Skip to main content
Non-coding RNA Research logoLink to Non-coding RNA Research
. 2020 Aug 20;5(3):135–143. doi: 10.1016/j.ncrna.2020.08.002

miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East

Hazem Haddad a,, Walid Al-Zyoud b
PMCID: PMC7439007  PMID: 32839745

Abstract

MicroRNAs (miRNAs) are non-coding RNAs that control many functions within the human cells by controlling protein levels through binding to messenger RNA (mRNA) translation process or mRNA abundance. Many pieces of evidence show that miRNAs affect the viral RNA replication and pathogenesis through direct binding to the RNA virus to mediate changes in the host transcriptome. Many previous studies have been studying the interaction between human cells' miRNA and viral RNA to predict many targets along the viral genome. In this work, via the miRDB database, we determined the target scores of predicted human miRNA to bind with the ss-RNA of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in general and its spike gene in specific. Our predicted miRNA targets of the ss-RNA of SARS-CoV-2 might destabilize the ss-RNA translation of SARS-CoV-2 that has been established by more than 80% of asymptomatic infected cases in Jordan due to host miRNA interactions. In respiratory epithelial cells, the high prediction scoring for miRNAs covers the RNA from 5′ to 3′ that explains successful antiviral defenses against ss-RNA of SARS-CoV-2 and might lead to new nucleotide deletion mechanisms. The exciting findings here that the nucleotide substitution 1841A > G at the viral genomic RNA level, which is an amino acid substation D614G at the spike protein level showed a change in the predicted miRNA sequence from hsa-miR-4793-5p to hsa-miR-3620-3p with an increase in the target score from 91 to 92.

Keywords: miRNA, SARS-CoV-2, Transmission, Jordan

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak in Wuhan city and characterized as a pandemic by the World Health Organization WHO [1]. The first case of SARS-CoV-2 was reported to the Jordanian Ministry of Health on March 2, 2020, for a Jordanian citizen who was in Italy. To the date of this report, there are 1218 confirmed cases, 1131 recovered and 11 deaths of COVID-19 in Jordan, according to the Jordanian Ministry of Health official web site which has been launched as a unified source of information about the preventive measurements and symptoms of corona virus-2019 (https://corona.moh.gov.jo/en).

In 2003, severe coronavirus acute breathing syndrome (SARS-CoV) appeared in China. It has spread to over 30 countries, infecting around 8000 people, killing young people with 10%, and aging with 50%. There are no approved coronavirus vaccines or antiviral treatments against, for example, such as the Middle East respiratory CoV (MERS-CoV) yet [2]. The molecular mechanisms of viral pathogenesis provide thoughtful help in the search for effective and secure therapeutic strategies against new human SARS-Cov-2.

MicroRNAs (miRNAs) are non-coding RNAs that control many functions within a cell by controlling protein levels through binding to mRNA translation process. Many shreds of evidence show that miRNAs affect the RNA viral replication and, consequently, pathogenesis through direct binding to the RNA virus-mediated changes in the host transcriptome. Host miRNAs can bind to a wide range of RNA viruses, straight adapt their pathogenesis through mimicking cellular mRNAs, and tolerating direct binding of the miRNA to the viral RNA. Theoretically, the abovementioned regulation is analogous to that of the host mRNAs [3,4].

Many miRNA sequences that targeted Influenza viral RNA segments were linked with the activity of host miRNA-induced antiviral defense. This link represents potential treatment with a combination of five miRNAs through Antagomirs delivery to suppress the viral replication and effectively improve protection against lethal challenge with PR8 influenza virus strain in mice [5].

Severe acute coronavirus syndrome (SARS-CoV) caused human fatal disease and reaction and extensive pulmonary disease. The significance of small non-coding RNAs for SARS-CoV pathologies, lung RNAs sequences of infected mice, and three (18–22 nt) small viral RNAs (svRNAs) were discovered. The three svRNAs originated from the SARS-CoV genomic regions nsp3 (svRNA-nsp3.1 and -nsp3.2), and N (svRNA-N). CoV svRNAs were characterized as independent from cell type and host species RNase III, but the extent of the viral replication machinery was a dependent process. In vivo, lung pathology and pro-inflammatory cytokine release, antagomir-mediated inhibition of svRNA-N significantly decreased. This indicates that svRNAs contribute to the pathogenesis of SARS-CoV and demonstrates the potential for antagomirs of svRNA-N as antivirals [6].

