Abstract
目的
探讨采用不同方法及不同的种植系统备洞留取自体骨骨量的差异。
方法
在均质环氧树脂仿制的下颌骨模型上,应用美国Bicon种植系统、德国Bego种植系统Semados系列或瑞士Straumann种植系统,分别采用全程无水低速备洞或高转速有冷却水备洞再低转速关水出洞(简称开水进关水出钻)的备洞方法,比较同一种植系统用这两种方法留取自体骨骨量的差异,比较不同种植系统用相同方法留取骨骨量的差异,并将其与取骨钻取骨量比较。每一直径钻用一种方法备10个窝洞,留取的骨屑用电子精密天平称重。
结果
制备相同洞型时,不论是Bicon还是Bego种植系统全程无水低速备洞法留取的骨量均大于开水进关水出钻方法留取的骨量,差异有统计学意义(P<0.05), 前者约是后者的3.3~7.0倍。制备相似洞型时,采用开水进关水出钻的备洞方法,不同种植系统(Bicon、Bego和Straumann)收集骨量差异无统计学意义。Bicon系统无水预备5 mm×10 mm洞型和Bego系统无水预备4.7 mm×10 mm洞型时留取的骨量显著少于取骨钻预备5 mm×10 mm洞型留取的骨量。
结论
全程无水低速备洞方法较开水进关水出钻的备洞方法可收集更多自体骨,不同种植系统采用同一方法制备相似洞形时,收集的自体骨骨量无明显差异。
Keywords: 牙种植, 骨移植, 自体骨
Abstract
Objective
To compare the volume of autogenous bone particles harvested utilizing different techniques and various implant systems during implant surgery, and to determine the advantageous method to collect autogenous bone particles.
Methods
Homogeneous epoxy resin simulated jaw bone model was enrolled. Bicon, Bego implant systems and Straumann tissue level implant systems were utilized. The two techniques were investigated. One method was low-speed drilling (50 r/min) without water irri-gating, and the other one was drilling with cold water irrigating to the ideal depth, then closing the water and drilling out with low speed (50 r/min). The bone particles in the drill groove and implant beds were collected. The volumes of the bone harvested were compared between the different techniques and also among the three implant systems, then they were compared with the volume of the bone harvested by the special bone drill. The sample size of each sub-group was 10. The bone particles were weighed by electronic balance after drying.
Results
The harvested bone volume between the latch reamers and hand reamers of Bicon system with the first method was not significantly different. When the same size implant bed was prepared, the volume of the bone particles produced during the implant surgery with low-speed drill without water was significantly higher than that with the other method no matter Bicon [3.5 mm×10 mm hole for example (28.42±6.04) mg vs. (6.30±2.51) mg, P<0.001] or Bego system [2.8 mm×10 mm hole for example (28.95±5.39) mg vs. (4.61±3.39) mg, P<0.001] was used, and the ratio of bone volume between the first method and the second one was approximately 3.3 to 7.0 times. When using the second method to prepare the similar size implant bed, the bone volume was not significant different among Bicon, Bego and Straumann implant systems [Bicon (9.90±3.42) mg, Bego (8.70±4.09) mg, and Straumann (10.56±5.66) mg, P=0.69]. When preparing a 5mm-diameter-10mm-length hole with Bicon implant system and a 4.7mm-diameter-10mm-length with Bego implant system, the bone quantity harvested from each group was less than that harvested by special bone drill from Neo Biotech [Bicon (82.54±12.26) mg, Bego (85.07±12.64) mg vs. Neo Biotech (96.78±13.19) mg, P<0.05].
Conclusion
More autogenous bone can be harvested from implant beds by preparing with low-speed rolling without water than the method with water irrigation. When utilizing the same preparing method, the implant system has no impact on the volume of the bone harvested.
