Skip to main content
PLOS One logoLink to PLOS One
. 2020 Aug 26;15(8):e0238218. doi: 10.1371/journal.pone.0238218

Role of plant compounds in the modulation of the conjugative transfer of pRet42a

Luis Alfredo Bañuelos-Vazquez 1, Lucas G Castellani 2, Abril Luchetti 2, David Romero 1, Gonzalo A Torres Tejerizo 2,*, Susana Brom 1,*
Editor: Francisco Martinez-Abarca3
PMCID: PMC7449395  PMID: 32845909

Abstract

One of the most studied mechanisms involved in bacterial evolution and diversification is conjugative transfer (CT) of plasmids. Plasmids able to transfer by CT often encode beneficial traits for bacterial survival under specific environmental conditions. Rhizobium etli CFN42 is a Gram-negative bacterium of agricultural relevance due to its symbiotic association with Phaseolus vulgaris through the formation of Nitrogen-fixing nodules. The genome of R. etli CFN42 consists of one chromosome and six large plasmids. Among these, pRet42a has been identified as a conjugative plasmid. The expression of the transfer genes is regulated by a quorum sensing (QS) system that includes a traI gene, which encodes an acyl-homoserine lactone (AHL) synthase and two transcriptional regulators (TraR and CinR). Recently, we have shown that pRet42a can perform CT on the root surface and inside nodules. The aim of this work was to determine the role of plant-related compounds in the CT of pRet42a. We found that bean root exudates or root and nodule extracts induce the CT of pRet42a in the plant rhizosphere. One possibility is that these compounds are used as nutrients, allowing the bacteria to increase their growth rate and reach the population density leading to the activation of the QS system in a shorter time. We tested if P. vulgaris compounds could substitute the bacterial AHL synthesized by TraI, to activate the conjugation machinery. The results showed that the transfer of pRet42a in the presence of the plant is dependent on the bacterial QS system, which cannot be substituted by plant compounds. Additionally, individual compounds of the plant exudates were evaluated; among these, some increased and others decreased the CT. With these results, we suggest that the plant could participate at different levels to modulate the CT, and that some compounds could be activating genes in the conjugation machinery.

Introduction

Plasmid conjugative transfer (CT) is a widely distributed mechanism that allows the distribution of genetic material across microorganisms. Conjugation is considered as the main mechanism of DNA exchange between bacteria [1], which may belong to the same or different species. CT even occurs between organisms from different kingdoms [2]. The molecular mechanism of CT has been described and usually involves several proteins that participate in DNA processing and in the assembly of the conjugative pore; consequently, activation of CT results in an expensive metabolic burden that has to be tightly regulated [3]. Different mechanisms have evolved to regulate the synthesis of the proteins that are needed for CT. Molecules from the environment or synthetized by diverse organisms have been pointed out as regulators of the CT machinery: antibiotics [4, 5], peptides [6], plant molecules [710], metals [1113] and acyl-homoserine lactones (AHLs) [7] act directly or indirectly with transcriptional activators/repressors.

Rhizobia are bacteria that grow in soils and interact with plants. Many of them have properties that improve the plant growth, i.e. they are able to convert the atmospheric nitrogen into ammonia in a specific-developed organ, the nodule, generated on the plant roots. Due to this property, rhizobia are used as bioinoculants, providing a cheaper and ecological friendly procedure for plant fertilization [14]. For the nodule formation and the establishment of the symbiosis, the plant secretes flavonoids under low nitrogen conditions, which in the proper rhizobia induce the production of nodulation factors (NFs). NFs start a complex signaling pathway in the plant, that includes duplication of the cells in the legume roots and several biochemical changes that prepare the plant for the rhizobial infection and finish with the nodules formation [15]. Commonly, rhizobia harbor one or more (mega) plasmids, which differ in their sizes (from a few Kbp to Mbp) [16, 17]. In some cases, these plasmids carry determinants needed for the nitrogen fixation functions, among others. Transfer of rhizobial plasmids through conjugation has been described for different species belonging to the Rhizobiaceae. In 2009, Ding et al. [18] classified the plasmids of rhizobia into different groups; those that are regulated by quorum-sensing (QS) -Group I-, by the rctA-rctB genes -Group II- and a third and fourth groups were proposed, whose regulation is still fuzzy -Groups III and IV- [1921]. This classification was based on the phylogenetic analysis of the relaxase (traA). The plasmids regulated by QS, generally have a master transcriptional regulator, TraR (LuxR family regulators), which usually binds a specific AHL to activate the transcription of the genes needed for CT. These genes process and prepare the DNA for transfer (DTR) or encode components for the mating pair formation (MPF) structure. It has been recently described that in the plasmids belonging to Group I, regulated by QS, the phylogenetic analysis of TraR shows four different subgroups [22]. Group I-A is mainly composed by Agrobacterium plasmids, where plant signals and AHLs are needed for the activation of transfer [23, 24]. The regulation of most plasmids from group I-B is based on AHLs [25, 26]. The regulation of plasmids from group I-C does not rely on QS, nevertheless, it depends on a TraR regulator and on the genomic background [22, 27]. Also, plasmid pRL8JI from group I-C was described to respond to homoserine, a compound found in peas exudates [10]. There are no evidences yet about regulation of plasmids belonging to group I-D.

Integrative Conjugative Elements (ICEs), similarly to plasmids, can be transferred between bacteria [3]. ICEs from rhizobia, also known as Symbiotic Islands (SI), usually harbor genes needed for nodule formation and nitrogen fixation [9, 28]. ICEMlsymR7A from Mesorhizobium loti and ICEAc from Azorhizobium caulinodans are the most studied SIs [9, 28]. These SIs can be transferred and, remarkably, their transfer mechanism can be regulated by QS [29] or by plant compounds [9]. The transfer of ICEMlsymR7A relies on a QS mechanism that involves a LuxRI system and hypothetical genes that regulate the excision and transfer of the element [30]. It was recently demonstrated that the flavanone naringenin enhances the conjugative transfer of the SI of A. caulinodans in the rhizosphere of Sesbania rostrata, through a mechanism that involves a lysR-like gene, homologous to one of the master regulators of the induction of NFs production in the rhizobia, nodD [9]. Plasmid pRet42a, from Rhizobium etli CFN42, harbors a complete DTR and MPF region of genes and a QS-regulation, dependent on AHLs [25]. Furthermore, new regulators of CT were identified on this plasmid [31]. Recently, it has been described that plasmid pRet42a is transferred at high frequencies inside the nodules developed in Phaseolus vulgaris (common bean), and on the root surface [32]. These results open the question of whether other molecules from the plant or the rhizosphere could modulate the transfer of pRet42a.

