Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Jun 30;52(4):738–742. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2020.04.027

严重多发伤患者机械通气的危险因素分析

Risk factors for mechanical ventilation in patients with severe multiple trauma

郭 辅政 1, 朱 凤雪 1,*, 邓 玖旭 1, 杜 哲 1, 赵 秀娟 1
PMCID: PMC7433611  PMID: 32773812

Abstract

目的

探讨严重多发伤患者机械通气和机械通气时间延长的危险因素。

方法

选取2016年12月至2019年12月北京大学人民医院创伤救治中心所收治的严重多发伤患者作为研究对象进行回顾性研究,按照住院期间有无机械通气对患者进行分组,进一步将机械通气患者按照通气时间是否≥7 d分成机械通气时间延长组和非延长组。对收集的临床资料进行单因素和多因素分析,明确机械通气和机械通气时间延长的危险因素。

结果

共纳入患者112例,其中男性82例、女性30例,中位年龄52岁(16~89岁),中位创伤严重程度评分(injury severe score,ISS)34分(16~66分)。车祸伤和坠落伤是最常见的受伤类型。使用机械通气患者62例,未使用机械通气患者50例,多因素分析表明,格拉斯哥昏迷评分(Glasgow coma scale,GCS)(OR=0.72,95%CI:0.53~0.92,P=0.03)、血液碱剩余(OR=0.56,95%CI:0.37~0.88,P=0.002)、肋骨骨折(OR=1.72,95%CI:1.60~2.80,P=0.012)是启动机械通气的独立危险因素。本组机械通气时间≥7 d者38例,<7 d者24例,结果显示ISS评分越高,GCS评分越低,患者机械通气时间越长。

结论

GCS评分、血液碱剩余和肋骨骨折是机械通气的独立危险因素,同时,ISS评分高和颅脑损伤重可能会延长机械通气时间,患者气管切开的发生率高。

Keywords: 多发伤, 机械通气, 肺挫伤, 肋骨骨折


创伤已成为众所周知的公共卫生问题,全球最常见的死亡原因中,严重多发伤位列第十,是40岁以下人群的首要死因。失血性休克、严重颅脑损伤及胸部损伤是多发伤患者死亡的常见三大原因,严重多发伤患者常需早期气管插管和机械通气,以纠正低氧血症和保证气道通畅,预防早期死亡[1-2]。尽管有文献指出,多发伤患者如出现气道阻塞、低通气、低氧血症、格拉斯哥昏迷评分(Glasgow coma scale,GCS)≤8分、心脏停跳和失血性休克等典型症状时,需要紧急气管插管[3],但临床实际中往往症状并不典型,且存在多重因素干扰,气管插管和机械通气的时机很难正确把握。目前重症诊疗技术得到了一定提高,但严重多发伤患者因存在多器官功能衰竭和免疫功能失调,导致机械通气时间延长,致残率和致死率仍较高[4-6]

为在疾病早期进行预判,制定出合理的治疗方案,本研究拟探讨导致严重多发伤患者机械通气和机械通气时间延长的危险因素。

1. 资料与方法

1.1. 研究对象

回顾性研究2016年12月至2019年12月北京大学人民医院创伤救治中心收治的严重多发伤患者。纳入标准:单一致伤因素造成2个或2个以上解剖部位的损伤,且至少有1个部位的损伤危及生命,即创伤严重程度评分(injury severe score,ISS)≥16分[7]。排除受伤时间超过24 h、孕产妇、年龄 < 16岁及临床资料不全者。

1.2. 数据收集

收集患者临床资料,包括:性别、年龄、受伤机制、GCS评分、简明损伤评分(abbreviated injury scale,AIS)、ISS评分、血液乳酸含量、碱剩余、是否存在胸腔积液、是否存在气胸、机械通气时间、肺挫伤程度、住院时间。

所有患者均由两名高年资创伤外科医师结合影像学检查进行诊断,并在24 h内根据CT结果进行校正。按照1998版AIS标准对各部位损伤进行评分,并计算ISS评分,各级医师评分存在差异时,须经全体医师商讨评估后明确最终的ISS评分。