To understand the early steps of COVID-19 infection, we predicted miRNAs sequences targeting the submitted 29903bp of viral ss-RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 complete genomic RNA sequence) from the isolate of Wuhan-Hu-1. A predicted miRNAs targeting region at 3822 bp ss-RNA of the spike glycoprotein of SARS-CoV-2 was revealed. Also, we predicted miRNAs targeting a variable region of the ss-RNA spike glycoprotein of SARS-CoV-2 sequences from 20 positive nasopharyngeal specimens form Jordan. These specimens were collected and sequenced by Biolab Diagnostic Laboratories (Jordan) & Andersen lab at Scripps Research (USA), who deposited the sequences in GISAID, a maintained global database based in Germany. The perception in this work might help scientists to understand the molecular mechanisms of viral pathogenesis. Besides, it might support the research for effective, safe therapeutic strategies against known human coronaviruses and new emergent strains with a focus on miRNA-induced antiviral human body defense, which could be a potential treatment developed for SARS-CoV-2.

2. Methods

The miRDB is an online http://mirdb.org/custom.html database for the target and working annotations of miRNA. All targets in miRDB were anticipated by MirTarget, a bioinformatics tool that was developed through the study of thousands of miRNA target interactions from high-performance research [7,8].

We have utilized the tool in the following link: http://biomodel.uah.es/en/lab/cybertory/analysis/trans.htm to convert submitted sequences from miRNA to DNA to demonstrate genome sequence alignment using ChromosPros Version 2.1.9. The Wuhan-Hu-1 full genome sequence (accession number: NC_045512.2) has been used as a reference sequence against miRNAs targeting the area of 3822 bp ss-RNA of the SARs-CoV-2 Spike gene. We predicted miRNA targets against the full length of 29903 bp ss-RNA (SARS-CoV-2 sequence) from the isolate of Wuhan-Hu-1. In addition, variable miRNAs were predicted to target regions on the SARs-CoV-2 sequences against the reference sequence ss-RNA spike glycoprotein (accession number: YP_009724390) from Jordanian positive nasopharyngeal specimens sequenced by Biolab Diagnostic Laboratories (Jordan) & Andersen lab at Scripps Research (USA) who published sequences retrieved from GISAID (https://corona.moh.gov.jo/en) (https://gisaid.org).

3. Results and discussion

We predicted top ten miRNAs targeting score between (98–99) against the submitted 29903 bp ss-RNA SARS-CoV-2 full length genome correspondingly, hsa-miR-4288, hsa-miR-195-5p, hsa-miR-16-5p, hsa-miR-15b-5p, hsa-miR-15a-5p, hsa-miR-6838-5p, hsa-miR-497-5p, hsa-miR-424-5p, hsa-miR-3133, hsa-miR-21-3p, please see Table 1 (Appendix). These miRNAs are presented in miRDB, along with associated function annotations. As a recent update, miRDB displays expressions of hundreds of cell lines, and the user may limit their search for the cell line of interest miRNA targets. miRDB offers an integrative analysis of the target prediction and ontological gene data found in Tables 2,3,4,5,6,7,8,9,10 and 11 (Appendix), to promote the prediction of miRNA functions. Also, we predicted only three miRNAs (hsa-miR-510-3p, hsa-miR-624-5p, and hsa-miR-497-5p) with targeting scores of (92, 90 and 84) respectively for the submitted 3822 bp of the ss-RNA spike glycoprotein of SARS-CoV-2 sequence of Wuhan-Hu-1 (from the complete genome NCBI reference sequence: NC_045512.2 Region: 21563–25384) as shown in Table 13 (Appendix). These miRNAs, as well as associated functional annotations, presented in miRDB present the expression profiles of hundreds of cell lines. To facilitate the prediction of miRNA functions miRDB offers an integrative analysis of target prediction and Gene Ontology data found in Tables 14 and 15 (Appendix).