Materials and methods

Bacterial strains and growth conditions

Strains were grown on PY (0.5% peptone, 0.3% yeast extract, and 0.07 M CaCl2) and in minimal medium (MM, 1.26 mM K2HPO4, 0.83 mM MgSO4, 0.0184 mM FeCl3·6H2O and 1.49 mM CaCl2 supplemented with a carbon, succinic acid 0.01 M, and nitrogen source, ammonium chloride 0.01M) at 30 ºC [33, 34]. Antibiotics were added at the following concentrations (in μg/ml): Nalidixic Acid (Nal) 20, Gentamicin (Gm) 30, Spectinomycin (Sp) 100, Rifampicin (Rif) 50 (Table 1).

Table 1. Strains and plasmids used in this work.

Strains and plasmids Relevant characteristics Features References
R. etli
CFNX182 Derivative of R. etli CFN42 cured of pRet42a Nal [35]
CFNX559 Derivative of CFNX182 with RFP in the chromosome and GFP in pRet42a Nal, Gm, Sp, RFP and GFP [36]
CFN2001 CFN42 derivative (pRet42a- pRet42d-) Rif [37]
CFNX187 CFNX182 complemented with pRet42a::Tn5mob Km, Nm [35]
CFNX669 CFN42 derivative, traI::pSUPΩSp Sp [25]

Nal, Rif, Nm, Sp, Gm, Km = nalidixic acid, rifampicin, neomycin, spectinomycin, gentamicin and kanamycin resistance, respectively. RFP, red fluorescent protein. GFP, green fluorescent protein

Flavonoids, exudates and extract compounds

Flavonoids: (±)-Naringenin ≥95% ((±)-2,3-Dihydro-5,7-dihydroxy-2-(4hydroxyphenyl)-4H-1-benzopyran-4-one, 4′,5,7-Trihydroxyflavanone), Genistein ≥98% (4′,5,7-Trihydroxyisoflavone, 5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), Quercetin ≥98% (2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one dihydrate, 3,3′,4′,5,7-Pentahydroxyflavone dihydrate), Acetosyringone (4′-Hydroxy-3′,5′-dimethoxyacetophenone), Luteolin ≥98% (3′,4′,5,7-Tetrahydroxyflavone), Apigenin ≥95.0% (4′,5,7-Trihydroxyflavone, 5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-benzopyrone), and Gallic acid 97.5–102.5% (titration) (3,4,5-Trihydroxybenzoic acid) were purchased from Sigma-Aldrich Chemicals (St. Louis, MO). Stock solutions were prepared at 100 mM in a 1:1 mixture of water and DMSO.

For the preparation of exudates of P. vulgaris and M. sativa, 20 plants were placed in 500 ml of nitrogen-free Fåhraeus nutrient solution [38] for 5 days post germination (dpg). Afterwards, the medium was recovered, filtered through a 0.22 μm filter and stored at 4 ºC in the dark.

For the preparation of roots extracts of P. vulgaris, three of the plants used to obtain exudates were used. The roots of these plants were macerated in 20 ml of nitrogen-free Fåhraeus nutrient solution, filtered through a 0.22 μm filter, and maintained at 4 ºC in the dark.

For the nodules extracts, 150 nodules were collected from 21 days post inoculation (dpi), macerated in 20 ml of nitrogen-free Fåhraeus nutrient solution, filtered with a 0.22 μm filter and maintained at 4 ºC in the dark.

Bacterial matings

Conjugations between the strains were done biparentally, using overnight cultures grown to stationary phase, ca. 1.2 OD600nm [25]. Conjugations in liquid medium were done as follows: donor and recipient strains were mixed in a 1:1 volume ratio in 5 ml of PY or MM medium at a final OD600nm of 0.05 and incubated at 30 ºC overnight at 200 rpm. Flavonoids were included, respectively, at different concentrations (2 μM, 20 μM, and 50 μM). Conjugations with exudates and extracts of roots and nodules were done in liquid medium by mixing 2.5 ml of Fåhraeus containing the exudates or extracts (or nitrogen-free Fåhraeus nutrient solution as control), 2.5 ml of PY medium, 0.25 ml of donor and 0.25 ml recipient (each ca. 1.2 OD600nm). The mixtures were incubated at 30 ºC overnight, and then centrifugated at 5000 rpm for 2 minutes and the supernatant was discarded. The pellet was suspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol). Conjugations in an environment of low oxygen were done by mixing the donor and recipient strains in a 1:1 volume ratio on solid medium and placed in a chamber under a 1% oxygen / 99% argon mixture and incubated at 30 ºC overnight. As control, a 1: 1 mixture of water and DMSO was made and the same amount was added to the conjugation assays for the different concentrations used for the different compounds. Serial dilutions were plated on the selective media supplemented with the corresponding antibiotics, to quantify the donor, recipient and transconjugants cells. The conjugation frequency is expressed as the number of transconjugants per donor cell.

Plant assays

Seeds from P. vulgaris cv Negro Jamapa were sterilized and germinated as previously described by Bañuelos-Vazquez et al [32]. Seedlings of two dpg (3–4 cm in length) were introduced in tubes with 40 ml of nitrogen-free Fåhraeus nutrient solution [38] and in the indicated experiments, also supplemented with a carbon (succinic acid 0.01M) and nitrogen source (ammonium chloride 0.01M) [38]. Tubes were inoculated with donor and recipient strains adjusted at a final 0.05 OD600nm, in a 1:1 ratio. The conjugation frequency was measured at 1, 10 and 20 dpi. For each experiment, the medium of three tubes (in presence or absence of plants) was collected. The medium from the tubes were centrifugated at 5000 rpm, supernatant was discarded, and the pellet was resuspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol). Serial dilutions were plated on the selective media supplemented with the corresponding antibiotics. Root samples were introduced in Falcon tubes with 30 ml of nitrogen-free Fåhraeus nutrient solution and subjected to ultrasound for 20 min in a Branson 200 ultrasonic cleaner. Then, the roots were taken out and the medium was centrifuged for 15 min at 5000 rpm, at 4 ºC to recover the bacteria removed from the root's surface. The pellet was resuspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol). Serial dilutions were plated on the selective media supplemented with the corresponding antibiotics. All experiments were repeated at least three times.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (version 8.0) software (GraphPad Software, La Jolla, CA). Statistical significance was determined using two-tailed unpaired Student’s t-test or one-way ANOVA with Dunnett´s multiple comparisons test. A p-value ≤ 0.05 was considered significant.