机械通气时间定义为自机械通气开始至完全脱机(包括无创呼吸机)的时间,按照机械通气时间将患者分为两组:≥7 d为机械通气时间延长组, < 7 d为非延长组。

肺挫伤指严重创伤时,由于强大暴力作用于胸壁,导致胸腔容积缩小,增高的胸内压力压迫肺脏,引起肺实质充血、水肿; 同时,外力消除后,变形胸廓的回弹,在产生胸内负压的瞬间又导致原损伤区附加损伤[8]。肺挫伤在CT上主要表现为不受区段限制的局限性或累及多个肺叶的大面积磨玻璃样改变或实变,常累及胸膜。本研究请有经验的放射科医师对肺挫伤体积进行计算,≥20%为中重度肺挫伤。

1.3. 统计学分析

应用SPSS 22.0统计软件进行数据处理和分析。计量资料进行正态性检验,呈正态分布者采用x±s表示,两组间比较采用独立样本t检验; 非正态分布者用中位数(P25P75)表示,组间比较采用秩和检验。计数资料的比较采用χ2检验。采用多变量Logistic方法分析严重多发伤患者机械通气的危险因素。P < 0.05为差异有统计学意义。

2. 结果

2.1. 患者一般情况

本研究共收集144例患者,排除16例伤后24 h由外院转入(已予以机械通气)、10例临床资料存在缺陷、6例年龄 < 16岁,最终纳入112例患者。主要受伤类型为高处坠落伤和车祸伤,占所有受伤类型的70%,头颈部、胸部合并四肢及骨盆损伤是最常见的多发伤类型。人口学和临床特征详见表 1,其中男性82例(73.2%)、女性30例(26.8%),ISS 16~66分(中位34分)。住院救治期间共死亡11例,死亡率为10%。

1.

严重多发伤患者基线资料

The baseline data of patients with severe multiple injuries

Variables Data
 ISS, injury severe score; GCS, Glasgow coma scale; AIS, abbreviated injury scale.
Age/years, median (range) 52 (16-89)
Gender, n (%)
 Male 82 (73.2)
 Female 30 (26.8)
Mechanism of injury, n (%)
 Traffic injury 48 (42.9)
 High falling injury 30 (26.9)
 Tumbles injury 16 (14.3)
 Blast injury 8 (7.1)
 Heavy pound injury 6 (5.4)
 Stab injury 4 (3.6)
ISS, median (range) 34 (16-66)
GCS, median (range) 10 (3-15)
AIS, median (range)
 Head an neck 4 (0-12)
 Thorax 5 (0-13)
 Abdomen 2 (0-6)
 Extremities and pelvis 2 (0-7)
Pulmonary contusion, n (%)
 Volume < 20% 76 (67.9)
 Volume≥20% 36 (32.1)
Lactic acid/(mmol/L),median (range) 2.4 (0.5-15.0)
Length of hospital stay/d, median (range) 18 (1-123)

2.2. 机械通气的危险因素分析

本组患者中,使用机械通气者62例,未使用机械通气者50例,两组患者在年龄、性别、头颈部、四肢及骨盆AIS评分方面差异无统计学意义。与未使用机械通气者相比,使用机械通气者ISS分值显著升高(P < 0.001),GCS评分更低(P < 0.001),肋骨骨折数目更多(P=0.009),酸中毒更明显(P < 0.001),肺挫伤程度更严重(P=0.04,表 2)。

2.

使用机械通气与未使用机械通气患者单因素分析结果

The univariate analysis of risk factors between mechanical ventilation group and without mechanical ventilation group

Variable Mechanical ventilation (n=62) Non-mechanical ventilation (n=50) P
 Abbreviations as in Table 1.
Age/years, x±s 50±16 49±12 0.716
Gender, n 0.578
 Male 44 38
 Female 18 12
ISS, median (P25, P75) 34 (26, 41) 22 (18, 29) < 0.001
GCS, median (P25, P75) 11 (3, 15) 15 (13, 15) < 0.001
AIS, median (P25, P75)
 Head and neck 4 (2, 6) 3 (1, 4) 0.083
 Thorax 6 (3, 8) 4 (1, 5) 0.010
 Abdomen 2 (0, 4) 0 (0, 2) 0.001
 Extremities and pelvis 2 (0, 4) 1 (0, 2) 0.087
Rib fracture, n (%) 5 (1, 8) 0 (0, 5) 0.009
Volume of pulmonary contusion≥20%, n (%) 28 (45.2) 8 (16.0) 0.040
Hydrothorax, n (%) 46 (74.2) 22 (44.0) 0.008
Pneumothorax, n (%) 22 (35.4) 12 (24.0) 0.558
Lactic acid/(mmol/L),median (P25, P75) 3.5 (1.5, 5.2) 0.9 (1.2, 2.1) 0.001
Base excess/(mmol/L),median (P25, P75) -5.2 (-3.75, -7.55) -1.28 (-3.57, 0.87) < 0.001
Length of hospital stay/d, median (P25, P75) 20 (15, 31) 15 (9, 22) < 0.001