Keywords: Dental implantation, Bone graft, Autogenous bone
种植修复体在治疗牙齿缺失、恢复咀嚼功能中起到重要作用,骨量不足是临床医生常遇到的问题,因此骨增量手术在临床的应用备受关注。骨增量手术需要一定量的自体骨和/或骨替代品,种植窝洞预备时收集自体骨是一种有效的获得自体骨的方法,种植窝洞预备时留取自体骨的方法有两种,一种是钻低转速关水(简称全程关水低速)备洞,另一种方法是钻高转速开冷却水备洞到达深度后再低转速关水转出洞(简称开水进关水出钻)。这两种方法均可留取自体骨,但两者之间的差异尚不清楚,不同种植系统用同样的方法留取骨量的差异以及这些方法与专用取骨钻取骨的骨量差异也不清楚。因此本研究拟通过研究同一种植系统用不同方法预备窝洞时取骨量的差异及应用不同的种植系统采用相同的备洞方法留取骨量的差异,并将其与专用取骨钻取骨方法相比较,以期为临床医生提供量化的评价标准,为今后的临床工作提供一定的指导。
1. 资料与方法
1.1. 研究对象
研究模型为均质环氧树脂仿制的下颌骨骨块,邵氏(Shore)硬度85,购自济宁市星星医疗器械公司。
1.2. 研究方法
研究分别采用美国Bicon种植系统手钻和电钻(钻的直径分别为2.5、3.0、3.5、4.0、4.5、5.0 mm)、德国Bego种植系统Semados系列(钻的直径分别为2.8、3.25、3.65、4.0、4.7 mm)、瑞士Straumann种植系统tissue level系列(钻的直径分别为2.2、2.8、3.5、4.2 mm), 所有钻备洞长度均为10 mm。实验分为6组:1组为Bicon电钻慢速(50 r/min)关水备洞;2组为Bicon手钻慢速(50 r/min)关水备洞;3组为Bicon手钻开冷却水800 r/min备洞到10 mm不提拉,50 r/min关水出洞;4组为Bego种植系统开冷却水800 r/min备洞到10 mm不提拉,50 r/min关水出洞;5组为Bego种植系统50 r/min关水备洞;6组为Straumann种植系统,按照厂家推荐的转速(2.2 mm钻800 r/min、2.8 mm钻600 r/min、3.5 mm钻500 r/min、4.2 mm钻400 r/min)开冷却水备洞,预备洞深度到达10 mm后,以50 r/min速度关水出洞。所有冷却水的出水量均统一为最低出水量,关水设置通过种植机调节。收集每一钻螺纹中骨屑及洞内的骨屑,棉捻吸干周边水分后,在室温下自然风干10 min,用电子精密天平(METTLER TOLEDO, 瑞士, 最小分度值0.1 mg)称量读取数据,研究由同一操作者完成,测量由另一名研究者在不知分组的情况下测量(单盲法)。每一直径钻用同一种方法备10个洞,留取10份样本检测。取骨钻选择韩国Neo Biotech的直径5 mm取骨钻,取骨深度为10 mm,留取10份样本,模型和称量方法同前。因为模型是均值的,材料密度一致,可以通过测量质量反映留取骨的体积。
1.3. 统计学分析
用SPSS 20.0统计软件平行双录入后进行统计学分析。因各组数据有方差不齐或偏态分布的资料,组间比较用Mann-Whitney U非参数检验,P<0.05 认为差异有统计学意义。
2. 结果
2.1. Bicon电钻和手钻收集骨量的区别
因Bicon系统电钻前端设计为平头而手钻前端设计为尖头有切削功能,故都可以慢转关水备洞,术中收集骨量。比较这两种钻均在不开水备洞情况下收集的骨量,发现同样直径的手钻和电钻收集骨量差异无统计学意义(表1)。
1.