Results

Conjugative transfer of pRet42a in the presence of Phaseolus vulgaris, Zea mays and Medicago sativa plants

In a previous work, we showed the capacity of plasmid pRet42a of R. etli CFN42 (i.e derivative CFNX559) to be transferred at high frequency to other bacteria on the surface of the roots and inside the nodules generated during the interaction between this strain and P. vulgaris [32]. This phenomenon led us to consider that a set of plant molecules could be involved in the modulation of CT of pRet42a. To address this question, we performed CT experiments in presence and absence of bean plants (P. vulgaris). Seedlings of two days post germination (dpg) were introduced in tubes with nitrogen- free Fåhraeus nutrient solution [38]. Tubes were inoculated with CFNX559 as a donor and CFN2001 as a recipient strain, and the CT frequencies were evaluated in the medium of the tubes (with or without plant), and on the root surface. CFNX559, the donor strain, has the red fluorescent protein marker (RFP) inserted into the chromosome and the green fluorescent protein marker (GFP) in pRet42a. Therefore, these cells have both fluorescences. When transferring the plasmid to the recipient cells that do not have any fluorescent marker, the transconjugants only express the GFP, allowing differential detection. The frequencies were evaluated at 1, 10- and 20-days-post-inoculation (dpi). The values of CT frequency obtained for the media with and without plants were very similar at 1 or 10 dpi (Fig 1A). However, there were no transconjugants at 20 dpi in absence of plants, while there were CT events in the media from tubes containing plants. It is worth to mention that when comparing the number of donor and recipient bacteria at 10 dpi and 20 dpi, there were ca. 2–4 million less CFU at 20 dpi. On the root surface, the CT frequencies at 10 and 20 dpi were relatively high and similar to that of media with plants. Nevertheless, CT was not observed in the rhizoplane at one dpi. A possible explanation is that 24 hours is not enough time for the bacteria to reach the root, attach and conjugate. The lack of transconjugants at 20 dpi and the decrease in donor and recipient bacteria in the plant-free media allows us to consider the possibility that this may be caused by a nutrient limitation in the absence of plants. Therefore, a similar experiment was made with the medium supplemented with N and C sources (Fig 1B). Addition of the N and C sources led to an increase of the CT in presence of bean plants at all time-points. Also, the CT frequency in the absence of plants at 1 and 10 dpi increased, but CT could still not be observed at 20 dpi. Moreover, we compared the conjugation frequency with two other plants: Zea mays (non-legume) and Medicago sativa (non-host-legume). CT evaluated in the medium where the plants were placed (Fig 1C) showed that, at one dpi the CT frequency in Z. mays was higher than in P. vulgaris and M. sativa, but at 10 and 20 days the CT was very similar among the three plants. This suggests that compounds released by Zea mays at the early times after inoculation may be more abundant, resulting in a richer medium for bacteria to reproduce and reach the QS threshold for conjugation in a shorter lapse. In addition, the bacteria that adhered to the root surface were analyzed. The results showed that there was no significant difference at 10 and 20 dpi, while CT was not observed at one dpi (Fig 1D). All these results taken together suggest that plants play an important role in the CT of pRet42a.

Fig 1. CT frequency in response to presence of different plants and conditions.

Fig 1

A. Evaluation of CT frequencies of pRet42a in presence or absence of P. vulgaris and on the root surface, in media without C and N sources. B. Evaluation of CT frequencies of pRet42a in presence or absence of P. vulgaris, and on the root surface, in media supplemented with C and N. C. Evaluation of CT frequencies of pRet42a in media, in presence of P. vulgaris, Z. mays and M. sativa. D. Evaluation of CT frequencies of pRet42a on the roots of P. vulgaris, Z. mays and M. sativa. All the experiments were performed at 1, 10- and 20-days post-inoculation (dpi). ND, not detected.

Conjugative transfer of pRet42a in response to different types of molecules

Exudates from leguminous plants contain molecules involved in the first steps of the symbiotic process, and the presence of some of these molecules often defines the specificity of the symbiosis [39]. Considering that the presence of bean roots in the media enhances CT of pRet42a, we asked ourselves if a specific compound from the plant, or a mixture of them, could be responsible for the CT modulation. Firstly, the CT frequency of pRet42a was evaluated in presence of P. vulgaris exudates. The presence of P. vulgaris exudates induced very high values of conjugative frequency in comparison with those obtained for the media without exudates (Fig 2A). To evaluate if this effect was plant-specific, experiments were performed using exudates from M. sativa, which is not a host of R. etli. Increased values were obtained in comparison with the control, but the CT frequencies were lower than those obtained in presence of P. vulgaris exudates. These results indicate that molecules present in both exudates act as conjugative inducers. As the composition of exudates differs from one plant to another [40], probably some specific molecules present in P. vulgaris, but not in M. sativa exudates, are responsible for improving to a greater extent the CT of pRet42a.

Fig 2. CT frequency in response to plant exudates and extracts.

Fig 2

A. Evaluation of CT frequencies of pRet42a in response to root exudates from P. vulgaris and M. sativa. B. Evaluation of CT frequencies of pRet42a in response to extracts of root and nodules of P. vulgaris plants. Statistical analysis was performed by one-way ANOVA (p value < 0.05) with Dunnett´s multiple comparisons test. Key: ** (p value = 0.0088), *** (p value = 0.0001). **** (p value < 0.0001). For statistical analyses, each treatment was compared to the control condition.

Previous work showed that CT frequencies are relatively high inside the nodules [32, 36]. Moreover, high CT frequencies were also observed on the root surface. Thus, extracts from nodules and roots of P. vulgaris were prepared and evaluated as inducers of CT. The presence of nodule or root extracts resulted in an increase in CT frequencies (Fig 2B). The effect of the mixture of both extracts (root and nodules) was similar to that of each extract individually.

Conjugative transfer of pRet42a in response to flavonoids

Flavonoids are a group of molecules present in plant exudates [41]. The flavonoid composition of exudates is specific for each plant, and is involved in the first steps of the interaction with the symbiont [39, 41] Table 2 shows the main characteristics of the plant compounds used in this work. To determine if the enhancement of CT in presence of the plant is related to the flavonoids secreted by the plant, we evaluated their role in CT of pRet42a. Conjugation assays were performed in presence of three different concentrations of seven flavonoids: naringenin, genistein, quercetin, acetosyringone, luteolin, apigenin and gallic acid. At a 2 μM concentration, two compounds enhanced CT, naringenin and apigenin (Fig 3A). At concentrations of 20 μM, none of the flavonoids showed significant differences compared to the control, although naringenin showed a tendency to higher values than the other molecules (Fig 3B). At a concentration of 50 μM, naringenin generated statistically significant higher values than the control (showing a similar behavior at the three different concentrations), while quercetin showed a decrease in CT frequency values (Fig 3C). It should be noted that a mixture of the seven flavonoids did not show differences with control values, at any concentration, indicating that a specific proportion of the different molecules is needed. Keeping in mind that the response to a specific flavonoid depends on the concentration of each molecule, the transfer of pRet42a in response to apigenin was evaluated at different concentrations between 0.5–20 μM (Fig 3D). Concentrations from 1–2 μM of apigenin induced the highest CT increase (Fig 3D). As naringenin showed an enhanced CT frequency at 2 μM, it was also evaluated in a variable range of concentrations (0.5, 1, 2, 5, 11 and 20 μM) but CT frequencies did not vary in comparison to 2 μM (not shown).