Moreover, in our study, we predicted the regions of miRNAs targeting score against many ss-RNA spike glycoprotein of SARS-CoV-2 sequences from Jordanian samples with amino acid substitutions (NCBI reference sequence: NC_045512.2 region: 21563–25384 and nomenclature sequence, Single Amino Acid Variant (SAV) and annotation used the accession number YP_009724390.1) showed in Tables 16–24 (Appendix). The original sequence of the del 432TTA, and the del Y144 have the same miRNA with a target score of 91. The original 1841A target miRNA scored (91, 64 and 56) for (hsa-miR-4793-5p, hsa-miR-143-5p and hsa-miR-3133) respectively. The interesting finding here that the 1841A > G, and D614G showed a change in the predicted miRNA and an increase in the target score from 91 to 92 (hsa-miR-4793-5p to hsa-miR-3620-3p). However, the original and 3415G > T D1139Y showed the same sequence of the miRNA (hsa-miR-548g-3p) and an increase in the target score from 80 to 81. The last substitution of 3499 G > A G1167S showed the same miRNA sequence of (hsa-miR-155-5p) and a decrease in the target score from 73 to 72.

One of the record genomic changes observed in the severe acute respiratory syndrome coronavirus (SARS-CoV-1) isolated from humans after human to human transmission was the acquisition of a specific 29-nucleotide deletion occurred in open reading frame 8 (ORF8). Three top target scores of miRNAs prediction (hsa-miR-497-5p, hsa-miR-195-5p and hsa-miR-21-3p) showed in Table 12, 16 and 24 (Appendix). They had an expression in the respiratory epithelial cells, and effective antiviral defenses against the ss-RNA of SARS-CoV-2 might lead to a new mechanism of interaction binding miRNA to cause nucleotide deletion in SARS-CoV-2 in reflection to previous reports [5,6,9].

4. Conclusion

Over the past few years, some articles reported the target prediction of miRNA and viral RNA interaction. In our forecasts, more than asymptomatic 80% of the COVID-19 diseased persons raised due to the host miRNA interactions, which have identified the target where the genome replication of the ss-RNA of SARS-CoV-2 has changed to probably inhibit the translation of the ss-RNA and hence possible preventing viral replication and stabilization by subsequent generations. The top target scores of miRNAs prediction cover from 5′ to 3’ in the human respiratory epithelial cells that might be the reason for an effective antiviral defense against the ss-RNA of SARS-CoV-2 and lead to a new mechanism of nucleotide deletion in the coding region of a protein. The miRNAs found in all tissues have targeted gene functions, which lead to an identification of novel cellular pathways to block viral RNA replication or even host cell-specific targeting the regulation for the ss-RNA of SARS-CoV-2.

Funding

Any funding body did not fund this work.

CRediT authorship contribution statement

Hazem Haddad: Conceptualization, Methodology, Software, Data curation, Writing - original draft, Visualization, Investigation, Supervision, Software, Validation, Writing - review & editing. Walid Al-Zyoud: Conceptualization, Methodology, Software, Data curation, Writing - original draft, Visualization, Investigation, Supervision, Software, Validation, Writing - review & editing.

Declaration of competing interest

All authors declare no conflict of interest.

Acknowledgments

Authors would like to acknowledge Jordanain Minsitry of Health and the Biolabs medical laboratories in Amman, Jordan, and their partners for depositing the SARS-CoV-2 sequences from Jordanian specimens at GISAID database.

Appendix.

Table 1.

Predicted miRNAs targeting the submitted 29903 bp ss-RNA SARS-COV-2 genome, accession number NC_045512.2.

Target Rank Target Score miRNA Name
1 99 hsa-miR-4288
2 99 hsa-miR-195-5p
3 99 hsa-miR-16-5p
4 99 hsa-miR-15b-5p
5 99 hsa-miR-15a-5p
6 99 hsa-miR-6838-5p
7 98 hsa-miR-497-5p
8 98 hsa-miR-424-5p
9 98 hsa-miR-3133
10 98 hsa-miR-21-3p

Table 2.

Predicted targets function for hsa-miR-4288 on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 97 hsa-miR-4288 UIMC1 ubiquitin interaction motif containing 1
2 97 hsa-miR-4288 CC2D1A coiled-coil and C2 domain containing 1A
3 96 hsa-miR-4288 ING3 inhibitor of growth family member 3
4 96 hsa-miR-4288 KCMF1 potassium channel modulatory factor 1
5 96 hsa-miR-4288 CAPZB capping actin protein of muscle Z-line subunit beta
6 96 hsa-miR-4288 BCL11A BCL11A, BAF complex component
7 96 hsa-miR-4288 AMELX amelogenin X-linked
8 96 hsa-miR-4288 NTM Neurotrimin
9 95 hsa-miR-4288 LRRC4C leucine rich repeat containing 4C
10 95 hsa-miR-4288 PSIP1 PC4 and SFRS1 interacting protein 1

Table 3.

