Abstract
In this fast-growing technological world biosensors become more substantial in human life and the extensive use of biosensors creates enormous research interest among researchers to define different approaches to detect biomolecules. The FET based biosensors have gained a lot of attention among all because of its high detection ability, low power, low cost, label-free detection of biomolecules, and CMOS compatible on-chip integration. The sensitivity of the biosensor inversely proportional to device size since they detect low concentration yields quick response time. Although FET based biosensor is having a lot of advantages among others but the short channel effects (SCE’s) and the theoretical limitation on the subthreshold swing (SS > 60mv/dec) of the FET leads to restrict device sensitivity and also have higher power dissipation due to the thermionic emission of electrons. To avoid these problems researchers focus shifts to the new technology FET based biosensors i.e. TFET based biosensors which are having low power and superior characteristics due to Band to band tunneling of carrier and steep subthreshold swing. This manuscript describes the full-fledged detail about the TFET based biosensors right from unfolding the device evaluation to biosensor application which includes qualitative and quantitative parameters analysis study like sensitivity parameters and different factors affecting the sensitivity by comparing different structures and the mechanisms involved. The manuscript also describes a brief review of different sensitivity parameters and improvement techniques. This manuscript will give researchers a brief idea for developing for the future generation TFET biosensors with better performance and ease of fabrication.
Keywords: Biosensor, Nanowire, Sensitivity, TFET, Tunneling
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Mehrotra P. Science direct biosensors and their applications – A review. J Oral Biol Craniofacial Res. 2016;2015:1–7. doi: 10.1016/j.jobcr.2016.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Kougianos E. Biosensors : A tutorial review. IEEE Potentials. 2006;25(April):35–40. [Google Scholar]
- 3.Clark CL, Jr, Lyons C. Ann N Y Acad Sci. 1962;102:29. doi: 10.1111/j.1749-6632.1962.tb13623.x. [DOI] [PubMed] [Google Scholar]
- 4.A. M. Villalba-rodr, R. Parra-saldivar, and H. M. N. Iqbal (2020) Electrochemical biosensors: a solution to Pollution Detection with Reference to Environmental Contaminants, pp. 1–21. [DOI] [PMC free article] [PubMed]
- 5.Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling- FET biosensor for point-of-care diagnostics. Sci Rep 6:22554 [DOI] [PMC free article] [PubMed]
- 6.Narang R, et al. A dielectric-modulated tunnel-fet-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans Electron Devices. 2012;59(10):2809–2817. doi: 10.1109/TED.2012.2208115. [DOI] [Google Scholar]
- 7.Sarkar D, Banerjee K (2012) Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue. Device Res Conf - Conf Dig DRC:83–84
- 8.Kanungo S, Chattopadhyay S, Gupta PS, et al. Study and ana- lysis of the effects of SiGe source and pocket doped channel on sensing performance of dielectrically modulated tunnel FET based biosensor. IEEE Trans Electron Devices. 2016;63(6):2589–2596. doi: 10.1109/TED.2016.2556081. [DOI] [Google Scholar]
- 9.Kanungo S, Chattopadhyay S, Gupta PS, et al. Comparative per- formance analysis of the dielectrically modulated full-gate and short- gate tunnel FET-based biosensors. IEEE Trans Electron Devices. 2015;62(3):994–1001. doi: 10.1109/TED.2015.2390774. [DOI] [Google Scholar]
- 10.Narang R, Saxena M, Gupta M. Comparative analysis ofdielectric- modulated FET and TFET based biosensor. IEEE Trans Nanotechnol. 2015;14(3):427–435. doi: 10.1109/TNANO.2015.2396899. [DOI] [Google Scholar]
- 11.Ghosh B, Akram MW. Junction less tunnel field-effect transistor. IEEE Electron Device Lett. 2013;34(5):584–586. doi: 10.1109/LED.2013.2253752. [DOI] [Google Scholar]
- 12.Chandan VB, Nigam K, and Sharma D (2018) Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection vol. 13, pp. 452–456.
- 13.Sarkar D, Banerjee K. Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors. Appl Phys Lett. 2012;100(14):143108. doi: 10.1063/1.3698093. [DOI] [Google Scholar]
- 14.Nair PR, Alam MA (2008) Screening-limited response of nano biosensors. Nano Lett 8:1281–1285 [DOI] [PubMed]
- 15.Cao W et al. (2014) Subthreshold-swing physics of tunnel field-effect transistors Subthreshold-swing physics of tunnel field-effect, vol. 067141, pp. 0–9.