多因素回归分析显示,GCS(OR=0.72,95%CI: 0.53~0.92,P=0.03)、血液碱剩余(OR=0.56,95%CI:0.37~0.88,P=0.002)、肋骨骨折数目(OR=1.72,95%CI:1.60~2.80,P=0.012)是启动机械通气的独立危险因素(表 3)。

3.

使用机械通气组与未使用机械通气组多因素分析结果

Multivariate analysis of risk factors between mechanical ventilation group and without mechanical ventilation group

Variable OR 95%CI P
 Abbreviations as in Table 1.
ISS 1.14 0.92-1.36 0.062
Base excess 0.56 0.37-0.88 0.003
Rib fracture 1.72 1.60-2.80 0.012
GCS 0.72 0.53-0.92 0.030

2.3. 机械通气时间延长组与非延长组的比较

62例使用机械通气的患者被分为机械通气时间延长组38例(7~45 d)和非延长组24例。与非延长组相比,机械通气时间延长组患者ISS评分更高,颅脑损伤程度更重,住院期间气管切开发生率高,住院时间也明显长于非延长组(表 4)。

4.

机械通气时间延长组和非延长组相关指标的比较

The univariate analysis of risk factors between PMV group and SMVgroup

Variable SMV group (n=24) PMV group (n=38) P
 SMV, shortened mechanical ventilation; PMV, prolonged mechanical ventilation. Other abbreviations as in Table 1.
Age/years, x±s 47±16 50±18 0.517
ISS, median (P25, P75) 29 (21, 37) 36 (29, 50) 0.022
GCS, median (P25, P75) 14 (12, 15) 8 (3, 12) 0.029
Ventilatory time/d, median (P25, P75) 5 (2, 6) 16 (9, 20) < 0.001
Length of hospital stay/d, median (P25, P75) 14 (8, 16) 24 (18, 42) < 0.001

3. 讨论

本研究结果表明,严重多发伤时,重度颅脑损伤、多根肋骨骨折和严重休克是启动机械通气的独立危险因素,ISS评分越高、GCS评分越低的患者机械通气时间和住院时间明显延长。

美国东部创伤外科学会关于紧急气管插管的指南提出[3],当创伤患者存在气道阻塞、低通气、严重低氧血症、重度昏迷(GCS≤8分)、心脏停搏、严重失血性休克等情况时,需立即予以气管插管,但临床上,根据GCS分值判断是否行气管插管的范围过于宽泛(3~15分)[9-11]。此外,虽然很多研究指出失血性休克时应早期行气管插管,但对于休克程度的判断目前也尚无统一标准[3, 12]。当出现钝性胸部损伤(肋骨骨折、肺挫伤和血气胸)时,往往合并头部、腹部及四肢骨盆损伤[13-14],约59%的连枷胸患者需要机械通气[13]。本研究也表明,肋骨骨折数目越多,其机械通气发生率越高。临床接诊过程中,创伤患者病情多复杂,需反复多次评估,且迟发伤发生率高,因此,需综合考虑各个因素,这大大增加了判断气管插管时机的难度。

目前,尚无机械通气时间延长的明确定义,其范围宽泛至7~21 d中的任一天。有研究指出机械通气时间≥7 d将增加患者罹患咽喉部疾病的风险[15-16],因此,本项研究以7 d为界限进行分组。严重多发伤患者死亡的主要原因是重度颅脑损伤[17],已有多项研究指出GCS评分低与机械通气时间延长和高死亡率密切相关[18-19],本研究同样发现, 颅脑损伤程度重是机械通气时间延长的危险因素[20]。同时,严重多发伤合并重度颅脑损伤的患者气管切开发生率较高,因此,GCS评分作为一项较为客观的临床指标,在临床决策中有一定的预测意义。