Predicted targets function for hsa-miR-195-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-195-5p PAPPA pappalysin 1
2 100 hsa-miR-195-5p FASN fatty acid synthase
3 100 hsa-miR-195-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-195-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-195-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-195-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-195-5p PHF19 PHD finger protein 19
8 100 hsa-miR-195-5p DESI1 desumoylating isopeptidase 1
9 99 hsa-miR-195-5p UBE2Q1 ubiquitin conjugating enzyme E2 Q1
10 99 hsa-miR-195-5p LSM11 LSM11, U7 small nuclear RNA associated

Table 4.

Predicted targets function for hsa-miR-16-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-16-5p PAPPA pappalysin 1
2 100 hsa-miR-16-5p FASN fatty acid synthase
3 100 hsa-miR-16-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-16-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-16-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-16-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-16-5p PHF19 PHD finger protein 19
8 100 hsa-miR-16-5p DESI1 desumoylating isopeptidase 1
9 99 hsa-miR-16-5p UBE2Q1 ubiquitin conjugating enzyme E2 Q1
10 99 hsa-miR-16-5p LSM11 LSM11, U7 small nuclear RNA associated

Table 5.

Predicted targets function for hsa-miR-15b-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-15b-5p PAPPA pappalysin 1
2 100 hsa-miR-15b-5p FASN fatty acid synthase
3 100 hsa-miR-15b-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-15b-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-15b-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-15b-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-15b-5p PHF19 PHD finger protein 19
8 100 hsa-miR-15b-5p DESI1 desumoylating isopeptidase 1
9 99 hsa-miR-15b-5p UBE2Q1 ubiquitin conjugating enzyme E2 Q1
10 99 hsa-miR-15b-5p LSM11 LSM11, U7 small nuclear RNA associated

Table 6.

Predicted targets function for hsa-miR-15a-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-15a-5p PAPPA pappalysin 1
2 100 hsa-miR-15a-5p FASN fatty acid synthase
3 100 hsa-miR-15a-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-15a-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-15a-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-15a-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-15a-5p PHF19 PHD finger protein 19
8 100 hsa-miR-15a-5p DESI1 desumoylating isopeptidase 1
9 99 hsa-miR-15a-5p UBE2Q1 ubiquitin conjugating enzyme E2 Q1
10 99 hsa-miR-15a-5p LSM11 LSM11, U7 small nuclear RNA associated

Table 7.

Predicted targets function for hsa-miR-6838-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-6838-5p PAPPA pappalysin 1
2 100 hsa-miR-6838-5p FASN fatty acid synthase
3 100 hsa-miR-6838-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-6838-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-6838-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-6838-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-6838-5p PHF19 PHD finger protein 19
8 99 hsa-miR-6838-5p UBE2Q1 ubiquitin-conjugating enzyme E2 Q1
9 99 hsa-miR-6838-5p LSM11 LSM11, U7 small nuclear RNA associated
10 99 hsa-miR-6838-5p ANKUB1 ankyrin repeat and ubiquitin domain containing 1

Table 8.

Predicted targets function for hsa-miR-497-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-497-5p PAPPA pappalysin 1
2 100 hsa-miR-497-5p FASN fatty acid synthase
3 100 hsa-miR-497-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-497-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-497-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-497-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-497-5p PHF19 PHD finger protein 19
8 99 hsa-miR-497-5p UBE2Q1 ubiquitin conjugating enzyme E2 Q1
9 99 hsa-miR-497-5p LSM11 LSM11, U7 small nuclear RNA associated
10 99 hsa-miR-497-5p ANKUB1 ankyrin repeat and ubiquitin domain containing 1

Table 9.