- 16.Wang PF, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W. Solid State Electron. 2004;48:2281. doi: 10.1016/j.sse.2004.04.006. [DOI] [Google Scholar]
- 17.Khatami Y, Banerjee K. IEEE Trans Electron Dev. 2009;56:2752. doi: 10.1109/TED.2009.2030831. [DOI] [Google Scholar]
- 18.Gandhi R, Chen Z, Singh N, Banerjee K, Lee S. IEEE Electron Dev Lett. 2011;32:1504. doi: 10.1109/LED.2011.2165331. [DOI] [Google Scholar]
- 19.Wadhera T, Kakkar D, Wadhwa G, Raj B. Recent advances and progress in development of the field effect transistor biosensor: a review. J Electron Mater. 2019;48(12):7635–7646. doi: 10.1007/s11664-019-07705-6. [DOI] [Google Scholar]
- 20.Kumar MJ, Vishnoi R, Pandey P (2016) Tunnel field-effect transistors (TFET): modelling and simulation. Wiley, West Sussex
- 21.Shinwari MW, Shinwari MF, Deen MJ, Selvaganapathy PR. Sensors and actuators B: Chemical The effect of DNA probe distribution on the reliability of label-free biosensors. Sensors Actuators B Chem. 2011;160(1):441–447. doi: 10.1016/j.snb.2011.08.006. [DOI] [Google Scholar]
- 22.Deen MJ, et al. (2009) Noise considerations in field-effect biosensors Noise considerations in field-effect biosensors, vol. 074703, no. May 2014
- 23.Im H, Huang X, Gu B, and Choi Y (2007) LETTERS A dielectric-modulated field-effect transistor for biosensing, vol. 2, no. July, 2007. [DOI] [PubMed]
- 24.Narang R, Saxena M, Gupta RS, Gupta M. Dielectric modulated tunnel field-effect transistor-a biomolecule sensor. IEEE Electron Device Lett. 2012;33(2):266–268. doi: 10.1109/LED.2011.2174024. [DOI] [Google Scholar]
- 25.Min KS, Kang CY, Park C, Park CS, Park BJ, Park JB, Hussain MM, Lee JC, Lee BH, Kirsch P, Tseng H-H, Jammy R, Yeom GY (2009) A novel damage-free high-k etch technique using neutral beam-assisted atomic layer etching (NBALE) for sub-32 nm technology node low power metal gate/high-k dielectric CMOSFETs. in IEDMTech Dig:435–438
- 26.Ahn J-H, Choi S-J, Han J-W, Park TJ, Lee SY, Choi Y-K. Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 2010;10(8):2934–2938. doi: 10.1021/nl1010965. [DOI] [PubMed] [Google Scholar]
- 27.Im M, Ahn J-H, Han J-W, Park TJ, Lee SY, Choi Y-K. De- velopment of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sensors J. 2011;11(2):351–360. doi: 10.1109/JSEN.2010.2062502. [DOI] [Google Scholar]
- 28.J. M. Kinsella and A. Ivanisevic, “Biosensing: Taking charge of biomolecules,” Nat Nanotechnol, vol. 2, no. 10, pp. 596–597, Oct. 2007. [DOI] [PubMed]
- 29.Barbaro M, Bonfiglio A, Raffo L. A charge-modulated FET for detection of biomolecular processes: conception, modeling, and simula- tion. IEEE Trans Electron Devices. 2006;53(1):158–166. doi: 10.1109/TED.2005.860659. [DOI] [Google Scholar]
- 30.Choi WY, Lee W. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices. 2010;57(9):2317–2319. doi: 10.1109/TED.2010.2052167. [DOI] [Google Scholar]
- 31.Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G. Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett. 2007;91(5):053102. doi: 10.1063/1.2757593. [DOI] [Google Scholar]
- 32.Zhuge J, et al. Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond Sci Technol. 2011;26(8):085001. doi: 10.1088/0268-1242/26/8/085001. [DOI] [Google Scholar]
- 33.Mallik A, Chattopadhyay A. Drain-dependence of tunnel field- effect transistor characteristics: The role of the channel. IEEE Trans Electron Devices. 2011;58(12):4250–4257. doi: 10.1109/TED.2011.2169416. [DOI] [Google Scholar]
- 34.Chattopadhyay A, Mallik A. Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans Electron Devices. 2011;58(3):677–683. doi: 10.1109/TED.2010.2101603. [DOI] [Google Scholar]
- 35.Jang J-S, Choi WY. Ambipolarity factor of tunneling field- effect transistors (TFETs) J Semicond Technol Sci. 2011;11(4):272–277. doi: 10.5573/JSTS.2011.11.4.272. [DOI] [Google Scholar]