严重多发伤患者的肺挫伤极为常见,发病率为25%~80%,因多发伤死亡的患者中约有10%~20%与肺挫伤明显相关[21-22]。文献证实,计算机断层扫描是诊断和量化肺挫伤体积的首选方法[23-24],通过量化获得的肺挫伤体积是多发伤患者预后评估的一项有力指标[25]。当肺挫伤体积≥20%时,患者机械通气和罹患急性呼吸窘迫综合征的概率高达80%[23]。本研究对患者胸部CT结果进行回顾,发现共有36例患者肺挫伤体积≥20%,其中28例予以了机械通气治疗。Mahmood等[26]的研究表明,肺挫伤体积≥20%是严重多发伤患者机械通气的一项危险因素,对临床病情的评估和治疗决策的制订存在一定的指导意义,与本研究结果一致。

综上,本研究表明,GCS、血液碱剩余和肋骨骨折是严重多发伤患者机械通气的独立危险因素,ISS和GCS评分是机械通气时间延长的危险因素。今后应加大样本量,进行多中心研究,以进一步明确机械通气和机械通气时间延长的危险因素。

Funding Statement

北大医学交叉研究种子基金(BMU2018ME003)-中央高校基本科研业务费

Supported by the Fundamental Research Funds for the Central Universities: Peking University Medicine Seed Fund for Interdisciplinary Research (BMU2018ME003)