Predicted targets function for hsa-miR-424-5p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-424-5p PAPPA pappalysin 1
2 100 hsa-miR-424-5p FASN fatty acid synthase
3 100 hsa-miR-424-5p UNC80 unc-80 homolog, NALCN channel complex subunit
4 100 hsa-miR-424-5p FGF2 fibroblast growth factor 2
5 100 hsa-miR-424-5p TNRC6B trinucleotide repeat containing 6B
6 100 hsa-miR-424-5p PTPN4 protein tyrosine phosphatase, non-receptor type 4
7 100 hsa-miR-424-5p PHF19 PHD finger protein 19
8 99 hsa-miR-424-5p UBE2Q1 ubiquitin-conjugating enzyme E2 Q1
9 99 hsa-miR-424-5p LSM11 LSM11, U7 small nuclear RNA associated
10 99 hsa-miR-424-5p ANKUB1 ankyrin repeat and ubiquitin domain containing 1

Table 10.

Predicted targets function for hsa-miR-3133 on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-3133 HOOK3 hook microtubule tethering protein 3
2 100 hsa-miR-3133 RIMS2 regulating synaptic membrane exocytosis 2
3 100 hsa-miR-3133 TGFBRAP1 transforming growth factor-beta receptor-associated protein 1
4 99 hsa-miR-3133 RPRD1A regulation of nuclear pre-mRNA domain-containing 1A
5 99 hsa-miR-3133 TFAP2B transcription factor AP-2 beta
6 99 hsa-miR-3133 PTPRK protein tyrosine phosphatase, receptor type K
7 99 hsa-miR-3133 MAP2 microtubule-associated protein 2
8 99 hsa-miR-3133 NRF1 nuclear respiratory factor 1
9 99 hsa-miR-3133 KAT6A lysine acetyltransferase 6A
10 99 hsa-miR-3133 URI1 URI1, prefoldin like chaperone

Table 11.

Predicted targets function for hsa-miR-21-3p on 29903 bp ss-RNA SARS-COV-2 genome.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 99 hsa-miR-21-3p STK38L serine/threonine kinase 38 like
2 98 hsa-miR-21-3p PCDH19 protocadherin 19
3 96 hsa-miR-21-3p LAMP1 lysosomal associated membrane protein 1
4 96 hsa-miR-21-3p GRIA2 glutamate ionotropic receptor AMPA type subunit 2
5 96 hsa-miR-21-3p TOGARAM1 TOG array regulator of axonemal microtubules 1
6 96 hsa-miR-21-3p ATP1B1 ATPase Na+/K+ transporting subunit beta 1
7 96 hsa-miR-21-3p TSC22D2 TSC22 domain family member 2
8 96 hsa-miR-21-3p NAP1L5 Nucleosome assembly protein 1 like 5
9 95 hsa-miR-21-3p UBE4B ubiquitination factor E4B
10 95 hsa-miR-21-3p ZNF326 zinc finger protein 326

Table 12.

Predicted miRNAs targeting region on 29903 nt SARS-COV-2 complete genome.