- 36.Tunnel S, Biosensors F. Comparative performance analysis of the dielectrically modulated full. IEEE Trans Electron Devices. 2015;62(3):994–1001. doi: 10.1109/TED.2015.2390774. [DOI] [Google Scholar]
- 37.Lee H, Park J-D, Shin C. Study of random variation in germanium-source vertical tunnel FET. IEEE Trans Electron Devices. 2016;63(5):1827–1834. doi: 10.1109/TED.2016.2539209. [DOI] [Google Scholar]
- 38.Schmidt M, et al. Line and point tunneling in scaled Si/SiGe heterostructure TFETs. IEEE Electron Device Lett. 2014;35(7):699–701. doi: 10.1109/LED.2014.2320273. [DOI] [Google Scholar]
- 39.Ganapathi K, Yoon Y, Salahuddin S. Analysis of InAs vertical and lateral band-to-band tunneling transistors: Leveraging vertical tunnelling for improved performance. Appl Phys Lett. 2010;97(3):Art. no. 033504. doi: 10.1063/1.3466908. [DOI] [Google Scholar]
- 40.D. M. T. Biosensor, M. Verma, S. Tirkey, S. Yadav, D. Sharma, and D. S. Yadav (2017) Performance assessment of a novel vertical, vol. 64, no. 9, pp. 3841–3848.
- 41.Bhattacharyya A, Chanda M, De D (2019) Performance assessment of new dual-pocket vertical heterostructure tunnel FET-based biosensor considering steric hindrance issue. IEEE Trans Electron Devices:1–6
- 42.Leung G, Chui CO. Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Letters. 2012;33(6):767–769. doi: 10.1109/LED.2012.2191931. [DOI] [Google Scholar]
- 43.Anand S, Amin SI, Sarin RK. Performance analysis of charge plasma based dual electrode tunnel FET. J Semicond. 2016;37(5):054003. doi: 10.1088/1674-4926/37/5/054003. [DOI] [Google Scholar]
- 44.Sharma D, Singh D, Pandey S, Yadav S, Kondekar PN. Comparative analysis of full-gate and short-gate dielectric modulated electrically doped Tunnel-FET based biosensors. Superlattice Microst. 2017;111:767–775. doi: 10.1016/j.spmi.2017.07.035. [DOI] [Google Scholar]
- 45.Abdi DB, Kumar MJ. Superlattices and Microstructures Dielectric modulated overlapping gate-on-drain tunnel-FET as a label-free biosensor. Superlattice Microst. 2015;86:198–202. doi: 10.1016/j.spmi.2015.07.052. [DOI] [Google Scholar]
- 46.Jagadesh Kumar M, Nadda K (Apr. 2012) Bipolar charge-plasma transistor: a novel three terminal device. IEEE Transactions on Electron Devices 59(4)
- 47.Intekhab Amin S, Sarin RK. Analog performance investigation of gate misaligned double gate junctionless transistor. Journal of Computational Electronics, Springer. 2015;14(3):675–685. doi: 10.1007/s10825-015-0705-1. [DOI] [Google Scholar]
- 48.Soni D, Sharma D, Aslam M, Yadav S. Approach for the improvement of sensitivity and sensing speed of TFET-based biosensor by using plasma formation concept. Micro Nano Lett. 2018;13(12):1728–1733. doi: 10.1049/mnl.2018.5252. [DOI] [Google Scholar]
- 49.Wadhwa G. Label free detection of biomolecules using charge-plasma- based gate underlap dielectric modulated. Junctionless TFET. 2018;47(8):4683–4693. [Google Scholar]
- 50.W. T. Navaraj, S. Gupta, L. Lorenzelli, and R. Dahiya (Apr. 2018) Wafer scale transfer of ultrathin silicon chips on flexible substrates for high performance bendable systems. Adv Electron Mater, vol. 4, no. 4, Art. no. 1700277.
- 51.Núñez CG, Liu F, Navaraj WT, Christou A, Shakthivel D, Dahiya R. Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas. Microsyst Nanoeng. 2018;4(1):1–15. doi: 10.1038/s41378-018-0004-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Dubey PK, Yogeswaran N, Liu F, Vilouras A, Kaushik BK, Dahiya R (2020) Monolayer MoSe-Based tunneling field effect transistor for ultrasensitive strain sensing. IEEE Trans Electron Devices
- 53.Dubey PK and Kaushik BK (2019) Transition metal dichalcogenide material based tunneling field-effect transistor for label free bio-sensing application.