Bicon种植系统电钻和手钻慢速关水备洞收集的骨量比较
Comparison of the harvest bone volume between latch reamers and hand reamers of Bicon system with low-speed drill without water irrigation
| Diameter of hole/mm | Latch reamers/mg | Hand reamers/mg | P |
| n=10. | |||
| 3.0 | 17.71±3.58 | 16.95±4.48 | 0.680 |
| 3.5 | 29.16±4.99 | 28.42±6.04 | 0.769 |
| 4.0 | 42.35±7.68 | 45.91±8.23 | 0.331 |
| 4.5 | 57.56±10.76 | 60.10±9.57 | 0.584 |
| 5.0 | 77.56±14.29 | 82.54±12.26 | 0.414 |
2.2. 开水进关水出钻的备洞方法留取的骨量比较
无论是Bicon还是Bego种植系统开水进关水出钻的方法留取的骨量均小于全程关水低速备洞方法留取的骨量,差异有统计学意义(表2、表3),其中Bicon系统全程关水低速备洞组留取骨量是开水进关水出钻备洞组的3.3~4.6倍,Bego系统全程关水低速备洞组留取的骨量是开水进关水出钻备洞组的6.2~7.0倍。
2.
Bicon种植系统选择不同的备洞方法留取骨量比较
Comparison of harvest bone volume between two preparing methods with Bicon system
| Diameter of hole/mm |
High speed with irrigation then low speed without irrigation/mg |
Low speed without irrigation/mg |
P |
| n=10. | |||
| 3.0 | 4.18±1.86 | 16.95±4.48 | <0.001 |
| 3.5 | 6.30±2.51 | 28.42±6.04 | <0.001 |
| 4.0 | 9.90±3.42 | 45.91±8.23 | <0.001 |
| 4.5 | 14.08±5.94 | 60.10±9.57 | <0.001 |
| 5.0 | 24.59±15.50 | 82.54±12.26 | <0.001 |
3.
Bego种植系统选择不同的备洞方法留取骨量比较
Comparison of harvest bone volume between two preparing methods with Bego system
| Diameter of hole/mm |
High speed with irrigation then low speed without irrigation/mg |
Low speed without irrigation/mg |
P |
| n=10. | |||
| 2.8 | 4.61±3.39 | 28.95±5.39 | <0.001 |
| 3.25 | 5.57±3.75 | 39.54±7.03 | <0.001 |
| 3.65 | 6.92±3.77 | 48.44±8.14 | <0.001 |
| 4.0 | 8.70±4.09 | 58.45±7.68 | <0.001 |
| 4.7 | 13.67±5.53 | 85.07±12.64 | <0.001 |
2.3. 不同种植系统开水进关水出钻备洞时留取的骨量比较
因各种植系统钻的设计稍有差异,故选择接近直径的钻进行比较,分别选取Bicon 3.0、3.5、4.0 mm钻和Bego 2.8、3.65、4.0 mm钻和Straumann 2.8、3.5、4.2 mm钻进行分组比较。按照厂家建议的转速,在同样水量,开水进关水出钻情况下收集的骨量组间比较差异无统计学意义(表4),提示在开水冷却高速备相似洞型的情况下,不同钻的形态对收集骨量无显著影响。
4.
不同种植系统开水进关水出钻的备洞方法留取骨量的差异
Comparison the harvest bone volume among different implant system with high speed drill with irrigation then low speed without irrigation method
| Diameter of hole/mm |
Bicon system/mg |
Bego system/mg |
Straumann system/mg |
P |
| n=10. | ||||
| 2.8-3.0 | 4.18±1.86 | 4.61±3.39 | 2.96±1.54 | 0.288 |
| 3.5-3.75 | 6.30±2.51 | 6.92±3.77 | 5.18±1.80 | 0.406 |
| 4.0-4.2 | 9.90±3.42 | 8.70±4.09 | 10.56±5.66 | 0.692 |
2.4. 慢钻关水备洞与取骨钻取骨量的比较
Bicon系统低速无水预备5 mm×10 mm和Bego系统低速无水预备4.7 mm×10 mm时留取的骨量与取骨钻预备5 mm×10 mm的骨量3组比较(表5), Bicon和Bego组获取骨量差异无统计学意义;取骨钻组取骨量显著高于Bicon和Bego组,取骨钻组取骨量约为Bicon或Bego组的1.14~1.17倍。
5.
不同取骨方式留取骨重量的比较
Comparison of the bone volume harvested with different methods
| Variable | Bicon system/mg | Bego system/mg | Neo biotech drill/mg |
| n=10.*P<0.05, compared to Bicon system; # P<0.05, compared to Bego system. | |||
| Bone volume | 82.54±12.26 | 85.07±12.64 | 96.78±13.19*# |
3. 讨论
自体骨因同时具备骨传导、骨诱导和骨生成的作用,因此是骨移植材料中的金标准[1]。口内取自体骨相比于四肢、髂骨、颅顶骨取骨更微创,同时与移植区骨质相似,可以获得更好的临床效果,颌骨的骨髓间充质干细胞较髂骨的骨髓间充质干细胞成骨能力更强[2]。口腔内自体骨屑获得可以通过将块骨用骨磨磨碎获得皮质骨和松质骨,颗粒直径为1~2 mm,或用刮匙、骨凿刮取获得颗粒直径0.25~1.00 mm的皮质骨,或直接钻取或骨收集器收集颗粒直径0.10~0.25 mm的皮质骨和松质骨。一般口内取骨位点在颏部、外斜线、上颌结节、智齿拔牙窝内等。开辟口内第二术区取自体骨,术后取骨区可能出现疼痛、血肿及感觉丧失等,患者不易接受[3]。近年来临床医师发现留取种植窝内自体骨是一种有效的自体骨来源[4,5]。50 r/min 无水备洞不会导致骨灼伤[6,7],且组织学和临床证据显示低速无水备洞能获得成功的种植体骨整合[8,9]。Liang等[10]发现种植窝低速备洞留取的自体骨屑无论是成骨活性还是成骨潜能均好于从滤过式集骨器收集的自体骨,且低速备洞留取的自体骨中骨诱导蛋白含量显著高于刮骨刀收集的自体骨。颗粒状自体骨的优点是再血管化快,但是成骨之初脆弱,骨改建后会丧失一定骨量[11]。颗粒状自体骨可联合脱矿冻干骨增加移植物的量,最终也可以形成新骨[12]。临床研究显示单纯自体骨引导骨再生的骨量略低于自体骨加脱蛋白牛骨矿化物混合植骨组,部分的自体骨颗粒发生了一定程度的骨吸收[13]。生物学研究表明,自体松质骨含有成骨细胞,同时还有许多生长因子(如骨形成因子)和促生长因子,可以刺激间质细胞分化为成骨细胞和加速新分化的成骨细胞成骨。松质骨移植后的愈合可以通过成骨细胞的成骨作用和外周细胞补充成骨,以及骨再建完成[14]。无冷却水冲洗,可以保存骨细胞更多的生长因子[4,10]。
本研究定量分析各种方法备洞时留取的骨量,发现备洞时的方法对收集的骨量影响很大,全程低速无水备洞的方法收集骨量显著高于开水进关水出钻组,无论Bicon还是Bego种植系统,用前种方法可以收集更多的自体骨。当临床中需要一定量的自体骨屑,可以采用全程低速无水备洞法。临床中低速备洞的前提是种植窝颊、舌或近、远中骨壁硬度差别不大,否则低速备洞时钻会向阻力小的方向偏移。另外,本研究为了尽量控制影响因素,在理想状态下研究不同备洞方法的差异,采用的环氧树脂模型是均质材料,模拟Ⅱ类骨条件,但是临床中骨组织根据松质骨和硬质骨的比例分Ⅰ~Ⅳ类,骨密度存在差异,因此本研究的结果仅作为初步探索,有一定局限,仅为临床决策提供一定的参考。
本研究Bicon系统备洞至5 mm×10 mm或Bego系统备洞至4.7 mm×10 mm留取骨量接近单纯取骨钻组的取骨量,提示临床上在多颗牙需要种植时,可先预备无骨缺损的位点,从种植窝内留取尽可能多的自体骨,再用于骨量不足的位点的骨增量手术,这将在一定程度上减少患者痛苦和费用。有学者提出[15],对于水平型骨缺损,当颊舌骨宽度超过3.5 mm且种植体可以获得初期稳定性时,自体骨屑加脱矿冻干骨和胶原膜的 “三明治”植骨方法可以获得种植体骨结合的成功,避免行外置法植骨术。
综上所述,种植手术中,全程无水低速备洞的方法较有冷却水备洞关水出钻的方法可收集更多的自体骨,不同种植系统用同样的方法制备相近洞形时,收集的自体骨量基本相同。
References
- 1.Stern A, Barzani G. Autogenous bone harvest for implant reconstruction. Dent Clin North Am. 2015;59(2):409–420. doi: 10.1016/j.cden.2014.10.011. [DOI] [PubMed] [Google Scholar]
- 2.Matsubara T, Suardita K, Ishii M, et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res. 2005;20(3):399–409. doi: 10.1359/JBMR.041117. [DOI] [PubMed] [Google Scholar]
- 3.Stellingsma K, Bouma J, Stegenga B, et al. Satisfaction and psychosocial aspects of patients with an extremely resorbed mandible treated with implant-retained overdentures.A prospective,comparative study. Clin Oral Implants Res. 2003;14(2):166–172. doi: 10.1034/j.1600-0501.2003.140205.x. [DOI] [PubMed] [Google Scholar]
- 4.Anitua E, Carda C, Andia I. A novel drilling procedure and subsequent bone autograft preparation: a technical note. Int J Oral Maxillofacial Implants. 2007;22(1):138–145. [PubMed] [Google Scholar]