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 sequence) isolate Wuhan-Hu-1, complete genome NCBI Reference Sequence: NC_045512.2 miRNAs targeting the submitted 29903 nt SARS-COV-2 complete genome
181 ttctgcaggc tgcttacggt ttcgtccgtg ttgcagccga tcatcagcac atctaggttt
241 cgtccgggtg tgaccgaaag gtaagatgga gagccttgtc cctggtttca acgagaaaac
miRNA Name hsa-miR-15b-5p
Previous Name hsa-miR-15b
miRNA Sequence 5′ - uagcagcacaucaugguuuaca - 3' (length = 22)
miRNA Name hsa-miR-497-5p
Previous Name hsa-miR-497
miRNA Sequence 5′ - cagcagcacacugugguuugu - 3' (length = 21)
4441 tgtggaaact aaagccatag tttcaactat acagcgtaaa tataagggta ttaaaataca
miRNA Name hsa-miR-16-5p
Previous Name hsa-miR-16
miRNA Sequence 5′ - uagcagcacguaaauauuggcg - 3' (length = 22)
6361 cgcgcaggga atggataatc ttgcctgcga agatctaaaa ccagtctctg aagaagtagt
6421 ggaaaatcct accatacaga aagacgttct tgagtgtaat gtgaaaacta ccgaagttgt
miRNA Name hsa-miR-6838-5p
miRNA Sequence 5′ - aagcagcaguggcaagacuccu - 3' (length = 22)
8821 attgattgct gcagtcataa caagagaagt gggttttgtc gtgcctggtt tgcctggcac
miRNA Name hsa-miR-4288
miRNA Sequence 5′ - uugucugcugaguuucc - 3' (length = 17)
12421 aagagatggt tgtgttccct tgaacataat acctcttaca acagcagcca aactaatggt
12481 tgtcatacca gactataaca catataaaaa tacgtgtgat ggtacaacat ttacttatgc
miRNA Name hsa-miR-497-5p
Previous Name hsa-miR-497
miRNA Sequence 5′ - cagcagcacacugugguuugu - 3' (length = 21)
14221 ttaacaaagc cttacattaa gtgggatttg ttaaaatatg acttcacgga agagaggtta
14281 aaactctttg accgttattt taaatattgg gatcagacat accacccaaa ttgtgttaac
miRNA Name hsa-miR-15a-5p
Previous Name hsa-miR-15a
miRNA Sequence 5′ - uagcagcacauaaugguuugug - 3' (length = 22)
20161 aaagttgatg gtgttgtcca acaattacct gaaacttact ttactcagag tagaaattta
20221 caagaattta aacccaggag tcaaatggaa attgatttct tagaattagc tatggatgaa
miRNA Name hsa-miR-3133
miRNA Sequence 5′ - uaaagaacucuuaaaacccaau - 3' (length = 22)
21301 ccacgcgaac aaatagatgg ttatgtcatg catgcaaatt acatattttg gaggaataca
miRNA Name Hsa-miR-424-5p
Previous Name Hsa-miR-424
miRNA Sequence 5′ - cagcagcaauucauguuuugaa - 3' (length = 22)
24841 tgtctttgtt tcaaatggca cacactggtt tgtaacacaa aggaattttt atgaaccaca
miRNA Name Hsa-miR-497-5p
Previous Name Hsa-miR-497
miRNA Sequence 5′ - cagcagcacacugugguuugu - 3' (length = 21)
28501 caatagcagt ccagatgacc aaattggcta ctaccgaaga gctaccagac gaattcgtgg
miRNA Name hsa-miR-195-5p
Previous Name hsa-miR-195
miRNA Sequence 5′ - uagcagcacagaaauauuggc – 3' (length = 21)
29521 aactcaggcc taaactcatg cagaccacac aaggcagatg ggctatataa acgttttcgc
miRNA Name hsa-miR-21-3p
Previous Name hsa-miR-21*
miRNA Sequence 5′ - caacaccagucgaugggcugu - 3' (length = 21)

Table 13.

Predicted miRNAs targeting the submitted 3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence, accession number NC_045512.2 REGION: 21563–25384.

Target Rank Target Score miRNA Name
1 92 hsa-miR-510-3p
2 90 hsa-miR-624-5p
14 84 hsa-miR-497-5p

Table 14.

Predicted targets function for hsa-miR-510-3p on 3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence, accession number NC_045512.2 REGION: 21563–25384.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 100 hsa-miR-510-3p CNOT6 CCR4-NOT transcription complex subunit 6
2 99 hsa-miR-510-3p NEXMIF neurite extension and migration factor
3 99 hsa-miR-510-3p RBMS3 RNA binding motif single stranded interacting protein 3
4 99 hsa-miR-510-3p DENND6A DENN domain containing 6A
5 99 hsa-miR-510-3p SNAP91 Synaptosome associated protein 91
6 99 hsa-miR-510-3p BCLAF1 BCL2 associated transcription factor 1
7 99 hsa-miR-510-3p LATS2 large tumor suppressor kinase 2
8 99 hsa-miR-510-3p ELOVL7 ELOVL fatty acid elongase 7
9 98 hsa-miR-510-3p ZFHX3 zinc finger homeobox 3
10 98 hsa-miR-510-3p FMR1 fragile X mental retardation 1

Table 15.

Predicted targets function for hsa-miR-624-5p on 3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence, accession number NC_045512.2 REGION: 21563–25384.

Target Rank Target Score miRNA Name Gene Symbol Gene Description
1 96 hsa-miR-624-5p ARL4A ADP ribosylation factor like GTPase 4A
2 96 hsa-miR-624-5p SOWAHC sosondowah ankyrin repeat domain family member C
3 95 hsa-miR-624-5p SYT1 synaptotagmin 1
4 95 hsa-miR-624-5p CLOCK clock circadian regulator
5 95 hsa-miR-624-5p STK38 serine/threonine kinase 38
6 95 hsa-miR-624-5p LCP1 lymphocyte cytosolic protein 1
7 95 hsa-miR-624-5p ZNF800 zinc finger protein 800
8 95 hsa-miR-624-5p DOCK11 dedicator of cytokinesis 11
9 94 hsa-miR-624-5p UAP1 UDP-N-acetylglucosamine pyrophosphorylase 1
10 94 hsa-miR-624-5p NFKBIA NFKB inhibitor alpha

Table 16.

Predicted miRNAs targeting region on 3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence.

3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence isolate Wuhan-Hu-1, complete genome NCBI Reference Sequence: NC_045512.2 miRNAs targeting the submitted 3822 bp ss-RNA spike glycoprotein of SARS-COV-2 sequence
1 atgtttgttt ttcttgtttt attgccacta gtctctagtc agtgtgttaa tcttacaacc
miRNA Name hsa-miR-624-5p
Previous Name hsa-miR-624; hsa-miR-624*
miRNA Sequence 5′ - uaguaccaguaccuuguguuca - 3' (length = 22)
2821 acagcaagtg cacttggaaa acttcaagat gtggtcaacc aaaatgcaca agctttaaac
miRNA Name hsa-miR-510-3p
miRNA Sequence 5′ - auugaaaccucuaagagugga - 3' (length = 21)
3241 atttgtcatg atggaaaagc acactttcct cgtgaaggtg tctttgtttc aaatggcaca
3301 cactggtttg taacacaaag gaatttttat gaaccacaaa tcattactac agacaacaca
miRNA Name hsa-miR-497-5p
Previous Name hsa-miR-497
miRNA Sequence 5′ - cagcagcacacugugguuugu - 3' (length = 21)
3661 atagctggct tgattgccat agtaatggtg acaattatgc tttgctgtat gaccagttgc
3721 tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct gcaaatttga tgaagacgac
miRNA Name hsa-miR-624-5p
Previous Name hsa-miR-624; hsa-miR-624*
miRNA Sequence 5′ - uaguaccaguaccuuguguuca - 3' (length = 22)

Table 17.

Original and del 432 TTA (del.Y144) have the same miRNA and target score.

Target Rank Target Score miRNA Name
1 91 hsa-miR-196a-1-3p

Table 18.

Original 1841 A target miRNA score.

Target Rank Target Score miRNA Name
1 91 hsa-miR-4793-5p
2 64 hsa-miR-143-5p
3 56 hsa-miR-3133

Table 19.

1841A > G D614G showed a change in the sequence of the miRNA and increased in the target score from 90 to 91 on variable ss-RNA spike glycoprotein of SARS-COV-2 sequence from Jordanian samples.

Target Rank Target Score miRNA Name
1 92 hsa-miR-3620-3p
2 55 hsa-miR-3133
3 54 hsa-miR-21-3p

Table 20.

Original 3415G target miRNA score.

Target Rank Target Score miRNA Name
1 80 hsa-miR-548g-3p
2 72 hsa-miR-627-5p
3 61 hsa-miR-506-5p

Table 21.

3415G > T D1139Y showed the same the miRNA and increased the target score from 80 to 81 on variable ss-RNA spike glycoprotein of SARS-COV-2 sequence from Jordanian samples.

Target Rank Target Score miRNA Name
1 81 hsa-miR-548g-3p
2 72 hsa-miR-627-5p
3 61 hsa-miR-506-5p

Table 22.

Original 3499 G target miRNA score.

Target Rank Target Score miRNA Name
1 73 hsa-miR-155-5p
2 62 hsa-miR-6765-5p
3 53 hsa-miR-551b-5p

Table 23.

3499 G > A G1167S showed the same the miRNA and decreased the target score from 73 to 72 on the variable ss-RNA spike glycoprotein of SARS-COV-2 sequence from Jordanian samples.

Target Rank Target Score miRNA Name
1 72 hsa-miR-155-5p
2 62 hsa-miR-6765-5p
3 51 hsa-miR-668-3p

Table 24.

Predicted miRNAs targeting region on variable ss-RNA spike glycoprotein of SARS-COV-2 sequence from Jordanian samples.

Sample number with accision on GISAID Sequence variation ss-RNA spike glycoprotein of SARS-COV-2 sequence Single Amino Acid Variation miRNAs targeting the submitted variation ss-RNA spike glycoprotein of SARS-COV-2 sequence
NCBI Reference Sequence: NC_045512.2 AATAACGCTACTAATGTTGTTATTAAATCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCAAAAAACAACAAAAGTTGGATGGAAAGT original miRNA Name hsa-miR-196a-1-3p
miRNA Sequence 5′ - caacaacauuaaaccacccga - 3' (length = 21)
Sample 23: hCoV-19/Jordan/SR-042/2020|EPI_ISL_430000|2020-03-30 AATAACGCTACTAATGTTGTTATTAAATCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTACCAAAAAACAACAAAAGTTGGATGGAAAGT del 432 TTA
del. Y144
miRNA Name hsa-miR-196a-1-3p
miRNA Sequence 5′ - caacaacauuaaaccacccga - 3' (length = 21)
NCBI Reference Sequence: NC_045512.2 GGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGT Original 1841A miRNA Name hsa-miR-4793-5p
miRNA Sequence 5′ - acauccugcuccacagggcagagg - 3' (length = 24)
Sample 3,5,7,8,9,10,11,12,13,15,18,20 and21
Example: hCoV-19/Jordan/SR-036/2020|EPI_ISL_429996|2020-03-23
GGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGGTGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGT 1841A > G
D614G
miRNA Name hsa-miR-3620-3p
Previous Name hsa-miR-3620 miRNA Sequence 5′ - ucacccugcaucccgcacccag - 3' (length = 22)
NCBI Reference Sequence: NC_045512.2 ACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACA Original 3415G miRNA Name hsa-miR-548g-3p
Previous Name hsa-miR-548g miRNA Sequence 5′ - aaaacuguaauuacuuuuguac - 3' (length = 22)
Sample 21: hCoV-19/Jordan/SR-033/2020|EPI_ISL_429993|2020-03-16 ACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATTATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACA 3415G > T
D1139Y
miRNA Name hsa-miR-548g-3p
Previous Name hsa-miR-548g miRNA Sequence 5′ - aaaacuguaauuacuuuuguac - 3' (length = 22)
NCBI Reference Sequence: NC_045512.2 TCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATG Original 3499 G miRNA Name hsa-miR-155-5p
Previous Name hsa-miR-155 miRNA Sequence 5′ - uuaaugcuaaucgugauagggguu - 3' (length = 24)
Sample 16: hCoV-19/Jordan/SR-039/2020|EPI_ISL_429998|2020-03-28 TCACCAGATGTTGATTTAAGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATG 3499 G > A
G1167S
miRNA Name hsa-miR-155-5p
Previous Name hsa-miR-155 miRNA Sequence 5′ - uuaaugcuaaucgugauagggguu - 3' (length = 24)

References

  • 1.Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar 12;579(7798):265–269. doi: 10.1038/s41586-020-2008-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Perlman S., Netland J. Vol. 7. Nature Publishing Group; 2009. Coronaviruses post-SARS: update on replication and pathogenesis; pp. 439–450. (Nature Reviews Microbiology). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Trobaugh D.W., Gardner C.L., Sun C., Haddow A.D., Wang E., Chapnik E. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014 Dec 18;506(7487):245–248. doi: 10.1038/nature12869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Trobaugh D.W., Klimstra W.B. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med. 2017 Jan 1;23(1):80–93. doi: 10.1016/j.molmed.2016.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Peng S., Wang J., Wei S., Li C., Zhou K., Hu J. Endogenous cellular MicroRNAs mediate antiviral defense against influenza A virus. Mol. Ther. Nucleic Acids. 2018 Mar 2;10:361–375. doi: 10.1016/j.omtn.2017.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Morales L., Oliveros J.C., Fernandez-Delgado R., tenOever B.R., Enjuanes L., Sola I. SARS-CoV-Encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe. 2017 Mar 8;21(3):344–355. doi: 10.1016/j.chom.2017.01.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Chen Y., Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2019;48:127–131. doi: 10.1093/nar/gkz757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Liu W., Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019 Jan 22;20(1):18. doi: 10.1186/s13059-019-1629-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Oostra M., de Haan C.A.M., Rottier P.J.M. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J. Virol. 2007 Dec 15;81(24):13876–13888. doi: 10.1128/JVI.01631-07. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Non-coding RNA Research are provided here courtesy of KeAi Publishing

RESOURCES