(10):1969–1974. doi: 10.1016/j.injury.2015.06.016. [DOI] [PubMed] [Google Scholar]
- 25.Florschutz AV, Langford JR, Haidukewych GJ, et al. Femoral neck fractures: current management. J Orthop Trauma. 2015;29(3):121–129. doi: 10.1097/BOT.0000000000000291. [DOI] [PubMed] [Google Scholar]
- 26.Parker MJ, Blundell C. Choice of implant for internal fixation of femoral neck fractures. Meta-analysis of 25 randomised trials including 4,925 patients. Acta Orthop Scand. 1998;69(2):138–143. doi: 10.3109/17453679809117614. [DOI] [PubMed] [Google Scholar]
- 27.Bhandari M, Tornetta P, Hanson B, et al. Optimal internal fixation for femoral neck fractures: multiple screws or sliding hip screws? J Orthop Trauma. 2009;23(6):403–407. doi: 10.1097/BOT.0b013e318176191f. [DOI] [PubMed] [Google Scholar]
- 28.Gardner S, Weaver MJ, Jerabek S, et al. Predictors of early fai-lure in young patients with displaced femoral neck fractures. J Orthop. 2014;12(2):75–80. doi: 10.1016/j.jor.2014.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Johnson JP, Borenstein TR, Waryasz GR, et al. Vertically oriented femoral neck fractures: a biomechanical comparison of 3 fixation contructs. J Orthop Trauma. 2017;31(7):363–368. doi: 10.1097/BOT.0000000000000836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Noda M, Saegusa Y, Takahashi M, et al. Biomechanical study using the finite element method of internal fixation in Pauwels type III vertical femoral neck fractures. Arch Trauma Res. 2015;4(3):e23167. doi: 10.5812/atr.23167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Samsami S, Saberi S, Bagheri N, et al. Interfragmentary motion assessment for three different fixation techniques of femoral neck fractures in young adults. Biomed Mater Eng. 2016;27(4):389–404. doi: 10.3233/BME-161593. [DOI] [PubMed] [Google Scholar]
- 32.Min BW, Kim SJ. Avascular necrosis of the femoral head after osteosynjournal of femoral neck fracture. Orthopedics. 2011;34(5):349. doi: 10.3928/01477447-20110317-13. [DOI] [PubMed] [Google Scholar]
- 33.Hoshino CM, Christian MW, O'Toole RV, et al. Fixation of displaced femoral neck fractures in young adults: fixed-angle devices or Pauwel screws? Injury. 2016;47(8):1676–1694. doi: 10.1016/j.injury.2016.03.014. [DOI] [PubMed] [Google Scholar]
- 34.FIlipov O, Stoffel K, Gueorguiev B, et al. Femoral neck fracture osteosynjournal by the biplane double-supported screw fixation method (BDSF) reduces the risk of fixation failure: clinical outcomes in 207 patients. Arch Orchop Trauma Surg. 2017;137(6):779–788. doi: 10.1007/s00402-017-2689-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Khani GMK, Hafeez K, Bux M, et al. Use of fibular bone graft and cancellous screw fixation in the management of neglected femur neck fractures in young patients. Int J Health Sci (Qassim) 2017;11(5):7–10. [PMC free article] [PubMed] [Google Scholar]
- 36.Li G, Jin D, Shao X, et al. Effect of cannulated screws with deep circumflex iliac artery-bone grafting in the treatment of femoral neck fracture in young adults. Injury. 2018;49(8):1587–1593. doi: 10.1016/j.injury.2018.06.014. [DOI] [PubMed] [Google Scholar]
- 37.Kalsbeek JH, van Walsum ADP, Vroemen JPAM, et al. Displaced femoral neck fractures in patients 60 years of age or younger: results of internal fixation with the dynamic locking blade plate. Bone Joint J. 2018;100(4):443–449. doi: 10.1302/0301-620X.100B4.BJJ-2016-1098.R3. [DOI] [PubMed] [Google Scholar]