References

  • 1.Hussain LM, Redmond AD. Are pre-hospital deaths from accidental injury preventable? BMJ. 1994;308(6936):1077–1080. doi: 10.1136/bmj.308.6936.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Stocchetti N, Pagliarini G, Gennari M, et al. Trauma care in Italy: Evidence of in-hospital preventable deaths. https://ci.nii.ac.jp/naid/30009382497. J Trauma. 1994;36(3):401–405. [PubMed] [Google Scholar]
  • 3.Dunham CM, Barraco RD, Clark DE, et al. Guidelines for emergency tracheal intubation immediately after traumatic injury. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0148607102026001011. J Trauma. 2003;55(1):162–179. doi: 10.1097/01.ta.0000083335.93868.2c. [DOI] [PubMed] [Google Scholar]
  • 4.Schuurmans J, Goslings JC, Schepers T. Operative management versus non-operative management of rib fractures in flail chest injuries: a systematic review. Eur J Trauma Emerg Surg. 2017;43(2):163–168. doi: 10.1007/s00068-016-0721-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jayle CP, Allain G, Ingrand P, et al. Flail chest in polytraumatized patients: Surgical fixation using Stracos reduces ventilator time and hospital stay [J/OL]. Biomed Res Int, (2015-02-01)[2019-11-15]. doi: 10.1155/2015/624723.
  • 6.Fitzpatrick DC, Denard PJ, Phelan D, et al. Operative stabilization of flail chest injuries: Review of literature and fixation options. Eur J Trauma Emerg Surg. 2010;36(5):427–433. doi: 10.1007/s00068-010-0027-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.中华医学会创伤学分会创伤急救与多发伤学组 多发伤病历与诊断:专家共识意见. http://www.cnki.com.cn/Article/CJFDTotal-CXWK201001050.htm 创伤外科杂志. 2010;12(1):93–96. [Google Scholar]
  • 8.Rendeki S, Molnar TF. Pulmonary contusion. J Thorac Dis. 2019;11(Suppl 2):S141–S151. doi: 10.21037/jtd.2018.11.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sloane C, Vilke GM, Chan TC, et al. Rapid sequence intubation in the field versus hospital in trauma patients. J Emerg Med. 2000;19(3):259–264. doi: 10.1016/S0736-4679(00)00235-3. [DOI] [PubMed] [Google Scholar]
  • 10.Kuchinski J, Tinkoff G, Rhodes M, et al. Emergency intubation for paralysis of the uncooperative trauma patient. J Emerg Med. 1991;9(1/2):9–12. doi: 10.1016/0736-4679(91)90524-J. [DOI] [PubMed] [Google Scholar]
  • 11.Trupka A, Waydhas C, Nast-Kolb D, et al. Early intubation in severely injured patients. Eur J Emerg Med. 1994;1(1):1–8. doi: 10.1097/00063110-199403000-00002. [DOI] [PubMed] [Google Scholar]
  • 12.Gerich TG, Schmidt U, Hubrich V, et al. Prehospital airway management in the acutely injured patient: The role of surgical cricothyrotomy revisited. J Trauma. 1998;45(2):312–314. doi: 10.1097/00005373-199808000-00017. [DOI] [PubMed] [Google Scholar]
  • 13.Dehghan N, de Mestral C, McKee MD, et al. Flail chest injuries: A review of outcomes and treatment practices from the National Trauma Data Bank. J Trauma Acute Care Surg. 2014;76(2):462–468. doi: 10.1097/TA.0000000000000086. doi: 10.1097/TA.0000000000000086. [DOI] [PubMed] [Google Scholar]
  • 14.Lin FC, Li RY, Tung YW, et al. Morbidity, mortality, associated injuries, and management of traumatic rib fractures. J Chin Med Assoc. 2016;79(6):329–334. doi: 10.1016/j.jcma.2016.01.006. [DOI] [PubMed] [Google Scholar]
  • 15.Gaynor EB, Greenberg SB. Untoward sequelae of prolonged intubation. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1288/00005537-198512000-00005. Laryngoscope. 1985;95(12):1461–1467. doi: 10.1288/00005537-198512000-00005. [DOI] [PubMed] [Google Scholar]
  • 16.Whited RE. A prospective study of laryngotracheal sequelae in long-term intubation. Laryngoscope. 1984;94(3):367–377. doi: 10.1288/00005537-198403000-00014. [DOI] [PubMed] [Google Scholar]
  • 17.Schulpen TM, Doesburg WH, Lemmens WA, et al. Epidemiology and prognostic signs of chest injury patients. Injury. 1986;17(5):305–308. doi: 10.1016/0020-1383(86)90151-8. [DOI] [PubMed] [Google Scholar]
  • 18.Ross BJ, Barker DE, Russell WL, et al. Prediction of long-term ventilatory support in trauma patients. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3f98c8ece910eaea7b3d5c65aa06063. Am Surg. 1996;62(1):19–25. [PubMed] [Google Scholar]
  • 19.Stellin G. Survival in trauma victims with pulmonary contusion. http://www.ncbi.nlm.nih.gov/pubmed/1746794/ Am Surg. 1991;57(12):780–784. [PubMed] [Google Scholar]
  • 20.Dimopoulou I, Anthi A, Lignos M, et al. Prediction of prolonged ventilatory support in blunt thoracic trauma patients. Intensive Care Med. 2003;29(7):1101–1105. doi: 10.1007/s00134-003-1813-0. [DOI] [PubMed] [Google Scholar]
  • 21.Danelson KA, Chiles C, Thompson AB, et al. Correlating the extent of pulmonary contusion to vehicle crash parameters in near-side impacts. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000002361108. Ann Adv Automot Med. 2011;(55):217–230. [PMC free article] [PubMed] [Google Scholar]
  • 22.Hosseini M, Ghelichkhani P, Baikpour M, et al. Diagnostic accuracy of ultrasonography and radiography in detection of pulmonary contusion: A systematic review and meta-analysis. http://europepmc.org/abstract/MED/26495401. Emerg (Tehran) 2015;3(4):127–136. [PMC free article] [PubMed] [Google Scholar]
  • 23.Wang S, Ruan Z, Zhang J, et al. The value of pulmonary contusion volume measurement with three-dimensional computed tomography in predicting acute respiratory distress syndrome development. Ann Thorac Surg. 2011;92(6):1977–1983. doi: 10.1016/j.athoracsur.2011.05.020. [DOI] [PubMed] [Google Scholar]
  • 24.Palas J, Matos AP, Mascarenhas V, et al. Multidetector computer tomography: Evaluation of blunt chest trauma in adults [J/OL]. Radiol Res Pract, (2014-09-08)[2019-11-07]. doi: 10.1155/2014/864369.
  • 25.Strumwasser A, Chu E, Yeung L, et al. A novel CT volume index score correlates with outcomes in polytrauma patients with pulmonary contusion. J Surg Res. 2011;170(2):280–285. doi: 10.1016/j.jss.2011.03.022. [DOI] [PubMed] [Google Scholar]
  • 26.Mahmood I, El-Menyar A, Younis B, et al. Clinical significance and prognostic implications of quantifying pulmonary contusion vo-lume in patients with blunt chest trauma. https://www.ncbi.nlm.nih.gov/pubmed/28746303. Med Sci Monit. 2017;(23):3641–3648. doi: 10.12659/MSM.902197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES