Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2020 Aug 24;140:110248. doi: 10.1016/j.chaos.2020.110248

Forecasting incidences of COVID-19 using Box-Jenkins method for the period July 12-Septembert 11, 2020: A study on highly affected countries

Ramesh Chandra Das 1
PMCID: PMC7444906  PMID: 32863619

Abstract

Background

The devastating spread of the novel coronavirus, named COVID-19, starting its journey from Wuhan Province of China on January 21st, 2020, has now threatened lives of almost all the countries of the world in different magnitudes. Mostly the developed countries have been hit hard, besides the emerging countries like China, India and Brazil. The scientists and the policy makers are in dark with respect to its spread and claiming lives in coming days.

Objectives

The present study aims to forecast the number of incidences in severely affected seven countries, USA, UK, Italy, Spain, France, China and India, for the period July 12-Septmeber 11, 2020 and compares the forecasted values with the actual values to judge its depth of severity and growth.

Method

The study uses Box-Jenkins method of forecasting in an Autoregressive Integrated Moving Average (ARIMA) structure on the basis of the daily data published by World Health Organization from January 21st to July 11, 2020.

Results

It is observed that USA and India are the two countries whose increasing trends will continue in the forecasted period (July 12 to September 11), others except China will face lower number of incidences. China's incidence has come to halt around 80000 in numbers. The growth rates of the number of incidences for all the countries during the forecasted period will be diminishing. The mean difference test results between the forecasted and actual values in level and growth forms show that in the former case, USA, India, UK will face increasing forecast than the actual number but in the latter case, all of the countries will face significantly decreasing growth rates in the forecasted values compared to their actual growth values.

Keywords: COVID-19; Forecasting; ARIMA, Box-Jenkins, WHO; Growth; Mean difference

1. Introduction

Human civilization is now at high risk since its valor is now bowed down to a small organism which is thousands of parts of the area of the tip of a needle in size. Starting its journey from the Wuhan Province of China in 21st January, 2020, the Novel Corona Virus, named COVID-19, a variant of SARS and MERS, spread to almost all countries of the world by affecting around a crore of people and claiming lacs of lives till date. It has mutated itself several times within a very short period of time so that the scientists are just the spectators to its spread and devastating features. Hospitals and health centres of the countries are flooded with COVID patients and in most of the countries separate open spaces are constructed for temporary hospitals. Grave yards are over loaded, mass graving isgetting done in many countries. It is a striking fact that most of the so-called developed countries with improved health facilities are highly affected. USA leads the group followed by many European countries. From the developing world, India and Brazil are in the row. No governments policies and management systems are capable to control its devastating pace. Scientists have been putting their all efforts upon discovering medicines and vaccines to guard its spread. As of now it is known from the World Health Organization's (WHO) data on how many are affected and how many have died but we do not how many will be affected and died by its ill effects. The present study aims to forecast the number of incidences across seven highly affected countries, USA, UK, Italy, Spain, France, China and India.

The study is organized as-brief literature review, rationale and objectives, data and methodology, results and discussion and finally conclusion and recommendations.

2. Literature review

Having its novelty, COVID-19 has compelled the scientists and researchers around the globe to focus on it. There is not much studies in the related field till date and the studies on its forecasting is further scanty in the short time literature on COVID. We are here exploring some studies on the roles of immunity and socio-economic and environmental factors behind its spread and devastations, and some of the studies of forecasting or predictions of COVID-19 and of other viral or bacterial diseases.

According to Raja [14], Indians have some genetic advantage in fighting against viruses and bacteria, which may be one of the causes of not affecting the world's second most populated country.Hoch [12] , in his work on immune mechanism activated by hunger and stress, finds that hunger or stress cause the production of peptides which protect against bacteria. Hence, the countries from Africa and Asia where relatively the hunger rate is high, they are less prone to COVID. Science Daily [[16] 20, 2016] reveals that Africans have high immunity than Europeans which make capable the former to fight against infectious diseases.In another study Barreiro [2] has demonstrated that Americans of African descent have a stronger immune response to infection compared to Americans of European descent. Curtis et al. [10] assert that BCG Vaccination against tuberculosis in the weak regions of the world, Asia and Africa, could have increased the immunity level to fight against viruses. Studies related to demographic significance have been worth mentioning [15]. The study argues that people living in urban centers who have less access to green spaces may be more apposite to have chronic inflammation, a condition caused by immune system dysfunction.

With respect to the role of socio-economic factors behind the spread of COVID-19,Lau et al. [11] opines that many countries are facing increasing numbers of COVID-19 cases because they are mostly attributed to regular international flight connections with China. The study indicates a strong linear correlation between domestic and international COVID-19 cases and air traffic volume for regions within and outside China. Banik et al. [1] analyse the factors that determine the fatality rates across 29 economies spread from both the developing and developed world. It reveals that factors such as public health system, population age structure, poverty level and BCG vaccination are powerful contributory factors in determining fatality rates. Mukherji [13] unveils the socioeconomic and health factors that can explain the differential impact of the coronavirus pandemic. It observes that counties with high per capita personal income have a high incidence of both reported cases and deaths. The results are striking in the sense that developed countries in USA in particular or regions of the world in general may not be safe from the outbreak, rather they are highly vulnerable than the less developed or developing countries.

With respect to the studies on predictions of COVID in particular the works of Yang et al. [9], Singh, et al. [7], Kumar, et al. [5] and Kumar et al. [6] are worth mentioning. The work of Yang et al. [9] predicts the COVID incidences for Hubei of China and Italy and shows that it will rise in different specifications.Singh et al. [7] predicted the number of incidences, death rates due to COVID for 15 countries for the period April 24 – July 7 using ARIMA method and observed that the predicted values on the confirmed cases, deaths, and recoveries will double in all the observed countries except China, Switzerland, and Germany. It was also observed that the death and recovery rates were rose faster when compared to confirmed cases over the next 2 months. USA, Italy like countries will suffer more.In a similar study,Kumar et al. [5] predicted some trajectories of COVID-19 in the coming days (until April 30, 2020) using the most advanced ARIMA model. The results predicted very frightening outcomes, which defines to worsen the conditions in Iran, entire Europe, especially Italy, Spain, and France and USA will come as a surprise and going to become the epicenter for new cases during the mid-April 2020. Further, for India, Kumar et al. [6], by using ARIMA and Richard's model, predicted that by the end of April 2020, the incidence of new cases is predicted to be 5200 through the ARIMA model versus be 6378 Richard model andthe estimated 197 deaths and drop down in the recovery rates will reach around 501 by the end of April 2020.

In the prediction of other infectious diseases, using the time series forecasting model, Siregar and Makmur [8] investigated the role of climate change in prediction of dengue fever in the districts of Medan in Indonesia for the monthly data for 2012-16 and shown that the trend is seasonal and the impact is high during the rainy season. For the study on dengue in Bangladesh, Choudhury, Banu and Islam [4] attempts to model the monthly number of dengue fever cases in Dhaka, Bangladesh, and forecast the dengue incidence using Seasonal Autoregressive Integrated Moving Average models for the monthly data, from January 2000 to October 2007, and the results showed that the predicted values were consistent with the upturns and downturns of the observed series. A forecast for the period November 2007 to December 2008 showed a pick in the incidence of dengue feverduring July 2008, with estimated cases as 689.

3. Rationale and objectives of the study

The studies so far, we have reviewed have been very tiny in number with respect to COVID predictions. Those which are reviewed in this context do cover the period of prediction until July 7. But now we have already crossed the said period of forecasting and what is now available is the actual number of incidences as per WHO reports. Thus, we need to forecast the COVID incidence for further future periods. The present study has tried to do this and aimed to forecast of COVID incidences for seven highly affected countries for the period July 12-September 11, 2020. Besides, it tries to test whether the level and growth of forecasted values are significantly larger or smaller than that of the actual values available for the period Jan 21st to July 11.

4. Data source

The present study uses the time series data on the number of incidences or number of cases of COVID for the seven selected countries for the actual period January 21st, 2020 to July 11,2020. The selected seven countries are USA, UK, Italy, Spain, France, China and India. The countries of Americas and Europe are selected on the ground of their huge death toll, China is for the origin of the pandemic and India as it is with highly dense population and still experiencing rising trends. Brazil was not considered as it was not in the list of the occurring countries in the initial phase, although its death tolls are also in alarming level. The data of number of incidences is borrowed from the World Health Organization's (WHO) day to day status report. The WHO's status reports are available up to July 11, the study thus treats all the data beyond that date as forecasted values to be computed and the data series within this date is treated as actual or historical values.

5. Methodology

In forecasting the values of a variable, from economic, social, natural fronts, among others, several methods or techniques are available. The popular methods are Average approach, Naïve approach, Drift method, Seasonal naïve approach, Time series methods, Econometric forecasting methods, Artificial neural networks. In economics, the widely applied methods fall in the domains of Time series methods and Econometric forecasting methods out of which the Box-Jenkins method is a widely applied technique. The present study relies on the Box-Jenkins method [3]for forecasting the number of COVID incidences in all the selected countries for the period July 12, 2020 to September 11, 2020, based on the actual historical data of January 21st, 2020 to July 11, 2020.

5.1. Box-Jenkins method of forecasting

Box-Jenkins method is a linear structure model which traces all the past values of the variable and its stochastic components to predict the values for all the future periods. Prior to have the details of Box and Jenkins (B-J) method of forecasting we need to see how a time series data of a particular variable is generated.

There are three processes behind the cohort of a time series data-

  • 1.

    AR (autoregressive) Process: Past values of the variable and error term generate the data

  • 2.

    MA (moving average) Process: Only the errors or the disturbance term generate the data

  • 3.

    ARMA (autoregressive and moving average) Process: Data is generated by the combination of AR and MA processes

Sometimes it is taken as ARIMA model where ‘I’ stands for the order of Integration of the series or how many differencing is done for making the time series of the variable to Stationary.

An AR (p) process is one where the current or present period's value of a variable ‘y’ depends on only the past values plus an error term. If there are ‘p’ order in the process i.e. current value of y depends on the ‘p’ order of past (e.g. t-1, t-2, etc.) values and an error term of the current period then the AR(p) can be written as-

yt=μ+φ1yt1+φ2yt2+φ3yt3+φ4yt4+..+φpytp+ut=μ+φiyti+ut (1)

whereut is the white noise (WN) error term with zero mean, constant variance and zero auto-covariance.

An MA(q) process, on the other hand, is the linear combination of all the q terms of the past values of the white noise terms depending on time. It is a white noise process in which the current value of yt depends on the current value of the WN error term and all past values of the error terms. Because all the errors are WN, so, an MA process is necessarily a stationary process. It is true further because it is the linear combination of all plus and minus values of the errors which hover around the value zero.

Hence, an MA (q) process can be written as-

yt=ut+θ1ut1+θ2ut2+θ3ut3+θ4ut4+..+θqutq=ut+θiuti (2)

An AR process is stationary if the characteristic root lies outside the unit circle or having values > 1. If it is so then then φ becomes less than 1. This means the condition φ<1 lead to the values lying inside the unit circle representing stationarity of the AR process, the model is thus having stability property. The AR coefficients should then be less than unity or they should lie within the unit circle.

An ARIMA (p, q) process is the combination of AR and MA process, I being the order of integration which can be represented by ‘d’, number of differencing to convert the series from non-stationary to stationary. The model for ARMA (p, d, q) can then be written as-

yt=μ+φ1yt1+φ2yt2+φ3yt3+φ4yt4+.+φpytp+ut+θ1ut1+θ2ut2+θ3ut3+θ4ut4+..+θqutq

Using Lag operator, we have

(1φ1Lφ2L2φ3L3φ4L4...φpLp)yt=μ+(1+θ1L+θ2L2+θ3L3+θ4L4+...+θqLq)utOr,φ(L)yt=μ+θ(L)ut (3)

This relation (3) stands for invertibility between the AR and MA process which means AR and MA processes can be made invertible from one to another.

5.2. Forecasting in ARIMA model: Box-Jenkins method

The B-J model undergoes several sub-models and it is thus requiredto determine which model is appropriate. The entire procedure follows four-steps:

Step 1: Identification: To determine the appropriate values of p, d. and q.

  • Ø

    The main tools in this search are thecorrelogram and partial correlogram where the values of autocorrelation coefficients (ACF) and partial autocorrelation coefficients (PACF) are generated.

Step 2: Estimation: To estimate the parameters of the chosen model. The parameters are all AR and MA terms and a constant term.

Step 3: Diagnostic Checking: To check if the residuals from the fitted model are white noise. It is based on the statistical significance of the estimated values of AR and MA terms, the values of adjusted R square (which should be maximum), and lowest possible values of the information criterion such as Akaike Information Criteria (AIC) and Swartz Information Criteria (SIC).

  • Ø

    If they are, accept the chosen model; if not, start afresh.

  • Ø

    That is why the BJ methodology is an iterative process.

Step 4: Forecasting. The ultimate test of a successful ARIMA model lies in its forecasting performance, within the sample period as well as outside the sample period. On the basis of the acceptable results obtained from Step 1 to 3, forecasting is made on the appropriate model of ARIMA. The forecasting results are accepted on the basis of the acceptable values of root mean square error (RMSE), bias proportion, variance proportions and covariance proportions. The acceptable forecasted values will be those whose RMSE will be minimum possible and covariance proportions will be greater than bias proportions and variance proportions.

5.3. Computation of forecasted values of the number of COVID incidences

Before going for predicting the number of cases for all the seven selected countries we present the diagrammatical view of the actual trends of the same for all the available data. Fig. 1 presents the same.

Fig. 1.

Fig. 1

Trends of number of incidences (i.e. actual values) of the selected countries.Source: Drawn by the authors based on the WHO's status reports.

It is observed from the series of the countries on number of incidences that all countries have experienced increasing trends starting from the first case in 21st January, 2020 in Wuhan Province of China. Maintaining a highly rising trends for the phase of early several weeks China's case became stagnated from the mid of March 2020. In the meantime, Italy became the epicenter of Europe in terms of number of incidences and deaths followed by Spain, France and UK. The ramifications were not restricted to the European zone only, it quickly spread to USA with a very high rate of growth in terms of both number of cases and deaths. USA overtakes China on March 28 and still maintaining top position in the world level with more than lacs of deaths and more than 30 lacs number of cases.

In the interim, side by side with Europe and Americas, India has become the only epicenter of Asia and it overtakes the top European members in the list, UK, in June 12. It is an unknown event now where the countries will stay in terms of incidence and death. We can only make forecasting of the same for all the future periods. The present study aims to forecast the number of incidences for the next two months from July 12. The following section focuses on the determination of the forecasted values by using all the four steps of B-J methods.

5.4. Step 1-3 of forecasting

Table 1 presents the basic results required in the first 3-steps of forecasting process. Column 2 gives the ADF values to show the stationarity of the series and order of integration, column 3 gives all possible forms of ARIMA based on the shapes of ACF and PACF functions, column 4 shows the regression results which determine the values of AR and MA terms, column 5 gives the values of adjusted R square and column 6 and 7 respectively show the values of AIC and SIC criteria.

Table 1.

Unit Root Test and ARIMA results for number of cases.

Groups ADF Possible forms of ARIMA Regression Co-effs. (Prob) 2 AIC SIC
USA -11.4 (0.00)
I(2)
(1,2,1) AR(1) = -0.14 (0.15)
MA(1) = -0.66(0.00)
0.40 21.17 21.23
(7,2,1) AR(7) = -0.18 (0.02)
MA(1) = -0.72(0.00)
0.41 21.19 21.25
(8, 2, 1) AR(8) = 0.20(0.01)
MA(1) = -0.74(0.00)
0.42 21.18 21.24
(9,2,1) AR(9) = -0.25(0.00)
MA(1) = -0.70(0.00)
0.43 21.17 21.23
(13,2,12) AR(13) = -0.27(0.00)
MA(12) = 0.14(0.12)
0.12 21.62 21.68
UK -3.91(0.00)
I(1)
(1,1,1) AR(1) = 0.97 (0.00)
MA(1) = -0.83 (0.00)
0.32 18.56 18.62
(2, 1, 1) AR(2) = 0.32(0.00)
MA(1) = 0.28 (0.00)
0.19 18.74 18.79
(1,1,2) AR(1) = 0.32(0.00)
MA(2) = 0.16(0.04)
0.17 18.75 18.81
(8,1,1) AR(8) = 0.29(0.00)
MA(1) = 0.19(0.01)
0.16 18.80 18.85
Italy -2.49(0.01)
I(2) No intercept and trend
(1,2,1) AR(1) = -0.16 (0.47)
MA(1) = -0.16 (0.46)
0.10 15.16 15.21
(7,2,1) AR(7) =-0.38 (0.00)
MA(1) = -0.46(0.00)
0.20 15.06 15.12
(1,2,7) AR(1) = -0.43 (0.00)
MA(7) = 0.31 (0.00)
0.18 15.05 15.11
(1,2,8) AR(1) = -0.36 (0.00)
MA(8) = -0.21 (0.00)
0.12 15.12 15.18
Spain -12.05(0.00)
I(2)
(1,2,1) AR(1) = 0.22 (0.07)
MA(1) = -0.72 (0.00)
0.20 17.47 17.53
(1,2,2) AR(1) = -0.48 (0.00)
MA(2) = -0.43(0.00)
0.21 17.46 17.52
(2,2,1) AR(2) = -0.24 (0.00)
MA(1) = -0.50 (0.00)
0.22 17.45 17.51
(2,2,2) AR(2) = -0.43(0.14)
MA(2) = 0.22(0.48)
0.04 17.66 17.71
France -13.05(0.00)
I(2)
(1,2,1) AR(1) = -0.13 (0.21)
MA(1) = -0.66 (0.00)
0.38 16.32 16.37
(1,2,2) AR(1) = -0.70 (0.00)
MA(2) = -0.50 (0.00)
0.38 16.33 16.37
China -6.05(0.00)
I(0)
(1,0,1) AR(1) = 0.96(0.00)
MA(1) = 0.14(0.05)
0.99 17.48 17.54
(1,0,28) AR(1) = 0.92(0.00)
MA(28) = 0.99(0.00)
0.99 12.71 12.76
India -13.57(0.00)
I(2)
(1,2,1) AR(1) = 0.03(0.79)
MA(1) = -0.57(0.00)
0.21 17.16 17.22
(1,2,2) AR(1) = -0.52(0.00)
MA(2) = -0.32(0.00)
0.21 17.16 17.22
(1,2,7) AR(1) = -0.39(0.00)
MA(7) = 0.08(0.29)
0.14 17.24 17.30

Note: Bold marks indicate significant results and the accepted ARIMA structures for which forecasting are made.

Source: Computed by the author

It is observed from the table that the order of integration of the series for USA, Italy, Spain, France and India is 2 which means these series are second difference stationary. UK's series is first difference stationary but China's series is stationary at level. On the basis of these unit root test results in Augmented Dickey-Fuller (ADF) lines and shapes of ACF and PACF in the respective correlograms we have determined all possible combinations of AR and MA terms. The bold marked results for AR and MA terms after regression of the current values of the number of incidences upon all of its possible lagged values of AR and MA terms of each of the countries do indicate the acceptable structure of the ARIMA where highest values of adjusted R square and low AIC and SIC values are considered as the marking weapons. The optimum and stable structure of ARIMA for USA is (9,2,1), UK (1,1,1), Italy (7,2,1), Spain (2,2,1), France (1,2,1), China (1,0,28) and India (1,2,2).

5.5. Step 4 of forecasting

On the basis of the acceptable results obtained from Step 1 to 3, forecasting is made on the appropriate model of ARIMA. The forecasting results are accepted on the basis of the acceptable values of root mean square error (RMSE), bias proportion, variance proportions and covariance proportions. Figs. 2 and 3 present the graphical plots of forecasted values of number of incidences of the selected countries. The numerical values of the forecasted series are given in the Appendix (Table A1).

Fig. 2.

Fig. 2

Forecasted values of number of incidences in USA and India.Source: Drawn by the authors based on the derived forecasted values.

Fig. 3.

Fig. 3

Forecasted values of number of incidences in UK, Italy, Spain, France and China. Source: Drawn by the authors based on the derived forecasted values.

It is observed from the figures that USA leads the group in both actual and forecasted values of number of incidences followed by India. Both the countries have been experiencing exponential increase in incidences and are expected to experience so in coming two months. There is no signs of stagnancy or stationary forecasted values till September 11. It is thus inferred that these two countries may not face the peak of the severity in next 60 days. USA is forecasted to record over 80 lacs cases and India more than 40 lacs cases in September 11.

Now come to the discussion on the forecasted trends of remaining five countries in the list. Fig. 3 depicts that UK will follow India but there is a huge gap between India and UK. On September 11, UK may face around 30 lacs cases which is around 10 lacs less cases than India. China is in the next position after UK. Spain, France and Italy follow China. Italy is in the bottom position. The peak points of all these countries except USA, India and UK have already crossed and they are narrowing down the gap between actual occurrence and forecasted occurrence.

Remarkable sign is observed for China in the sense that its peak has reached on February 20 and the trend thereafter maintained at a stationary level around 80000. The European victims are now getting relief in terms of number of incidences but USA and India have been expected to hit hard in coming days.

Another way of finding the severity of the forecast values of the number of incidences is the growth trend. Fig. 4 depicts it.

Fig. 4.

Fig. 4

Growth rate of forecasted values.Source: Drawn by the authors based on the derived forecasted values.

It is observed from the figure that Chinese growth rate was maximum in the very first phase of the outbreak and then USA and UK followed China. But, on an average, the growth rate of China in all the forecasted period is 0.00001 per cent while that of others are around 1 per cent.

5.6. Comparative study on actual and forecasted values in level and growth forms

We now try to show whether there is a significant difference in forecasted values (for the period July 12 – September 11) of the number of incidences in level and growth forms in comparison to the actual values (for the period January 21st – July 11). For this purpose, we have computed the mean values of the forecasted values in levels and growths and that of actual values in levels and growths. After that we have computed the standard deviations of the same in both actual and forecasted periods. The test statistics for examining whether there are significant increases or decreases in the level and growth of the forecasted values vis-à-vis the corresponding actual values across the countries is student t statistics.

The formula for t statistics for the mean difference is-

t=(μfμa)/(Sf2/nf+Sa2/na)

with degrees of freedom (nf+na-2). where ‘µ’ stands for mean value for forecasted (f) and actual (a). S2 represents variance of the forecasted and actual values.

The mean and standard deviation (SD), mean differences and t values for both the level and growth forms are respectively given in Tables 2 and 3 .

Table 2.

Results of mean difference tests for level values.

Country Average Forecast Values (Jul 12 to Sept 11) Average Actual Values (Jan 21 to Jul 11) SD of Forecast Values (Jul 12 to Sept 11) SD of Actual Values (Jul 12 to Sept 11) t of mean diff (Forecast-Actual)
United States 6308829.855 895802.1098 1163835.327 945618.9185 32.93304191
United Kingdom 254811.2274 128530.3064 29537.26894 125255.824 12.33787841
Italy 33612.47177 130637.4104 5967.542088 101420.4233 -12.52256661
Spain 76560.67274 132417.9249 13654.72482 107697.7555 -6.673720841
France 54016.695 80319.65896 9605.449483 66498.99716 -5.057373276
China 84786.14774 73425.23699 0.028825043 22993.84306 6.498672284
India 3171701.097 124574.4451 562470.0158 203673.8686 41.68842023

Note: Bold marks indicate significant results at 5% level.

Source: Author's calculations

Table 3.

Results of mean difference tests for growth values.

Country Average Forecast Values (Jul 12 to Sept 11) Average Actual Values (Jan 21 to Jul 11) SD of Forecast Values (Jul 12 to Sept 11) SD of Actual Values (Jul 12 to Sept 11) t of mean diff (Forecast-Actual)
United States 1.047 11.17993185 0.099185526 25.13991667 -5.301330843
United Kingdom 0.66 8.681737714 0.073769216 17.83869576 -5.914500178
Italy 1.006 11.83256182 0.091527666 61.26289483 -2.324420755
Spain 1.011 11.2502479 0.092408959 43.68115673 -3.083147251
France 1.008 8.725214814 0.091838458 19.6109477 -5.175731897
China 0 3.933097137 4.70E-06 12.11761724 -4.26914095
India 1.005 10.52936256 0.091320714 32.02762148 -3.911374117

Note: Bold marks indicate significant results at 5% level.

Source: Authors’ calculations

It is observed from Table 2 that the average forecasted values of number of incidences are greater than that of the actual values for USA, India, UK and China with significant positive values in calculated t statistic. All of them are highly significant. But, the results of Italy, Spain and France, the trio in the adjacent region in Europe, show the difference to that of the above-mentioned countries with a negative and significant values of the t statistic. This means, the forecasted values of these three European countries are going to be falling.

Whenever we talk of the differences in the growth rates between forecasted and actual values then we see (refer to Table 3) that all the countries’ forecasted growth rates are getting lower and lower as compared to their actual growth rates. This is evidenced from the negative and significant values of the calculated t statistic.

The negative sign of the t values gives the relieving signs to the affected countries in the sense that, although the number of cases is increasing day by day, the growth rates of such increases are going down over time. But it is not clear from the above analysis in which day there will be zero growth of the cases for the countries except China.

6. Conclusion and recommendations

The study so far, we made is now in a position to conclude. We started our journey by considering the objectives of forecasting the number of incidences of the seven highly affected countries of the globe in one hand and the severity of this forecasted values on the other. It was observed that USA and India are the two countries whose increasing trends will continue in the forecasted period (July 12 to September 11), others except China will face lower number of incidences. China's incidence has come to halt around 80000 in numbers. The growth rates of the number of incidences for all the countries during the forecasted period will be diminishing. The mean difference test results between the forecasted and actual values in level and growth forms show that in the former case, USA, India, UK will face increasing forecast than the actual number but in the latter case, all of the countries will face significantly decreasing growth rates in the forecasted values compared to their actual growth values. Hence, in terms of total number of incidences, the forecasting results provide us gloomy pictures but in terms of the growth figures, the sign is definitely of relieving signs (Table A2).

The study recommends for maintaining appropriate measures such as physical/social distancing, awareness campaigns, large scale testing, uses of masks and sanitizers, incentives for inventing vaccines, sizable amount of national incomes on health care facilities, relief funds for the affected zones in terms of kinds to avoid outside home movements, etc.

7. Funding information

While doing the research and preparing the manuscript the author did not use funds of any government or agencies.

Declaration of Competing Interest

In preparing the manuscript the author did not face any conflict of interests and did not use any such materials of others where such conflict would at all arise.

Appendix

Source: Computed by the author .

Table A1.

Forecasted values of number of incidences.

Date USA UK Italy Spain France China India
1/21/2020
1/22/2020 -651.32
1/23/2020 -112.803 -10.4029
1/24/2020 -187.487 2.091972 2.308769 -135.821 200.0047
1/25/2020 -224.869 5.480038 2.305918 5.495655 264.0949 494.3476
1/26/2020 -225.752 10.58698 9.293847 12.57273 844.1042 974.5049
1/27/2020 -190.922 17.06037 20.40184 21.40369 1914.875 1592.129
1/28/2020 -121.145 25.21898 35.05084 33.5037 3711.985 2372.772
1/29/2020 -17.174 34.76413 53.37779 47.79814 5198.481 3302.93
1/30/2020 120.2568 45.88011 75.52382 65.04918 6943.99 4389.739
1/31/2020 290.4277 58.6633 101.4555 84.71625 9019.436 5629.429
02-01-2020 -268.22 492.6347 73.07136 131.1386 107.1827 11103.61 7023.992
02-02-2020 -125.167 726.1891 89.12289 164.581 132.1768 13503.99 8572.374
02-03-2020 435.4174 990.4168 106.8097 201.7913 159.8911 16476.28 10275.13
02-04-2020 1413.79 1284.658 126.1354 242.7675 190.1891 19864.74 12131.97
02-05-2020 2808.92 1608.268 147.0984 287.5074 223.1676 23896.12 14143.05
02-06-2020 4622.354 1960.615 169.6995 336.0116 258.758 27722.13 16308.29
02-07-2020 6853.319 2341.082 193.9382 388.2806 297.0089 31543.65 18627.72
02-08-2020 9501.815 2749.063 219.8147 444.3142 337.8858 34459.51 21101.33
02-09-2020 12567.58 3183.966 247.3291 504.1124 381.4132 37271.42 23729.13
02-10-2020 16121.88 3645.214 276.4812 567.6752 427.5737 40424.62 26511.11
02-11-2020 19986.07 4132.24 307.2711 635.0025 476.3797 43058.88 29447.27
02-12-2020 24160.08 4644.489 339.6988 706.0944 527.8224 45258.08 32537.62
2/13/2020 28643.85 5181.42 373.7643 780.9509 581.9081 47226.56 35782.16
2/14/2020 33437.66 5742.5 409.4676 859.572 638.6322 49365.08 39180.87
2/15/2020 38541.08 6327.212 446.8087 941.9577 697.998 51008.58 42733.77
2/16/2020 43954.34 6935.047 485.7875 1028.108 760.0032 52274.09 46440.86
2/17/2020 49677.42 7565.508 526.4042 1118.023 824.6493 71763.66 50302.13
2/18/2020 55710.4 8218.109 568.6587 1211.702 891.9354 73767.94 54317.58
2/19/2020 62034.89 8892.372 612.5509 1309.146 961.8621 74608.79 58487.22
2/20/2020 68696.97 9587.834 658.0809 1410.355 1034.429 75385.47 62811.04
2/21/2020 75696.66 10304.04 705.2488 1515.328 1109.636 76102.88 67289.04
2/22/2020 83033.98 11040.54 754.0544 1624.066 1187.484 76765.54 71921.23
2/23/2020 90708.86 11796.9 804.4978 1736.568 1267.972 77377.63 76707.6
2/24/2020 98721.39 12572.69 856.579 1852.835 1351.1 77943.01 81648.16
2/25/2020 107071.5 13367.49 910.298 1972.867 1436.869 78465.24 86742.9
2/26/2020 115759.3 14180.9 965.6548 2096.663 1525.278 78947.62 91991.82
2/27/2020 124784.6 15012.52 1022.649 2224.224 1616.327 79393.19 97394.93
2/28/2020 134152.3 15861.95 1081.282 2355.549 1710.017 79804.75 102952.2
2/29/2020 143850.5 16728.82 1141.552 2490.639 1806.347 80184.91 108663.7
03-01-2020 153879 17612.74 1203.46 2629.493 1905.317 80536.05 114529.4
03-02-2020 164238 18513.35 1267.006 2772.112 2006.928 80860.39 120549.2
03-03-2020 174927.5 19430.29 1332.189 2918.496 2111.179 81159.99 126723.2
03-04-2020 185947.4 20363.21 1399.01 3068.644 2218.07 81436.72 133051.5
03-05-2020 197297.8 21311.77 1467.47 3222.557 2327.602 81692.33 139533.8
03-06-2020 208978.5 22275.62 1537.566 3380.234 2439.774 81928.44 146170.4
03-07-2020 220989.8 23254.45 1609.301 3541.676 2554.586 82146.52 152961.2
03-08-2020 233330.2 24247.93 1682.674 3706.883 2672.039 82347.97 159906.1
03-09-2020 246003 25255.74 1757.684 3875.854 2792.132 82534.04 167005.3
03-10-2020 259008 26277.58 1834.332 4048.59 2914.865 82705.91 174258.6
03-11-2020 272345.3 27313.14 1912.618 4225.09 3040.239 82864.66 181666.1
03-12-2020 286015 28362.13 1992.541 4405.355 3168.253 83011.3 189227.8
3/13/2020 300016.9 29424.26 2074.103 4589.384 3298.907 83146.75 196943.6
3/14/2020 314351.1 30499.25 2157.302 4777.179 3432.202 83271.86 204813.7
3/15/2020 329017.6 31586.83 2242.139 4968.737 3568.137 83387.42 212837.9
3/16/2020 344016.4 32686.71 2328.614 5164.06 3706.712 83494.17 221016.4
3/17/2020 359347.8 33798.64 2416.727 5363.148 3847.928 83592.77 229349
3/18/2020 375011 34922.35 2506.477 5566.001 3991.784 83683.84 237835.8
3/19/2020 391006 36057.61 2597.865 5772.618 4138.281 83767.96 246476.7
3/20/2020 407332.8 37204.14 2690.891 5982.999 4287.417 83845.67 255271.9
3/21/2020 423991.5 38361.72 2785.555 6197.145 4439.194 83917.44 264221.2
3/22/2020 440982 39530.11 2881.857 6415.056 4593.612 83983.74 273324.8
3/23/2020 458304.2 40709.07 2979.796 6636.731 4750.67 84044.98 282582.5
3/24/2020 475958.3 41898.37 3079.373 6862.171 4910.368 84101.54 291994.4
3/25/2020 493944.2 43097.8 3180.588 7091.376 5072.706 84153.79 301560.4
3/26/2020 512261.9 44307.14 3283.441 7324.345 5237.685 84202.05 311280.7
3/27/2020 530911.5 45526.17 3387.931 7561.079 5405.304 84246.62 321155.1
3/28/2020 549893 46754.68 3494.06 7801.577 5575.564 84287.8 331183.8
3/29/2020 569206.5 47992.47 3601.826 8045.84 5748.463 84325.83 341366.6
3/30/2020 588851.9 49239.35 3711.23 8293.867 5924.003 84360.96 351703.6
3/31/2020 608829.2 50495.11 3822.271 8545.659 6102.184 84393.41 362194.8
04-01-2020 629138.5 51759.56 3934.951 8801.216 6283.005 84423.39 372840.1
04-02-2020 649779.7 53032.53 4049.268 9060.537 6466.466 84451.07 383639.7
04-03-2020 670752.8 54313.82 4165.223 9323.623 6652.567 84476.64 394593.4
04-04-2020 692057.9 55603.25 4282.816 9590.473 6841.309 84500.27 405701.3
04-05-2020 713694.9 56900.66 4402.046 9861.088 7032.691 84522.08 416963.4
04-06-2020 735663.9 58205.86 4522.915 10135.47 7226.714 84542.24 428379.7
04-07-2020 757964.7 59518.7 4645.421 10413.61 7423.377 84560.85 439950.2
04-08-2020 780597.4 60839 4769.565 10695.52 7622.68 84578.05 451674.8
04-09-2020 803562 62166.62 4895.347 10981.19 7824.624 84593.93 463553.7
04-10-2020 826858.6 63501.38 5022.767 11270.63 8029.207 84608.6 475586.7
04-11-2020 850487 64843.14 5151.824 11563.83 8236.432 84622.15 487773.9
04-12-2020 874447.4 66191.74 5282.519 11860.8 8446.296 84634.67 500115.3
4/13/2020 898739.7 67547.04 5414.852 12161.53 8658.801 84646.23 512610.9
4/14/2020 923363.8 68908.9 5548.823 12466.03 8873.946 84656.91 525260.6
4/15/2020 948319.9 70277.17 5684.431 12774.29 9091.732 84666.78 538064.6
4/16/2020 973607.9 71651.72 5821.678 13086.32 9312.158 84675.89 551022.7
4/17/2020 999227.8 73032.4 5960.562 13402.11 9535.224 84684.3 564135
4/18/2020 1025180 74419.1 6101.084 13721.66 9760.931 84692.08 577401.5
4/19/2020 1051463 75811.68 6243.244 14044.98 9989.278 84699.26 590822.2
4/20/2020 1078079 77210.01 6387.041 14372.06 10220.26 84705.89 604397
4/21/2020 1105027 78613.97 6532.476 14702.91 10453.89 84712.02 618126.1
4/22/2020 1132306 80023.43 6679.549 15037.52 10690.16 84717.68 632009.3
4/23/2020 1159917 81438.29 6828.26 15375.9 10929.07 84722.9 646046.7
4/24/2020 1187861 82858.42 6978.609 15718.04 11170.62 84727.73 660238.3
4/25/2020 1216136 84283.71 7130.595 16063.95 11414.81 84732.19 674584.1
4/26/2020 1244743 85714.06 7284.22 16413.62 11661.64 84736.31 689084.1
4/27/2020 1273682 87149.34 7439.482 16767.06 11911.11 84740.12 703738.2
4/28/2020 1302953 88589.46 7596.382 17124.26 12163.22 84743.63 718546.6
4/29/2020 1332556 90034.31 7754.919 17485.22 12417.97 84746.88 733509.1
4/30/2020 1362491 91483.78 7915.095 17849.95 12675.36 84749.88 748625.8
05-01-2020 1392758 92937.79 8076.908 18218.45 12935.39 84752.65 763896.7
05-02-2020 1423356 94396.23 8240.359 18590.7 13198.06 84755.2 779321.7
05-03-2020 1454287 95859.01 8405.448 18966.73 13463.37 84757.57 794901
05-04-2020 1485549 97326.03 8572.174 19346.52 13731.32 84759.75 810634.4
05-05-2020 1517143 98797.21 8740.539 19730.07 14001.91 84761.77 826522
05-06-2020 1549070 100272.4 8910.541 20117.39 14275.15 84763.63 842563.9
05-07-2020 1581328 101751.7 9082.181 20508.47 14551.02 84765.35 858759.8
05-08-2020 1613918 103234.8 9255.459 20903.31 14829.53 84766.94 875110
05-09-2020 1646840 104721.7 9430.374 21301.92 15110.69 84768.41 891614.4
05-10-2020 1680094 106212.3 9606.927 21704.3 15394.48 84769.76 908272.9
05-11-2020 1713680 107706.6 9785.119 22110.44 15680.92 84771.01 925085.6
05-12-2020 1747597 109204.4 9964.947 22520.34 15969.99 84772.17 942052.6
5/13/2020 1781847 110705.8 10146.41 22934.01 16261.71 84773.24 959173.6
5/14/2020 1816429 112210.5 10329.52 23351.45 16556.06 84774.23 976448.9
5/15/2020 1851342 113718.6 10514.26 23772.65 16853.06 84775.14 993878.4
5/16/2020 1886587 115230 10700.64 24197.61 17152.69 84775.98 1011462
5/17/2020 1922165 116744.5 10888.66 24626.34 17454.97 84776.76 1029200
5/18/2020 1958074 118262.2 11078.31 25058.83 17759.89 84777.48 1047092
5/19/2020 1994315 119783 11269.61 25495.08 18067.44 84778.14 1065138
5/20/2020 2030888 121306.7 11462.54 25935.11 18377.64 84778.75 1083338
5/21/2020 2067793 122833.4 11657.11 26378.89 18690.48 84779.32 1101693
5/22/2020 2105030 124363 11853.32 26826.44 19005.96 84779.84 1120202
5/23/2020 2142599 125895.3 12051.16 27277.76 19324.07 84780.32 1138865
5/24/2020 2180499 127430.4 12250.64 27732.84 19644.83 84780.77 1157682
5/25/2020 2218732 128968.2 12451.76 28191.68 19968.23 84781.18 1176653
5/26/2020 2257296 130508.7 12654.52 28654.29 20294.27 84781.56 1195779
5/27/2020 2296193 132051.7 12858.92 29120.66 20622.95 84781.91 1215058
5/28/2020 2335421 133597.2 13064.95 29590.8 20954.27 84782.24 1234492
5/29/2020 2374981 135145.2 13272.62 30064.7 21288.23 84782.54 1254080
5/30/2020 2414874 136695.6 13481.93 30542.37 21624.83 84782.82 1273822
5/31/2020 2455098 138248.4 13692.88 31023.8 21964.07 84783.07 1293719
06-01-2020 2495654 139803.4 13905.46 31509 22305.96 84783.31 1313769
06-02-2020 2536542 141360.7 14119.68 31997.96 22650.48 84783.53 1333974
06-03-2020 2577761 142920.3 14335.54 32490.69 22997.64 84783.73 1354333
06-04-2020 2619313 144482 14553.04 32987.18 23347.44 84783.92 1374846
06-05-2020 2661197 146045.8 14772.18 33487.43 23699.89 84784.09 1395514
06-06-2020 2703412 147611.7 14992.95 33991.45 24054.97 84784.25 1416335
06-07-2020 2745960 149179.6 15215.36 34499.23 24412.69 84784.39 1437311
06-08-2020 2788839 150749.5 15439.41 35010.78 24773.06 84784.53 1458441
06-09-2020 2832050 152321.4 15665.1 35526.09 25136.06 84784.65 1479725
06-10-2020 2875594 153895.1 15892.43 36045.17 25501.7 84784.77 1501163
06-11-2020 2919469 155470.7 16121.39 36568.01 25869.99 84784.88 1522755
06-12-2020 2963676 157048.1 16351.99 37094.62 26240.91 84784.98 1544502
6/13/2020 3008215 158627.3 16584.23 37624.99 26614.48 84785.07 1566403
6/14/2020 3053086 160208.2 16818.1 38159.13 26990.69 84785.15 1588458
6/15/2020 3098288 161790.9 17053.62 38697.03 27369.53 84785.23 1610667
6/16/2020 3143823 163375.2 17290.77 39238.69 27751.02 84785.3 1633030
6/17/2020 3189690 164961.1 17529.56 39784.12 28135.15 84785.37 1655548
6/18/2020 3235888 166548.6 17769.98 40333.32 28521.91 84785.43 1678220
6/19/2020 3282418 168137.7 18012.05 40886.28 28911.32 84785.48 1701046
6/20/2020 3329281 169728.4 18255.75 41443 29303.37 84785.54 1724026
6/21/2020 3376475 171320.5 18501.09 42003.49 29698.06 84785.59 1747160
6/22/2020 3424001 172914.1 18748.07 42567.74 30095.39 84785.63 1770448
6/23/2020 3471859 174509.1 18996.69 43135.76 30495.35 84785.67 1793891
6/24/2020 3520049 176105.5 19246.94 43707.54 30897.96 84785.71 1817488
6/25/2020 3568571 177703.3 19498.83 44283.09 31303.21 84785.74 1841239
6/26/2020 3617425 179302.4 19752.36 44862.4 31711.1 84785.78 1865144
6/27/2020 3666611 180902.8 20007.53 45445.47 32121.63 84785.81 1889203
6/28/2020 3716128 182504.5 20264.34 46032.31 32534.8 84785.83 1913417
6/29/2020 3765978 184107.5 20522.78 46622.92 32950.62 84785.86 1937785
6/30/2020 3816159 185711.7 20782.86 47217.29 33369.07 84785.88 1962307
07-01-2020 3866673 187317.1 21044.58 47815.42 33790.16 84785.91 1986983
07-02-2020 3917518 188923.7 21307.93 48417.32 34213.89 84785.93 2011813
07-03-2020 3968695 190531.5 21572.93 49022.98 34640.26 84785.94 2036797
07-04-2020 4020204 192140.3 21839.56 49632.41 35069.28 84785.96 2061936
07-05-2020 4072045 193750.3 22107.83 50245.6 35500.93 84785.98 2087229
07-06-2020 4124218 195361.3 22377.74 50862.56 35935.22 84785.99 2112676
07-07-2020 4176723 196973.4 22649.28 51483.28 36372.16 84786.01 2138277
07-08-2020 4229560 198586.6 22922.46 52107.77 36811.73 84786.02 2164033
07-09-2020 4282728 200200.7 23197.29 52736.02 37253.94 84786.03 2189942
07-10-2020 4336229 201815.8 23473.74 53368.03 37698.8 84786.04 2216006
07-11-2020 4390061 203432 23751.84 54003.81 38146.29 84786.05 2242224
07-12-2020 4444226 205049 24031.57 54643.35 38596.43 84786.06 2268596
7/13/2020 4498722 206667 24312.95 55286.66 39049.2 84786.07 2295122
7/14/2020 4553550 208285.9 24595.96 55933.74 39504.62 84786.08 2321803
7/15/2020 4608710 209905.6 24880.6 56584.58 39962.68 84786.08 2348638
7/16/2020 4664202 211526.3 25166.89 57239.18 40423.37 84786.09 2375626
7/17/2020 4720026 213147.8 25454.81 57897.55 40886.71 84786.1 2402769
7/18/2020 4776182 214770.1 25744.37 58559.68 41352.69 84786.1 2430067
7/19/2020 4832670 216393.2 26035.57 59225.57 41821.31 84786.11 2457518
7/20/2020 4889490 218017.2 26328.41 59895.23 42292.56 84786.11 2485124
7/21/2020 4946641 219641.9 26622.88 60568.66 42766.46 84786.12 2512884
7/22/2020 5004125 221267.3 26918.99 61245.85 43243 84786.12 2540798
7/23/2020 5061940 222893.5 27216.74 61926.8 43722.18 84786.12 2568866
7/24/2020 5120088 224520.5 27516.13 62611.52 44204 84786.13 2597088
7/25/2020 5178567 226148.2 27817.16 63300.01 44688.46 84786.13 2625465
7/26/2020 5237378 227776.5 28119.82 63992.26 45175.56 84786.13 2653995
7/27/2020 5296521 229405.6 28424.12 64688.27 45665.3 84786.14 2682680
7/28/2020 5355996 231035.3 28730.06 65388.05 46157.68 84786.14 2711519
7/29/2020 5415803 232665.6 29037.64 66091.59 46652.7 84786.14 2740513
7/30/2020 5475942 234296.6 29346.85 66798.9 47150.36 84786.14 2769660
7/31/2020 5536413 235928.3 29657.7 67509.97 47650.67 84786.15 2798962
08-01-2020 5597215 237560.5 29970.19 68224.8 48153.61 84786.15 2828417
08-02-2020 5658350 239193.4 30284.32 68943.4 48659.19 84786.15 2858027
08-03-2020 5719816 240826.8 30600.09 69665.77 49167.41 84786.15 2887792
08-04-2020 5781615 242460.8 30917.49 70391.9 49678.28 84786.15 2917710
08-05-2020 5843745 244095.4 31236.53 71121.79 50191.78 84786.15 2947783
08-06-2020 5906207 245730.5 31557.21 71855.45 50707.92 84786.16 2978009
08-07-2020 5969001 247366.2 31879.53 72592.88 51226.71 84786.16 3008390
08-08-2020 6032127 249002.4 32203.48 73334.06 51748.13 84786.16 3038925
08-09-2020 6095585 250639.1 32529.08 74079.02 52272.2 84786.16 3069615
08-10-2020 6159375 252276.3 32856.31 74827.73 52798.9 84786.16 3100458
08-11-2020 6223497 253914 33185.17 75580.22 53328.25 84786.16 3131456
08-12-2020 6287951 255552.1 33515.68 76336.46 53860.23 84786.16 3162608
8/13/2020 6352736 257190.8 33847.82 77096.47 54394.86 84786.16 3193914
8/14/2020 6417854 258829.9 34181.6 77860.25 54932.13 84786.16 3225374
8/15/2020 6483303 260469.5 34517.02 78627.79 55472.03 84786.16 3256988
8/16/2020 6549085 262109.5 34854.08 79399.09 56014.58 84786.16 3288757
8/17/2020 6615198 263749.9 35192.77 80174.16 56559.77 84786.16 3320679
8/18/2020 6681643 265390.8 35533.11 80953 57107.6 84786.16 3352756
8/19/2020 6748420 267032.1 35875.08 81735.6 57658.07 84786.16 3384988
8/20/2020 6815529 268673.8 36218.68 82521.96 58211.17 84786.17 3417373
8/21/2020 6882970 270315.9 36563.93 83312.09 58766.92 84786.17 3449912
8/22/2020 6950743 271958.3 36910.81 84105.98 59325.31 84786.17 3482606
8/23/2020 7018848 273601.2 37259.34 84903.64 59886.34 84786.17 3515454
8/24/2020 7087284 275244.4 37609.5 85705.06 60450.01 84786.17 3548456
8/25/2020 7156053 276888 37961.29 86510.24 61016.32 84786.17 3581612
8/26/2020 7225153 278532 38314.73 87319.19 61585.27 84786.17 3614923
8/27/2020 7294586 280176.3 38669.8 88131.91 62156.86 84786.17 3648387
8/28/2020 7364350 281820.9 39026.51 88948.39 62731.09 84786.17 3682006
8/29/2020 7434446 283465.9 39384.86 89768.63 63307.97 84786.17 3715779
8/30/2020 7504874 285111.2 39744.84 90592.64 63887.48 84786.17 3749706
8/31/2020 7575634 286756.8 40106.47 91420.42 64469.63 84786.17 3783787
09-01-2020 7646726 288402.7 40469.73 92251.95 65054.42 84786.17 3818023
09-02-2020 7718150 290048.9 40834.63 93087.26 65641.86 84786.17 3852413
09-03-2020 7789906 291695.5 41201.17 93926.32 66231.93 84786.17 3886957
09-04-2020 7861993 293342.3 41569.34 94769.16 66824.64 84786.17 3921655
09-05-2020 7934413 294989.4 41939.15 95615.75 67420 84786.17 3956507
09-06-2020 8007165 296636.8 42310.6 96466.11 68017.99 84786.17 3991513
09-07-2020 8080248 298284.5 42683.69 97320.24 68618.63 84786.17 4026674
09-08-2020 8153663 299932.4 43058.42 98178.13 69221.9 84786.17 4061989
09-09-2020 8227411 301580.6 43434.78 99039.78 69827.82 84786.17 4097458
09-10-2020 8301490 303229.1 43812.78 99905.2 70436.37 84786.17 4133081
09-11-2020 8375901 304877.8 44192.42 100774.4 71047.57 84786.17 4168858

Table A2.

Growth rates of the forecasted values.

Date USA (Growth Rate) UK (Growth Rate) Italy (Growth Rate) Spain (Growth Rate) France (Growth Rate) China (Growth Rate) India (Growth Rate)
1/21/2020
1/22/2020
1/23/2020 -98.40279635
1/24/2020 66.20643 1205.604874
1/25/2020 19.93861 161.9556093 138.0339913 -294.4434914 147.1679916
1/26/2020 0.39294 93.19172604 303.0432565 128.7758238 219.6215451 97.12948945
1/27/2020 -15.4286 61.14482128 119.5198608 70.23900139 126.852917 63.37824469
1/28/2020 -36.5472 47.82199917 71.80234724 56.53235494 93.84999021 49.0313913
1/29/2020 -85.8236 37.8490724 52.28676403 42.66525787 40.04585148 39.20132234
1/30/2020 -800.226 31.97542985 41.48922239 36.09144624 33.57728921 32.90439095
1/31/2020 141.5063 27.86216075 34.33576321 30.23415514 29.8883783 28.24063116
02-01-2020 69.62387 24.56060263 29.25726057 26.51964647 23.10758677 24.77272562
02-02-2020 -53.3343002 47.40925 21.96692384 25.50156857 23.31915505 21.61801432 22.04418798
02-03-2020 -447.870279 36.38552 19.84541794 22.60911041 20.96759794 22.01045765 19.86329575
02-04-2020 224.697635 29.70883 18.09358139 20.30622728 18.94914726 20.56568594 18.07120688
02-05-2020 98.68014344 25.19036 16.61944228 18.42911428 17.33984755 20.29414933 16.57669777
02-06-2020 64.55983082 21.90848 15.36461308 16.87059185 15.94783472 16.01100932 15.30956901
02-07-2020 48.2646937 19.40549 14.28330667 15.55571296 14.78249948 13.78508794 14.22239855
02-08-2020 38.64545047 17.42703 13.34265245 14.43121289 13.76285357 9.243889024 13.27918822
02-09-2020 32.2650462 15.82004 12.51708826 13.45853902 12.88228153 8.160040581 12.45324347
02-10-2020 28.2814989 14.48659 11.78676508 12.60885469 12.10249147 8.460101601 11.72390222
02-11-2020 23.96860664 13.3607 11.13634489 11.86017991 11.41464033 6.516474366 11.07520583
02-12-2020 20.88459612 12.3964 10.55344938 11.19553073 10.79867593 5.107424996 10.49452122
2/13/2020 18.55858921 11.5606 10.02814847 10.60148615 10.24695049 4.34945539 9.971657423
2/14/2020 16.73591364 10.82869 9.552356927 10.06735507 9.747948173 4.528214632 9.498336601
2/15/2020 15.26249145 10.18219 9.119427276 9.58450252 9.29577306 3.329276485 9.067945658
2/16/2020 14.04542893 9.60668 8.723822969 9.145877782 8.883291929 2.480974769 8.674848954
2/17/2020 13.02051174 9.090941 8.361001467 8.745676524 8.506029975 37.28342282 8.314380914
2/18/2020 12.14431023 8.626004 8.027006623 8.378986837 8.159359379 2.792889883 7.982663955
2/19/2020 11.35244048 8.2046 7.718548929 8.041911295 7.83988392 1.139858318 7.676409737
2/20/2020 10.7392469 7.820883 7.432851703 7.730917713 7.54441827 1.041003346 7.392760333
2/21/2020 10.18922669 7.469946 7.167492629 7.443019665 7.270387818 0.951655538 7.129319941
2/22/2020 9.69305647 7.147682 6.920337901 7.175872154 7.015633956 0.870742342 6.884018556
2/23/2020 9.243059287 6.850752 6.689623454 6.927181531 6.778028167 0.797349957 6.655016884
2/24/2020 8.833238561 6.576219 6.473752943 6.695217233 6.555980731 0.730676295 6.440769885
2/25/2020 8.458258134 6.321638 6.271342165 6.478288677 6.348086744 0.670015182 6.239871174
2/26/2020 8.114017269 6.084987 6.081173418 6.274928822 6.152892156 0.614769037 6.051123493
2/27/2020 7.796608998 5.864367 5.902129829 6.084001101 5.969338049 0.564386868 5.87346788
2/28/2020 7.507096228 5.658144 5.733443244 5.904306401 5.796475589 0.518381992 5.705913029
2/29/2020 7.229246163 5.465091 5.573939083 5.734968791 5.63327733 0.476362623 5.547720204
03-01-2020 6.971473857 5.283816 5.42314323 5.575035162 5.479013722 0.437912819 5.398030805
03-02-2020 6.731912737 5.113401 5.280275206 5.423821246 5.333023324 0.402726481 5.256117643
03-03-2020 6.508542481 4.952858 5.144648092 5.280594723 5.194556058 0.370515156 5.121560326
03-04-2020 6.299695588 4.801369 5.015879879 5.14470467 5.063095076 0.340968499 4.993797505
03-05-2020 6.104091802 4.658205 4.893460376 5.015668158 4.938166965 0.313875608 4.872023239
03-06-2020 5.92033971 4.522618 4.776656422 4.892915781 4.819208782 0.289023462 4.75626694
03-07-2020 5.747624756 4.394176 4.665490782 4.776059882 4.705845705 0.266183513 4.645810643
03-08-2020 5.584149133 4.272215 4.559308669 4.664655943 4.597731296 0.245232543 4.540301724
03-09-2020 5.431272934 4.156272 4.457785644 4.558304106 4.494432903 0.225955783 4.439605493
03-10-2020 5.286520896 4.045971 4.360738335 4.456721022 4.39567327 0.208241351 4.343155576
03-11-2020 5.149377625 3.94085 4.267820656 4.359542458 4.301194052 0.191945171 4.250866241
03-12-2020 5.019253132 3.840606 4.178722568 4.266536334 4.210655807 0.176963256 4.162416653
3/13/2020 4.895512473 3.744888 4.093366209 4.177393195 4.123849958 0.163170556 4.077519265
3/14/2020 4.777797517 3.653414 4.011324413 4.091943494 4.040580714 0.1504689 3.996118686
3/15/2020 4.665642971 3.565924 3.932550936 4.009856026 3.960576912 0.138774371 3.917804327
3/16/2020 4.558661907 3.482084 3.856808164 3.931039216 3.883679354 0.128016912 3.842595703
3/17/2020 4.45658986 3.40178 3.783924687 3.85526117 3.809737579 0.118092078 3.770127466
3/18/2020 4.358785555 3.32472 3.713700389 3.782349471 3.73853149 0.108944829 3.700386747
3/19/2020 4.265208221 3.250812 3.646073752 3.712126534 3.669963104 0.1005212 3.633136811
3/20/2020 4.175588098 3.179717 3.580863517 3.644464262 3.603815207 0.092768166 3.568369749
3/21/2020 4.089702572 3.111428 3.51794257 3.579241782 3.540056869 0.085597742 3.505791276
3/22/2020 4.007273731 3.045718 3.457192552 3.516312754 3.478514343 0.079006223 3.445446467
3/23/2020 3.928096838 2.982435 3.398468418 3.455542711 3.419052371 0.072918877 3.387069157
3/24/2020 3.852048487 2.921462 3.34173883 3.396853059 3.361588997 0.067297297 3.330673343
3/25/2020 3.778881469 2.862713 3.286870412 3.340123701 3.306025129 0.062127281 3.276090226
3/26/2020 3.708455328 2.806037 3.233773126 3.285243936 3.252287832 0.057347387 3.223334364
3/27/2020 3.640637728 2.751317 3.182332194 3.2321525 3.200249729 0.052932203 3.172185105
3/28/2020 3.575266311 2.69847 3.132560846 3.180736506 3.149869092 0.048880299 3.12269679
3/29/2020 3.512228743 2.647414 3.084263006 3.13094391 3.101013637 0.045119222 3.0746673
3/30/2020 3.451366068 2.598074 3.037459333 3.082673779 3.053685829 0.041659833 3.028122845
3/31/2020 3.392584791 2.550318 2.992026902 3.035881815 3.007780381 0.03846566 2.982966339
04-01-2020 3.335795984 2.504104 2.947985635 2.990489089 2.963217759 0.035524101 2.93910901
04-02-2020 3.280867408 2.459391 2.905169594 2.946422403 2.919956295 0.032787122 2.896576844
04-03-2020 3.22772472 2.416045 2.86360399 2.903646881 2.877939821 0.030277888 2.855205027
04-04-2020 3.176296841 2.374037 2.823210186 2.862084835 2.837130389 0.02797223 2.815024276
04-05-2020 3.12647251 2.333335 2.783916003 2.8217065 2.797447097 0.025810568 2.775958569
04-06-2020 3.078206107 2.293822 2.745745955 2.782471873 2.758872813 0.023851756 2.737962133
04-07-2020 3.031384305 2.255512 2.708562951 2.744223998 2.721333652 0.022012665 2.700991667
04-08-2020 2.985983384 2.218294 2.672395032 2.70713038 2.684802348 0.020340382 2.664983446
04-09-2020 2.941926273 2.182186 2.637179701 2.670931381 2.649251969 0.018775557 2.629967401
04-10-2020 2.899166461 2.147069 2.602879837 2.635779911 2.614604868 0.01734167 2.59581576
04-11-2020 2.857610721 2.112962 2.56944031 2.601451738 2.580889993 0.01601492 2.562561148
04-12-2020 2.817256466 2.079788 2.536868496 2.568093789 2.547996511 0.014795181 2.530147677
4/13/2020 2.778017294 2.047536 2.505111671 2.535495076 2.515954923 0.013658705 2.498543836
4/14/2020 2.739847811 2.016165 2.474139644 2.503796808 2.484697362 0.012617219 2.46770016
4/15/2020 2.702737534 1.985622 2.443905672 2.472800082 2.454218225 0.011658824 2.437647141
4/16/2020 2.666610708 1.955898 2.414436907 2.442640648 2.424466537 0.010759828 2.408279601
4/17/2020 2.631439207 1.926932 2.385635207 2.413130659 2.395427569 0.009931989 2.379629732
4/18/2020 2.597225578 1.898746 2.357529374 2.38432605 2.367086499 0.009187063 2.351653416
4/19/2020 2.563744903 1.871267 2.330077737 2.356274678 2.339397748 0.00847777 2.32432718
4/20/2020 2.531330156 1.844478 2.303241712 2.328803601 2.312299247 0.007827695 2.297611701
4/21/2020 2.499631289 1.818365 2.27703251 2.302036034 2.285949673 0.007236805 2.271536755
4/22/2020 2.468627463 1.792887 2.251412787 2.275807986 2.260115612 0.00668146 2.246014203
4/23/2020 2.438475112 1.768057 2.226362888 2.250238071 2.234858973 0.006161642 2.221074911
4/24/2020 2.409137895 1.743811 2.201864018 2.225170559 2.210160608 0.005700938 2.196683305
4/25/2020 2.380329012 1.720151 2.177883873 2.200719683 2.186002209 0.00526392 2.17282154
4/26/2020 2.352286257 1.697066 2.154448542 2.176737353 2.162366259 0.004862379 2.149472542
4/27/2020 2.324897589 1.674498 2.131484222 2.153333634 2.139235991 0.004496302 2.126605446
4/28/2020 2.298140352 1.652474 2.109017805 2.130367518 2.116595347 0.004142076 2.104248426
4/29/2020 2.271992927 1.63095 2.087006683 2.107886706 2.094428942 0.003835097 2.082328411
4/30/2020 2.246434671 1.609908 2.065476119 2.085933148 2.072722031 0.003539953 2.060874228
05-01-2020 2.221445866 1.589364 2.044359543 2.064431553 2.051460471 0.003268441 2.039857563
05-02-2020 2.196935864 1.569265 2.023682825 2.043258345 2.030630696 0.003008755 2.01925208
05-03-2020 2.173103567 1.549617 2.003419997 2.022678006 2.010219684 0.002796289 1.999084589
05-04-2020 2.149644465 1.530393 1.983546862 2.002401046 1.990214931 0.002572042 1.979290503
05-05-2020 2.126755832 1.5116 1.964087523 1.98252709 1.970604428 0.002383207 1.959897088
05-06-2020 2.104415998 1.493149 1.944983027 1.96309491 1.951448052 0.002194386 1.940892075
05-07-2020 2.082410737 1.475281 1.926257901 1.943989752 1.932519098 0.002029172 1.922216226
05-08-2020 2.060926006 1.457568 1.907889746 1.925253322 1.914023897 0.001875766 1.903931693
05-09-2020 2.039880589 1.440309 1.88985765 1.906922875 1.895946803 0.001734167 1.885980048
05-10-2020 2.01926113 1.423392 1.872173893 1.888937711 1.878074396 0.001592574 1.868352508
05-11-2020 1.999054815 1.406899 1.854828292 1.871242104 1.86066694 0.001474582 1.851062605
05-12-2020 1.979190981 1.39063 1.83777019 1.853875364 1.843450512 0.001368392 1.834100542
5/13/2020 1.959833989 1.374853 1.821013198 1.8368728 1.826676159 0.001262207 1.817414442
5/14/2020 1.940795141 1.359188 1.804677714 1.820178852 1.810080244 0.001167821 1.80106083
5/15/2020 1.92206797 1.343992 1.788466453 1.80374238 1.793905072 0.001073439 1.784988441
5/16/2020 1.903754142 1.32907 1.772640205 1.787600457 1.777896714 0.000990857 1.769190275
5/17/2020 1.885839349 1.314328 1.757091165 1.771786552 1.76228918 0.000920072 1.753699101
5/18/2020 1.868153879 1.300018 1.741720285 1.756209002 1.74689501 0.000849289 1.738437621
5/19/2020 1.850849355 1.285956 1.726797679 1.740903306 1.731711176 0.000778509 1.723439774
5/20/2020 1.833862755 1.27205 1.711949216 1.725940848 1.716900679 0.000719525 1.708698779
5/21/2020 1.817185389 1.258545 1.697442277 1.711116706 1.702286039 0.000672338 1.694300394
5/22/2020 1.800808882 1.245264 1.683178764 1.696621806 1.687918127 0.000613357 1.680050613
5/23/2020 1.784725158 1.232119 1.669068244 1.68237008 1.673738133 0.000566172 1.666038804
5/24/2020 1.768879758 1.219347 1.655276339 1.668318806 1.659898769 0.000530784 1.652259047
5/25/2020 1.753405986 1.206776 1.641710147 1.654500585 1.646234658 0.0004836 1.63870562
5/26/2020 1.738109875 1.194481 1.628364183 1.64094513 1.632793693 0.000448213 1.625457973
5/27/2020 1.723167896 1.182297 1.615233134 1.627574789 1.61957045 0.000412826 1.612254438
5/28/2020 1.708392979 1.170375 1.602234091 1.614455167 1.606559682 0.000389234 1.599429821
5/29/2020 1.693913003 1.158707 1.589520052 1.601511281 1.593756308 0.000353848 1.586725552
5/30/2020 1.679718701 1.147211 1.577005896 1.588806807 1.581155408 0.000330257 1.57422174
5/31/2020 1.665676967 1.135955 1.564686955 1.576269294 1.568752217 0.000294871 1.561992178
06-01-2020 1.651909618 1.124787 1.552485671 1.563960572 1.556587645 0.000283075 1.549795589
06-02-2020 1.638368139 1.113921 1.540545944 1.551810594 1.54451994 0.000259485 1.537941602
06-03-2020 1.625007589 1.103277 1.528788188 1.539879417 1.532682751 0.000235895 1.526191665
06-04-2020 1.611941526 1.092707 1.517208281 1.52809928 1.521025636 0.0002241 1.514620112
06-05-2020 1.599045246 1.082349 1.505802224 1.516498227 1.509587347 0.00020051 1.503295642
06-06-2020 1.586316233 1.072198 1.494498442 1.505102064 1.498234802 0.000188715 1.491995064
06-07-2020 1.573862955 1.062179 1.483430546 1.493846247 1.487093935 0.000165125 1.481005553
06-08-2020 1.561530394 1.052356 1.472525132 1.482786717 1.476158506 0.000165125 1.470106331
06-09-2020 1.549426123 1.042723 1.461778656 1.471860953 1.46530142 0.000141535 1.459366543
06-10-2020 1.537543476 1.033144 1.451187672 1.46112336 1.45464325 0.000141535 1.448782713
06-11-2020 1.525771719 1.023814 1.440685911 1.450513342 1.444178231 0.00012974 1.438351465
06-12-2020 1.514213715 1.014596 1.430397751 1.440083833 1.43378486 0.000117946 1.428135189
6/13/2020 1.502829594 1.005552 1.420255272 1.42977607 1.423616788 0.000106151 1.417997516
6/14/2020 1.49161546 0.996613 1.410195107 1.419641573 1.413553825 9.44E-05 1.408002921
6/15/2020 1.480534777 0.987902 1.400396002 1.409623333 1.403595091 9.44E-05 1.398148393
6/16/2020 1.469682612 0.979227 1.39061384 1.399745665 1.393849292 8.26E-05 1.388431004
6/17/2020 1.458956182 0.97071 1.381025831 1.390031115 1.384201373 8.26E-05 1.378909144
6/18/2020 1.448353915 0.962348 1.371511892 1.38045029 1.374650571 7.08E-05 1.369455914
6/19/2020 1.437936047 0.954136 1.362241263 1.37097566 1.365301272 5.90E-05 1.360131568
6/20/2020 1.427697508 0.94607 1.352983142 1.361630356 1.356043238 7.08E-05 1.350933484
6/21/2020 1.417543307 0.938028 1.343905345 1.352435876 1.346909929 5.90E-05 1.341859113
6/22/2020 1.407562621 0.930186 1.334948373 1.343340756 1.337898839 4.72E-05 1.332905973
6/23/2020 1.397721554 0.922423 1.326109834 1.334390785 1.328974305 4.72E-05 1.32412813
6/24/2020 1.388017198 0.914795 1.317334757 1.325535936 1.320234068 4.72E-05 1.315408796
6/25/2020 1.37844672 0.907297 1.308727517 1.316820851 1.311575263 3.54E-05 1.306803676
6/26/2020 1.36900737 0.899871 1.30023186 1.308196876 1.303029306 4.72E-05 1.29831054
6/27/2020 1.359696469 0.89257 1.291845633 1.29968526 1.294594007 3.54E-05 1.289927212
6/28/2020 1.350484139 0.885393 1.283566737 1.291305822 1.286267229 2.36E-05 1.281704507
6/29/2020 1.341450025 0.878335 1.275343781 1.283033591 1.278077628 3.54E-05 1.273533161
6/30/2020 1.332482558 0.871339 1.267274706 1.274845076 1.269930581 2.36E-05 1.265465467
07-01-2020 1.323686985 0.864458 1.259306948 1.266760545 1.261917099 3.54E-05 1.257499464
07-02-2020 1.314954743 0.85769 1.251391095 1.25879894 1.254004124 2.36E-05 1.249633238
07-03-2020 1.306362855 0.851031 1.243668437 1.250915995 1.246189778 1.18E-05 1.241864925
07-04-2020 1.297882553 0.844375 1.235947087 1.243151681 1.238501097 2.36E-05 1.234241802
07-05-2020 1.289511677 0.837929 1.228367238 1.235462876 1.230849336 2.36E-05 1.226662709
07-06-2020 1.28124812 0.831483 1.220879661 1.227888611 1.223320065 1.18E-05 1.219176238
07-07-2020 1.273089832 0.825189 1.213437997 1.220386862 1.215910185 2.36E-05 1.211780699
07-08-2020 1.265034813 0.818994 1.206131056 1.212995753 1.20853422 1.18E-05 1.20452121
07-09-2020 1.257057472 0.812794 1.198955086 1.205674317 1.201274702 1.18E-05 1.19725531
07-10-2020 1.249227128 0.80674 1.191734034 1.198440838 1.194128728 1.18E-05 1.190168507
07-11-2020 1.24144735 0.800829 1.184728126 1.191312477 1.18701391 1.18E-05 1.18311954
07-12-2020 1.233809735 0.79486 1.177719284 1.184249778 1.180036119 1.18E-05 1.176153676
7/13/2020 1.226220269 0.78908 1.170876476 1.177288728 1.17308777 1.18E-05 1.169269451
7/14/2020 1.218746124 0.783337 1.164029869 1.17040892 1.166272292 1.18E-05 1.162509008
7/15/2020 1.211362563 0.777633 1.157263225 1.163591063 1.159509951 0 1.155782812
7/16/2020 1.20406795 0.772109 1.150655531 1.156852273 1.152800563 1.18E-05 1.149091516
7/17/2020 1.196860685 0.766571 1.144042828 1.150208651 1.146218141 1.18E-05 1.142562003
7/18/2020 1.189739209 0.761115 1.137545321 1.143623521 1.139685732 0 1.136105885
7/19/2020 1.182701999 0.755738 1.131121096 1.137113454 1.133227367 1.18E-05 1.129639635
7/20/2020 1.175747568 0.750486 1.124768922 1.130694057 1.126817883 0 1.123328496
7/21/2020 1.168854011 0.745216 1.118449614 1.12434663 1.120528055 1.18E-05 1.117046876
7/22/2020 1.162081501 0.740023 1.112238796 1.118053462 1.114284418 0 1.1108352
7/23/2020 1.155346839 0.734948 1.106096477 1.111830434 1.108109983 0 1.104692305
7/24/2020 1.148729538 0.729945 1.100021531 1.105692527 1.102003605 1.18E-05 1.098617055
7/25/2020 1.142148338 0.724967 1.094012857 1.099621923 1.095964166 0 1.092646841
7/26/2020 1.135661661 0.720015 1.08803343 1.093601723 1.08999057 0 1.086664648
7/27/2020 1.129248261 0.715219 1.082154864 1.087647162 1.084081747 1.18E-05 1.080823438
7/28/2020 1.122906904 0.710401 1.076339391 1.08177263 1.078236648 0 1.075007082
7/29/2020 1.116636383 0.70565 1.070585999 1.075945834 1.072454248 0 1.069289944
7/30/2020 1.110435516 0.701006 1.064859265 1.070196677 1.066733544 0 1.063559998
7/31/2020 1.10430315 0.696425 1.059227822 1.064493577 1.061094762 1.18E-05 1.057963793
08-01-2020 1.098220093 0.69182 1.053655543 1.058851011 1.055473092 0 1.052354409
08-02-2020 1.092239623 0.687362 1.048141503 1.053282677 1.049931667 0 1.046875337
08-03-2020 1.086288406 0.682878 1.042684795 1.047772521 1.04444813 0 1.041452722
08-04-2020 1.080436853 0.678496 1.037251851 1.042305281 1.039041918 0 1.036016444
08-05-2020 1.074613235 0.674171 1.03190783 1.03689487 1.033650924 0 1.030705588
08-06-2020 1.068869364 0.669861 1.026618514 1.031554465 1.028335716 1.18E-05 1.025380769
08-07-2020 1.063186576 0.665648 1.021383069 1.02626871 1.023094617 0 1.020178247
08-08-2020 1.057563904 0.661448 1.01616931 1.021009223 1.017867437 0 1.014994731
08-09-2020 1.052000397 0.657303 1.011070853 1.015844479 1.012732248 0 1.009896592
08-10-2020 1.046495127 0.65321 1.005961435 1.010691016 1.007610164 0 1.004783988
08-11-2020 1.041047184 0.649169 1.000903632 1.005629865 1.002577705 0 0.999787773
08-12-2020 1.035655677 0.64514 0.995956929 1.000579252 0.99755758 0 0.994808805
8/13/2020 1.03030383 0.641239 0.99099884 0.995605508 0.992624799 0 0.989879239
8/14/2020 1.025038661 0.637309 0.986119638 0.990680896 0.987722002 0 0.984998344
8/15/2020 1.019795714 0.633466 0.981288178 0.985791851 0.9828492 0 0.980165401
8/16/2020 1.014637138 0.629632 0.976503765 0.980950883 0.978060475 0 0.97541041
8/17/2020 1.0094998 0.625845 0.971737025 0.976169878 0.973300166 0 0.970640275
8/18/2020 1.004429497 0.622142 0.967073635 0.971435186 0.968585976 0 0.965977139
8/19/2020 0.999409876 0.618446 0.962398169 0.966733784 0.963917237 0 0.961358357
8/20/2020 0.99444018 0.614795 0.957767899 0.962077724 0.959275952 1.18E-05 0.956724219
8/21/2020 0.989519669 0.611187 0.95323739 0.95747847 0.954713674 0 0.952164133
8/22/2020 0.984647616 0.607585 0.948694519 0.952910916 0.950177413 0 0.947676347
8/23/2020 0.979823308 0.6041 0.944249124 0.948398675 0.94568406 0 0.943201729
8/24/2020 0.9750318 0.600582 0.939791204 0.943917128 0.941233009 0 0.938769217
8/25/2020 0.970315286 0.597142 0.935375371 0.939477786 0.936823666 0 0.93437822
8/26/2020 0.965616102 0.593742 0.931053713 0.935091615 0.932455448 0 0.930056075
8/27/2020 0.96099003 0.590345 0.926719306 0.930746151 0.928127781 0 0.925718196
8/28/2020 0.956380527 0.586988 0.922451112 0.926429485 0.923840104 0 0.92147571
8/29/2020 0.951828743 0.583704 0.918221998 0.922152722 0.919607805 0 0.917244567
8/30/2020 0.947320083 0.580423 0.914006042 0.917926452 0.915382376 0 0.913052149
8/31/2020 0.942853937 0.577178 0.909879119 0.913738688 0.911211399 0 0.908897924
09-01-2020 0.938429708 0.573971 0.905739149 0.909567031 0.907078263 0 0.904807802
09-02-2020 0.934046806 0.570799 0.901661563 0.905465955 0.902997829 0 0.900727942
09-03-2020 0.929704657 0.567697 0.897620476 0.901369317 0.898923339 0 0.896684753
09-04-2020 0.925389857 0.564561 0.893591129 0.897341661 0.894900692 0 0.892677743
09-05-2020 0.921140479 0.561494 0.889622015 0.893318037 0.890928855 0 0.888706426
09-06-2020 0.916917231 0.558461 0.885687955 0.889351388 0.886962326 0 0.884770329
09-07-2020 0.912720045 0.55546 0.881788488 0.88541976 0.883060496 0 0.880894037
09-08-2020 0.908573598 0.552459 0.87792316 0.881512417 0.879163574 0 0.877026548
09-09-2020 0.90447692 0.549524 0.874068301 0.87763945 0.875329917 0 0.873192911
09-10-2020 0.900392602 0.54662 0.870270323 0.873810503 0.871500786 0 0.869392682
09-11-2020 0.89635716 0.543714 0.866505161 0.870024783 0.86773353 0 0.865625426

References

  • 1.Banik A., Nag T., Chowdhury Roy, Chatterjee R. Why Do COVID-19 Fatality Rates Differ Across Countries? An Explorative Cross-country Study Based on Select Indicators. Global Busi Rev. 2020 doi: 10.1177/0972150920929897. [DOI] [Google Scholar]
  • 2.Barreiro L. Immune system of African-Americans. Cell. 2016;167:657–669. October 20. [Google Scholar]
  • 3.Box G.E.P., Jenkins G.M. 2nd edition. Holden-Day; San Francisco: 1976. Time series analysis forecasting and control. [Google Scholar]
  • 4.Choudhury M.A., Zamil H., Banu S., Islam M.A. Dengue Bulletin; 2008. Forecasting dengue incidence in Dhaka, Bangladesh: A time series analysis. December. [Google Scholar]
  • 5.Kumar P., Kalita H., Patairiya S., Sharma Y.D., Nanda C., Rani M., Rahmani J., Bhagavathula A.S. ARIMA model with machine learning approach; 2020. Forecasting the dynamics of COVID-19 pandemic in top 15 countries in April 2020. [DOI] [Google Scholar]
  • 6.Kumar P, Singh RK, Nanda C, Kalita H, Patairiya S, Sharma YD, Rani M, Bhagavathula AS (2020b) Forecasting COVID-19 impact in India using pandemic waves Nonlinear Growth Models. MedRxiv April, doi: 10.1101/2020.03.30.2004780317 [DOI]
  • 7.Singh R.K., Rani M., Bhagavathula A.S., Sah R., Rodriguez-Morales A.J., Kalita H., Nanda C., Sharma S., Sharma Y.D., Rabaan A.A. Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model. JMIR Public Health Surveillance. 2020;6 doi: 10.2196/19115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Siregar F.A., Makmur T. Time series Analysis of Dengue Hemorrhagic Fever Cases and Climate: a Model for Dengue Prediction, Journal of Physics. Conference Series. 2019:1235. [Google Scholar]
  • 9.Yang Q., Wang J., Ma H., Wang X. Research on COVID-19 Based on ARIMA Model—Taking Hubei, China as an example to see the epidemic in Italy. J Infect Public Health. 2020 doi: 10.1016/j.jiph.2020.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Curtis N., Sparrow A., Ghebreyesus T.A., Netea M.G. Considering BCG vaccination to reduce the impact of COVID-19.The Lancet. Lancet. 2020 doi: 10.1016/S0140-6736(20)31025-4. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31025-4/fulltext. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lau H., Khosrawipour V., Kocbach P. The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. J Microbiol Immunol Infect Sci Direct. 2020;53(3):467–472. doi: 10.1016/j.jmii.2020.03.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hoch M. Medical Sciences Institute in Bonn; Germany: 2010. Immune mechanism activated by hunger and stress. https://www.dw.com/en/immune-mechanism-activated-by-hunger-and-stress-scientists-find/a-5310315. [Google Scholar]
  • 13.Mukherji, N (2020). The Social and Economic Factors Underlying the Incidence of COVID-19 Cases and Deaths in US Counties, medRxiv, May, 10.1101/2020.05.04.20091041
  • 14.Raja R. Nature India; 2008. More immunity genes in Indians. [DOI] [Google Scholar]
  • 15.Rook G.A., Raison C.L., Lowry C.A. Vol. 177. Experimental Immunology; 2014. pp. 1–12. (Microbial 2018;old friends;, immunoregulation and socioeconomic status). Clinical. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Science Daily (2016). Europeans, Africans have different immune systems, October 20, www.sciencedaily.com/releases/2016/10/161020142948.htm.

Articles from Chaos, Solitons, and Fractals are provided here courtesy of Elsevier

RESOURCES