- 5.Manzano-Moreno FJ, Rodríguezmartínez JB, Ramos-Torrecillas J, et al. Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts. Clin Oral Investigat. 2013;17(5):1349–1356. doi: 10.1007/s00784-012-0811-4. [DOI] [PubMed] [Google Scholar]
- 6.Oh JH, Fang Y, Jeong SM, et al. The effect of low-speed drilling without irrigation on heat generation: an experimental study. J Korean Assoc Oral Maxillofac Surg. 2016;42(1):9–12. doi: 10.5125/jkaoms.2016.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kim SJ, Yoo J, Kim YS, et al. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci. 2010;18(5):522–527. doi: 10.1590/S1678-77572010000500016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Coelho PG, Suzuki M, Guimaraes MV, et al. Early bone healing around different implant bulk designs and surgical techniques: A study in dogs. Clin Implant Dent Relat Res. 2010;12(3):202–208. doi: 10.1111/j.1708-8208.2009.00153.x. [DOI] [PubMed] [Google Scholar]
- 9.Anitua E, Prado R, Orive G. A lateral approach for sinus elevation using PRGF technology. Clin Implant Dent Relat Res. 2009;11(Suppl 1):e23–31. doi: 10.1111/j.1708-8208.2009.00159.x. [DOI] [PubMed] [Google Scholar]
- 10.Liang C, Lin X, Wang SL, et al. Osteogenic potential of three different autogenous bone particles harvested during implant surgery. Oral Dis. 2017;23(8):1099–1108. doi: 10.1111/odi.12704. [DOI] [PubMed] [Google Scholar]
- 11.Miron RJ, Zhang Q, Sculean A, et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016;20(8):2259–2265. doi: 10.1007/s00784-016-1724-4. [DOI] [PubMed] [Google Scholar]
- 12.Meloni SM, Jovanovic SA, Urban I, et al. Horizontal ridge augmentation using GBR with a native collagen membrane and 1 ∶1 ratio of particulated xenograft and autologous bone: a 1-year prospective clinical study. Clin Implant Dent Relat Res. 2017;19(1):38–45. doi: 10.1111/cid.12429. [DOI] [PubMed] [Google Scholar]
- 13.Benic GI, Bernasconi M, Jung RE, et al. Clinical and radiographic intra-subject comparison of implants placed with or without guided bone regeneration: 15-year results. J Clin Periodontol. 2017;44(3):315–325. doi: 10.1111/jcpe.12665. [DOI] [PubMed] [Google Scholar]
- 14.Jensen SS, Broggini N, Hjørting-Hansen E, et al. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. a histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2006;17(3):237–243. doi: 10.1111/j.1600-0501.2005.01257.x. [DOI] [PubMed] [Google Scholar]
- 15.Fu JH, Wang HL. Horizontal bone augmentation: the decision tree. Int J Periodont Restorat Dent. 2011;31(4):429–436. [PubMed] [Google Scholar]