Table 2. Characteristics of the different plant compounds used.

Name polyphenol class polyphenol Sub-class Characteristics References
Naringenin Flavonoid Flavanone • Induces the transfer of an 87.6-kb integrative and conjugative element that is excised and transferred by CT in Sesbania rostrata. [9, 40, 42, 43]
• Reduces production of acyl homoserine lactones (AHLs) in Pseudomonas aeruginosa PA01.
• Nodulation factor inductor of Rhizobium leguminosarum biovar phaseoli.
• Produced by some ecotypes of Phaseolus vulgaris, Vicia sativa and soybeans.
Genistein Flavonoid Isoflavonoid • Nodulation factor inductor of Bradyrhizobium japonicum. [40, 44, 45]
• Antifungal and antibacterial activities.
• Produced by some ecotypes of P. vulgaris and soybeans.
Quercetin Flavonoid Flavonols • Antibacterial activity. [46, 47]
• Produced by some ecotypes of P. vulgaris.
Luteolin Flavonoid Flavones • Nodulation factor inductor of Ensifer melilloti. [48, 49]
• Produced by Medicago spp. (e.g. M. sativa)
Apigenin Flavonoid Isoflavonoid • Nodulation factor inductor of R. leguminosarum biovar phaseoli. [40, 5052]
• Produced by peas and soybean.
Gallic acid Phenolic acids Hydroxybenzoic acids • Produced by some ecotypes of P. vulgaris. [53]
Acetosyringone Phenolic compounds • Inductor of virulence genes in Agrobacterium tumefaciens. [54, 55]
• Produced by Nicotiana tabacum and many other dicotyledonous plants.

Fig 3. CT frequency in response to different flavonoids.

Fig 3

Evaluation of CT frequencies of pRet42a in response to naringenin (N), genistein (G), quercetin (Q), acetosyringone (A), luteolin (L), apigenin (Ap), gallic acid (AG) and all the flavonoids together (All), at 2 μM (A), 20 μM (B) and 50 μM (C). D. Evaluation of conjugation frequencies of pRet42a in response to different concentrations of apigenin. Statistical analysis was performed by one-way ANOVA (p value < 0.05) with Dunnett´s multiple comparisons test. Key: In A, ** (p value = 0.0047), **** (p value < 0.0001). In C, ** (p value < 0.003). In D, * (p value = 0.0135), ** (p value = 0.0002), **** (p value < 0.0001). For statistical analyses, each treatment was compared to the control condition (C).

pRet42a transfer is QS dependent in presence of bean plants

As mentioned before, transfer of pRet42a is regulated by a QS system, characterized by the interaction between the TraR regulator and the AHLs produced by TraI [25]. Aiming to analyze if the CT induction in presence of plants relies on the QS system of pRet42a, a traI mutant (CFNX669) was evaluated. Thus, CT frequencies of CFNX669 in presence of bean plants were assayed at different times after inoculation. Fig 4 shows that in presence of the complete QS system (strain CFNX187), the plasmid was transferred, both in presence of the plant and on the root surface, similar to the results obtained with strain CFNX559. Nevertheless, the traI mutant was not able to conjugate in the medium nor on the root surface of the plant. These results indicate that although some molecules present in plant exudates improve CT of pRet42a, the QS system is essential for plasmid transfer.

Fig 4. CT frequency of a QS regulatory mutant, in the media in presence of P. vulgaris plants and on the root surface.

Fig 4

Evaluation of CT frequencies of pRet42a (CFNX187) and a traI mutant of this plasmid (CFNX669) in the media in presence or absence of P. vulgaris, and on the root surface at 1, 10 and 20 dpi. ND, not detected.

pRet42a transfer responds to environmental conditions

Even though we have shown that pRet42a CT responds to molecules present in plant exudates and in nodules or root extracts, it is also possible that other environmental conditions could be involved in the modulation of CT. Specifically, three conditions of the rhizosphere or inside the nodules were evaluated. First, experiments were performed to evaluate plasmid transfer in response to a reduced oxygen condition, similar to that observed inside the nodule. We obtained higher conjugation frequency values in a low O2 environment (see materials and methods) (Fig 5A), suggesting that this condition inside the nodule may be partially responsible for the CT induction observed in our previous work [32]. In addition, we compared plasmid transfer between two different media; minimal and enriched media. We found that in an enriched media, conjugation is remarkably higher than in minimal media, suggesting that the nutrients provided by the plant to the nodule could also contribute to enhance conjugation in the rhizosphere and inside the nodules (Fig 5B). Finally, we tested if the mating was different for R. etli in liquid or over a surface, but no differences were observed (Fig 5C).

Fig 5. pRet42a CT frequency in response to different environmental conditions.

Fig 5

A. Different oxygen concentrations. B. Nutrient composition of the media. C. Solid or liquid media. Statistical comparison was performed through a t test (p value < 0.05) in comparison to the control condition. Key: ** (p value = 0.0015), **** (p value < 0.0001).

Discussion

Plasmids are vastly distributed in bacteria and CT is the main mechanism by which they are transferred. CT requires a set of proteins that have to recognize the origin of transfer, make a cleavage on it and couple the DNA strand to the system that will transfer it, mainly through a T4SS, which is also known as MPF. During the whole process, several proteins are needed, thus, it is an energetically expensive process. To avoid draining the cellular energy, several mechanisms of CT regulation have been found. In rhizobia, there are mainly two mechanisms, (QS and rctA/B, see introduction for details; [56]), but recently, molecules from the environment have been described as inductors of CT. Flavonoids produced by Sesbania rostrata, induce the transfer of an 87.6-kb ICE [9]. Moreover, we have described that plasmid pRet42a from R. etli CFN42 is transferred at high rates inside the nodules developed by R. etli in P. vulgaris and on the root surface [32, 36]. With the goal of extending the knowledge, and understanding the high rates of CT observed during the symbiotic process, we characterized the response of the CT of pRet42a to compounds produced by different plants and to some environmental conditions.

Our first strategy was to perform conjugations in presence and absence of distinct plants (P. vulgaris, M. sativa and Zea mays) at different times. This strategy is also supported by previous works, which described that homoserine, a compound secreted by pea plants induces CT of pRL8JI [10]. Our results showed that the sole presence of the plant plays an important role in increasing the conjugation frequency. This phenomenon could be due to secretion of signals that can be involved in regulation of CT, secretion of metabolites that the bacteria could use as energy supplies or as a support where the bacteria can adhere and conjugate. Moreover, the lack of transconjugants (and the reduction of donor and recipient bacteria) at 20 dpi in absence of plants was remarkable (Fig 1). This result suggests that plants could also be important for long-term bacterial survival. Plants secrete a wide spectrum of molecules, including sugars, aminoacids, phenolic compounds, lipids and even nucleotides [57, 58]. All these molecules could directly enhance CT or also be used as nutrients, supporting the hypothesis that they may be involved in survival of the bacteria.

Following this research line, we evaluated if the exudates or the compounds secreted by the plant affected the CT. The results indicate that exudates from the native host plant, P. vulgaris, and also from non-native host plants as M. sativa and Z. mays, can act as conjugative transfer inducers (Fig 2). It has been described that the composition of exudates differs from one plant to another [40]. Thus, the CT could be changing according to the composition and quantity of the molecules present in the different exudates. Another possibility is that differences in the proportion of molecules in the two exudates are responsible for the levels of CT induction, since certain specific compounds can increase CT while others limit it. Nodule and root extracts were also evaluated as inducers (Fig 2). The values obtained were also above the control. Thus, some molecules present both in roots and nodules may modulate the CT. Based on the non-additive effect of both fractions, the molecules involved could be very similar or act through the same molecular mechanism. This induction could explain the high frequency obtained inside the nodules [32].

Flavonoids are key molecules in rhizobia-legume symbiosis. The specificity of their response determines the outcome of the symbiotic relationship [39, 41]. The bacteria induce the expression of nod genes in response to some flavonoids. For these reasons, the role of flavonoids was evaluated (Fig 3). Naringenin and apigenin showed induction of CT while quercetin showed, at high concentrations, a negative effect on CT rates. Apigenin shows a higher induction of CT when present in concentrations of 1–2 μM, while induction with naringenin seems to be constant at different concentrations. It has been described that the transfer of the SIs of Azorhizobium caulinodans is induced by plant-secreted flavonoids through AhaR, a LysR-family protein homolog of NodD [9]. In Rhizobium tropici CIAT 899, an AraC-type regulator protein named OnfD was recently described [59]. OnfD is involved in the synthesis of NFs and may form heterodimers with NodD, thus playing a role in the transcriptional activation of the nod genes. A possible explanation for our results is that, in R. etli CFN42, flavonoids (or other plants compounds) interact either with an unknown regulator from the LysR-family (R. etli CFN42 has 69 annotated proteins from the LysR-family of proteins) or with NodD (R. etli CFN42 has three copies of NodD), to form a complex, which may modulate (indirectly or directly) the expression of genes involved in CT. Further experiments are needed to resolve which are the genes and targets involved (Fig 6). To gain insight about the genes and molecules involved in this signaling, two strategies could be performed. In a first approach, induction of CT by plant compounds could be studied in plasmid-cured derivatives of CFN42, to determine if genes present in these replicons are needed for induction of CT, similar to the strategy performed by Yost et al [60]. Another alternative could be to use transcriptional fusions of the regulatory regions of tra genes and evaluate, in an extensive way, the effect of other compounds [61]. It cannot be disregarded that regulators with XRE-domains (helix-turn-helix domain) could be involved in the detection of plant molecules. XRE regulators have been described in pRet42a of R. etli CFN42 as RHE_PA00165 [31], in pRleVF39b of R. leguminosarum VF39SM as trbR [19] and in ICEMlSymR7A of M. loti as qseC [62]. RHE_PA00165 is needed by pRet42a for its transfer from genomic backgrounds different than the wild-type. In R. leguminosarum VF39SM, a mutation in trbR leads to an increase in pRleVF39b CT. Meanwhile, qseC modulates the excision and conjugative transfer of ICEMlSymR7A.

Fig 6. Scheme of possible pathways involved in pRet42a CT modulation.

Fig 6

The essential regulatory system (Top) figure shows the effect of the AHLs (orange circles) produced by the different replicons of R. etli CFN42 on the activation of pRet42a transfer. Despite that transfer responds to different AHLs, the interaction between AHLs produced by TraI and TraR/CinR regulators is essential for pRet42a transfer. In the Modulatory System (Bottom), we propose a mechanism for the effect of flavonoids, other plant compounds and environmental signals as low oxygen conditions. For flavonoids and other plant compounds (triangles), we propose an interaction with pRet42d encoded NodD regulators, or with other LysR-like regulators present in other replicons. Since NodD-flavonoids triggers Nod Factors expression, a similar mechanism could be involved in the modulation of CT of pRet42a. For the other signals, as O2 concentration, an unknown protein (star) could sense the signal and then modulate transfer genes expression. These “star” proteins might be the hypothetical proteins located between Dtr and Mpf genes. The dotted line indicates that the contained replicons could produce AHLs (Top) or LysR-like proteins (Bottom). Green arrows indicate activation or production; red arrows indicate repression.

QS signal mimics produced by plants have been described to interfere with the QS communication between bacteria; this appears to be particularly prevalent among nodulating plants [63]. A mutation in traI abolishes transfer of pRet42a under laboratory conditions [25]. To find out if some of the flavonoids or other compound from the plant could be acting through the QS system, we evaluated if the presence of the plant could replace the AHL of pRet42a. The results showed that the traI mutant was unable to transfer in presence of the plant, indicating that plant secreted compounds could not substitute the bacterial AHL for CT activation (Fig 4). Even if plant compounds could form a complex to modulate CT, the regulatory circuit between AHLs and TraR is indispensable (Fig 6).

Finally, the effect of some environmental conditions was tested (Fig 5). Usually, CT of rhizobial plasmids is evaluated on plates with solid medium. Nevertheless, some reports show that a non-rhizobial plasmid (RP4) is transferred from a rhizobia strain in liquid medium [64, 65]. We observed that pRet42a was able to conjugate well in liquid media (Fig 5C). To our knowledge, there is no other published evidence of conjugation of rhizobial plasmids in liquid media. These findings may imply that the Mpf genes of pRet42a encode a flexible pilus [66, 67]. The CT rates in rich media were higher than in minimal media, suggesting that nutrient availability, and thus cellular energy content, positively affects conjugation. In a low O2 environment (emulating the conditions inside the nodule), CT frequencies were slightly higher. These results could explain that this condition inside the nodule may be partially responsible for the plasmid behavior observed in our previous work [32], where the CT was high inside the nodules.

Transfer of plasmids via conjugation and the mechanisms involved in the molecular regulation of this phenomenon are still under study. Here, the role of environmental conditions and diverse compounds produced by the plant were evaluated. These results showed that CT may be modulated by different molecules, where alternative regulatory mechanisms could be involved. Thus, the panorama gets more complex, including more (new) actors that should be analyzed in the near future.

Acknowledgments

LGC and AL are fellows of CONICET. GTT is member of the Research Career of CONICET. For technical support, Alfonso Leija and Georgina Hernández from the Programa de Genómica Funcional de Eucariotes, CCG, UNAM, for providing P. vulgaris seeds. The authors wish to thank Dr. Maria Esperanza Ruiz for help with the statistical analysis.

Data Availability

All relevant data are within the manuscript.

Funding Statement

This work was supported by grant IN212920 from PAPIIT, DGAPA, UNAM to SB and grants PICT2016-0210 and PIP 2014-0420 to GTT. LABV received a Fellowship 384814 from Consejo Nacional de Ciencia y Tecnología. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3(9):722–32. 10.1038/nrmicro1235 [DOI] [PubMed] [Google Scholar]
  • 2.Lacroix B, Citovsky V. Beyond Agrobacterium-Mediated Transformation: Horizontal gene transfer from bacteria to eukaryotes In: Gelvin SB, editor. Agrobacterium Biology: from basic science to biotechnology. Cham: Springer International Publishing; 2018. p. 443–62. 10.1007/82_2018_82 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bañuelos-Vazquez LA, Torres-Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid. 2017;91:82–9. 10.1016/j.plasmid.2017.04.002 [DOI] [PubMed] [Google Scholar]
  • 4.Zhang PY, Xu PP, Xia ZJ, Wang J, Xiong J, Li YZ. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett. 2013;348(2):149–56. 10.1111/1574-6968.12282 [DOI] [PubMed] [Google Scholar]
  • 5.Wang L, Liu L, Liu D, Yin Z, Feng J, Zhang D, et al. The first report of a fully sequenced resistance plasmid from Shigella boydii. Front Microbiol. 2016;7:1579 10.3389/fmicb.2016.01579 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dunny GM, Berntsson RP. Enterococcal sex pheromones: evolutionary pathways to complex, two-signal systems. J Bacteriol. 2016;198(11):1556–62. 10.1128/JB.00128-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–22. Epub 1970/10/01. 10.1128/JB.104.1.313-322.1970 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Piper KR, Beck von Bodman S, Farrand SK. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature. 1993;362(6419):448–50. 10.1038/362448a0 [DOI] [PubMed] [Google Scholar]
  • 9.Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N, et al. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A. 2016;113(48):13875–80. 10.1073/pnas.1615121113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Vanderlinde EM, Hynes MF, Yost CK. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol. 2014;16(1):205–17. 10.1111/1462-2920.12196 [DOI] [PubMed] [Google Scholar]
  • 11.Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, et al. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol. 2007;189(20):7417–25. 10.1128/JB.00375-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Smets BF, Morrow JB, Arango Pinedo C. Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response. Appl Environ Microbiol. 2003;69(7):4087–97. 10.1128/aem.69.7.4087-4097.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Klümper U, Dechesne A, Riber L, Brandt KK, Gülay A, Sørensen SJ, et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 2017;11(1):152–65. 10.1038/ismej.2016.98 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol. 2017;44:7–15. 10.1016/j.pbi.2017.12.001 [DOI] [PubMed] [Google Scholar]
  • 15.Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell. 2020;32(1):15–41. 10.1105/tpc.19.00279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.García de los Santos A, Brom S, D R. Rhizobium plasmids in bacteria-legume interactions. World Journal Microbiology Biotechnology. 1996;12:119–25. 10.1007/BF00364676 [DOI] [PubMed] [Google Scholar]
  • 17.Torres-Tejerizo G, Del Papa MF, Draghi W, Lozano M, Giusti Mde L, Martini C, et al. First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group. J Biotechnol. 2011;155(1):3–10. 10.1016/j.jbiotec.2011.01.011 [DOI] [PubMed] [Google Scholar]
  • 18.Ding H, Hynes MF. Plasmid transfer systems in the rhizobia. Can J Microbiol. 2009;55(8):917–27. 10.1139/w09-056 [DOI] [PubMed] [Google Scholar]
  • 19.Ding H, Yip CB, Hynes MF. Genetic characterization of a novel rhizobial plasmid conjugation system in R. leguminosarum bv. viciae strain VF39SM. J Bacteriol. 2013;195:328–39. 10.1128/JB.01234-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Giusti ML, Pistorio M, Lozano MJ, Tejerizo GA, Salas ME, Martini MC, et al. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid. 2012;67(3):199–210. Epub 2012/01/12. 10.1016/j.plasmid.2011.12.010 [DOI] [PubMed] [Google Scholar]
  • 21.Wathugala ND, Hemananda KM, Yip CB, Hynes MF. Defining the requirements for the conjugative transfer of Rhizobium leguminosarum plasmid pRleVF39b. Microbiology. 2020. 10.1099/mic.0.000885 [DOI] [PubMed] [Google Scholar]
  • 22.Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, et al. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid. 2019;103:9–16. 10.1016/j.plasmid.2019.03.004 [DOI] [PubMed] [Google Scholar]
  • 23.Fuqua WC, Winans SC. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol. 1994;176(10):2796–806. 10.1128/jb.176.10.2796-2806.1994 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Farrand SK, Qin Y, Oger P. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol. 2002;358:452–84. 10.1016/s0076-6879(02)58108-8 [DOI] [PubMed] [Google Scholar]
  • 25.Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol. 2003;185(5):1681–92. 10.1128/jb.185.5.1681-1692.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Cervantes L, Bustos P, Girard L, Santamaría RI, Dávila G, Vinuesa P, et al. The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain. BMC Microbiol. 2011;11(1):149 10.1186/1471-2180-11-149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Torres-Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, et al. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiol Ecol. 2014;88(3):565–78. 10.1111/1574-6941.12325 [DOI] [PubMed] [Google Scholar]
  • 28.Sullivan JT, Ronson CW. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A. 1998;95(9):5145–9. 10.1073/pnas.95.9.5145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol. 2006;62(3):723–34. 10.1111/j.1365-2958.2006.05396.x [DOI] [PubMed] [Google Scholar]
  • 30.Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, et al. A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol. 2009;73(6):1141–55. 10.1111/j.1365-2958.2009.06843.x [DOI] [PubMed] [Google Scholar]
  • 31.López-Fuentes E, Torres-Tejerizo G, Cervantes L, Brom S. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Front Microbiol. 2015;5:793 10.3389/fmicb.2014.00793 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bañuelos-Vazquez LA, Torres-Tejerizo G, Cervantes-De La Luz L, Girard L, Romero D, Brom S. Conjugative transfer between Rhizobium etli endosymbionts inside the root nodule. Environ Microbiol. 2019. 10.1111/1462-2920.14645 [DOI] [PubMed] [Google Scholar]
  • 33.Noel KD, Sánchez A, Fernández L, Leemans J, Cevallos MA. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol. 1984;158(1):148–55. 10.1128/JB.158.1.148-155.1984 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Encarnación S, Dunn M, Willms K, Mora J. Fermentative and aerobic metabolism in Rhizobium etli. J Bacteriol. 1995;177(11):3058–66. 10.1128/jb.177.11.3058-3066.1995 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Brom S, García de los Santos A, Stepkowsky T, Flores M, Dávila G, Romero D, et al. Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol. 1992;174(16):5183–9. 10.1128/jb.174.16.5183-5189.1992 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Torres-Tejerizo G, Bañuelos-Vázquez LA, Cervantes L, Gaytán P, Pistorio M, Romero D, et al. Development of molecular tools to monitor conjugative transfer in rhizobia. J Microbiol Methods. 2015;117:155–63. 10.1016/j.mimet.2015.08.005 [DOI] [PubMed] [Google Scholar]
  • 37.Leemans J, Soberón G., Cevallos M. A., Fernández L., Pardo M. A., de la Vega H., et al. General organization in R. phaseoli nif plasmids In: In: Veeger C. NWEe, editor. Advances in nitrogenfixation research. Advances in agricultural biotechnology. 4: Springer, Dordrecht; 1984. p. p. 710 10.1007/978-94-009-6923-0_357 [DOI] [Google Scholar]
  • 38.Fåhraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957;16(2):374–81. 10.1099/00221287-16-2-374 [DOI] [PubMed] [Google Scholar]
  • 39.Zaat SA, Wijffelman CA, Mulders IH, van Brussel AA, Lugtenberg BJ. Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiol. 1988;86(4):1298–303. 10.1104/pp.86.4.1298 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Liu CW, Murray JD. The role of flavonoids in nodulation host-range specificity: an update. Plants (Basel). 2016;5(3). 10.3390/plants5030033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev. 2000;64(1):180–201. 10.1128/mmbr.64.1.180-201.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Hungria M, Joseph CM, Phillips DA. Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol. 1991;97(2):759–64. 10.1104/pp.97.2.759 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology. 2011;157(Pt 7):2120–32. 10.1099/mic.0.049338-0 [DOI] [PubMed] [Google Scholar]
  • 44.Glian'ko AK, Vasil'eva GG, Mitanova NB, Ishchenko AA. The influence of mineral nitrogen on legume-rhizobium symbiosis. Izv Akad Nauk Ser Biol. 2009;(3):302–12. 10.1134/S1062359009030054 [DOI] [PubMed] [Google Scholar]
  • 45.Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez-Uribe JA. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 2013;141(2):1497–503. 10.1016/j.foodchem.2013.04.010 [DOI] [PubMed] [Google Scholar]
  • 46.Amarowicz R, Dykes GA, Pegg RB. Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia. 2008;79(3):217–9. 10.1016/j.fitote.2007.11.019 [DOI] [PubMed] [Google Scholar]
  • 47.Mendoza-Sánchez M, Guevara-González RG, Castaño-Tostado E, Mercado-Silva EM, Acosta-Gallegos JA, Rocha-Guzmán NE, et al. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts. Food Chem. 2016;212:128–37. 10.1016/j.foodchem.2016.05.110 [DOI] [PubMed] [Google Scholar]
  • 48.Hartwig UA, Maxwell CA, Joseph CM, Phillips DA. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 1990;92(1):116–22. 10.1104/pp.92.1.116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Sidorova Y, Shipelin V, Mazo V, Zorin S, Petrov N, Kochetkova A. Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition. 2017;41:107–12. 10.1016/j.nut.2017.04.010 [DOI] [PubMed] [Google Scholar]
  • 50.Muñoz Aguilar JM, Ashvy AM, Loake GJ, Watson MD, Shaw CH. Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. Journal of General Microbiology. 1988;134:2741–6. 10.1099/00221287-134-10-2741 [DOI] [Google Scholar]
  • 51.Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6). 10.3390/ijms20061305 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Rolfe BG. Flavones and isoflavones as inducing substances of legume nodulation. Biofactors. 1988;1(1):3–10. [PubMed] [Google Scholar]
  • 53.Ombra MN, d'Acierno A, Nazzaro F, Riccardi R, Spigno P, Zaccardelli M, et al. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of southern Italy before and after Cooking. Oxid Med Cell Longev. 2016;2016:1398298 10.1155/2016/1398298 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Winans SC. An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol. 1991;5(10):2345–50. 10.1111/j.1365-2958.1991.tb02080.x [DOI] [PubMed] [Google Scholar]
  • 55.Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A. 1986;83(2):379–83. 10.1073/pnas.83.2.379 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Brom S, Pistorio M, Romero D, Torres-Tejerizo G. Boundaries for conjugative transfer of rhizobial plasmids: restraining and releasing factors In: Katsy IE, editor. Plasticity in plant-growth-promoting and phytopathogenic bacteria. New York, NY: Springer New York; 2014. p. 43–54. 10.1007/978-1-4614-9203-0_3 [DOI] [Google Scholar]
  • 57.Tawaraya K, Horie R, Saito S, Wagatsuma T, Saito K, Oikawa A. Metabolite profiling of root exudates of common bean under phosphorus deficiency. Metabolites. 2014;4(3):599–611. 10.3390/metabo4030599 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P, et al. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). Sci Total Environ. 2019;646:212–9. 10.1016/j.scitotenv.2018.07.247 [DOI] [PubMed] [Google Scholar]
  • 59.Del Cerro P, Ayala-García P, Buzón P, Castells-Graells R, López-Baena FJ, Ollero FJ, et al. OnfD, an AraC-type transcriptional regulator of Rhizobium tropici CIAT 899 involved in Nod factor synthesis and symbiosis. Appl Environ Microbiol. 2020. 10.1128/AEM.01297-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Yost CK, Rath AM, Noel TC, Hynes MF. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology. 2006;152(Pt 7):2061–74. 10.1099/mic.0.28938-0 [DOI] [PubMed] [Google Scholar]
  • 61.Rosenblueth M, Hynes MF, Martinez-Romero E. Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol Gen Genet. 1998;258(6):587–98. 10.1007/s004380050772 [DOI] [PubMed] [Google Scholar]
  • 62.Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL, Hynes MF, et al. A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol. 2013;87(1):1–13. 10.1111/mmi.12079 [DOI] [PubMed] [Google Scholar]
  • 63.Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66. 10.1146/annurev.arplant.57.032905.105159 [DOI] [PubMed] [Google Scholar]
  • 64.Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974;84(1):188–98. 10.1099/00221287-84-1-188 [DOI] [PubMed] [Google Scholar]
  • 65.Meade HM, Signer ER. Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1977;74(5):2076–8. 10.1073/pnas.74.5.2076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Bradley DE, Taylor DE, Cohen DR. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol. 1980;143(3):1466–70. 10.1128/JB.143.3.1466-1470.1980 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Lawley TD, Gilmour MW, Gunton JE, Tracz DM, Taylor DE. Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27. J Bacteriol. 2003;185(2):581–91. 10.1128/jb.185.2.581-591.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Francisco Martinez-Abarca

28 Jul 2020

PONE-D-20-19518

Role of plant compounds in the modulation of the conjugative transfer of pRet42a

PLOS ONE

Dear Dr. %Torres-Tejerizo%,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points (specially those concerning to the second reviewer) raised during the review process.

Please submit your revised manuscript by Sep 10 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Francisco Martinez-Abarca, Ph.D.

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2.Thank you for stating the following in the Acknowledgments Section of your manuscript:

[LABV received a Fellowship 384814 from Consejo Nacional de Ciencia y Tecnología.]

We note that you have provided funding information that is not currently declared in your Funding Statement. However, funding information should not appear in the Acknowledgments section or other areas of your manuscript. We will only publish funding information present in the Funding Statement section of the online submission form.

Please remove any funding-related text from the manuscript and let us know how you would like to update your Funding Statement. Currently, your Funding Statement reads as follows:

 [SB IN212920 PAPIIT, DGAPA, UNAM

GTT PICT2016-0210 ANPCYT

GTT PIP 1220130100420CO CONICET

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.]

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This paper is an extension of very exciting previous work from the same group, which showed that conjugative transfer of pRetCFN42a is enhanced on plant surfaces and in nodules, using a very elegant labeling system. The current work seeks to address the nature of the effect of the plant on transfer. Different plants were examined (Corn, Alfalfa and Bean) and all promoted transfer, perhaps due to nutritional effects. Exudates from seeds/roots of alfalfa and bean were compared and there was a stronger effect of the host plant, bean. Known plant compounds were tested for stimulatory effects on conjugation, and an effect of two nodulation inducers, apigenin and naringenin, was noted. In all cases, transfer by conjugation required the AHL type QS system previously shown to be involved in transfer of this plasmid.

Overall this is a very well organized piece of work that adds to the story. It is very well written and easy to follow. I do not have too much to criticize except for minor editorial things (see below), but do have some suggestions for improving the paper or directing future work. Some of this might go in the discussion.

1) It should probably be cited that conjugation of the plasmid pRL8JI (also a type I conjugation system) is stimulated by homoserine, a non-protein amino acid that is present in high concentration in pea root exudates (Vanderlinde et al. 2014, Environ Microbiol 16: 205-217).

2) Some speculation as to other compounds that might be specific to beans or legumes in general would not be a bad idea. It is a little disappointing to look only at nod gene inducers.

3) Do the effects of naringenin and apigenin depend on the presence of a functional nodD gene ? This could be assayed fairly easily in a pSym cured derivative of CFN42, like your recipient, once it has acquired the p42a.

4) Ways of getting at what the particular compounds in exudates might be could be discussed. In this context the method used in Rosenblueth et al. (1998, MGG, 258:587) and Yost et al. (2004, Microbiology, 152:2061) could be mentioned. I.e. depletion of nutrients in exudates by plasmid cured strains to see what is left over and still has the ability to induce transfer.

5) More could be made of the fact that genes encoding Xre-type regulators have been found in conjugation systems, including the one from pRetCFN42a, strongly suggesting additional effector molecules that have an input into regulation of transfer. It has always been a strong possibility that some plant produced compounds could be the effectors that interact with these regulators.

Many experts in the field don't like the use of the word "conjugal" and much prefer conjugative. Laura Frost, whom you cite in ref 1, gets quite angry at people who use conjugal .

Line 38. Homoserine is missing an e; same for line 64 and elsewhere

Line 49. Should be a semicolon (;) not a comma, after evaluated.

Line 195. no transconjugants (not not)

Lines 301/302. Not sure "above them in hierarchical order is correct. In agrobacterium, opines come first, with QS below opines in the cascade. But QS mutants (traR or traI will still not transfer in the presence of opines. Your situation could be the same. Maybe you need to explain what you mean by hierarchy here.

Table 2. Not all of these compounds are flavonoids, so the title is inaccurate. I suggest plant compounds, or plant produced phenolic compounds.

References: some titles are written in sentence case (correct), others in title case (capital letters on most nouns and other important words) - be consistent. This is a common error caused by trusting reference manager programs and importing papers from PubMed etc. Also double check for accents on author names - some seem to be missing even on Spanish names, though this may be how the names were written on the original publication

Reviewer #2: The manuscript PONE-D-20-19518 reports data from experiments aimed to clarify the role of plant-derived compounds on the regulation of conjugative transfer of plasmid pRet42a from the legume microsymbiont Rhizobium etli. Obtained results indicate that quorum sensing system is playing the main role in the regulation, but also that compounds in plant root exudates may modulate the extent of conjugal transfer.

The results are interesting and novel, tough not conclusive over a mechanistic interpretation of the phenomenon. Consequently, the paper is mainly descriptive, though opening the way to several future experiments. A key experiment for a more mechanistic report could be the used of a nodD gene mutant strain (see point 6 below).

However, there are many points which need to be clarified and additional details reported to allow readers to better understand the results and let reproduce the experiments shown. Possible simple additional experiments could also be performed (see below).

1. Line 144. Please indicate the OD600 or the number of cells used.

2. Line 146. Concentrations of used flavonoids should be indicated here.

3. Lines 160 and followings. The plant assay must be described in detail. For instance, the volume used and the number of plants and root lengths. The number of planted cells (did you perform dilutions? Which volume of plant medium was taken?)

4. Line 195-205. Why at at 20 dpi there were not transconjugants? This is really surprising since you observe transconjugants at 10 dpi. Were rhizobial cells titres comparable between 10 dpi and 20 dpi? Or rhizobial cells died after 10 dpi? This point strongly needs a clarification and hypotheses driven by possible additional control experiments, to support your sentence on line 352.

5. Line 232. Experiment with plant root exudates must be clarified. In particular to allow proper data reproducibility the amount of root exudates (in terms of key compounds or total carbon for instance) must be reported and normalization of treatments among root exudates with respect to for instance total C must be performed. Otherwise we cannot appreciate if differences among root exudates may relate to different chemical composition (i.e. presence of elicitors) or to nutrient supplementation. This would be an additional proof of what authors later clarified with synthetic medium.

6. Line 301. A figure with this hypothesis could be appreciated, where authors suggest the level where the interaction between plant compounds and QS system may occur. An additional experiment with null mutants of the flavonoid receptor could allow to better define the molecular level of interaction (see line 375).

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2020 Aug 26;15(8):e0238218. doi: 10.1371/journal.pone.0238218.r002

Author response to Decision Letter 0


6 Aug 2020

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

We have revised and appropriate changes have been made in the manuscript.

2.Thank you for stating the following in the Acknowledgments Section of your manuscript:

[LABV received a Fellowship 384814 from Consejo Nacional de Ciencia y Tecnología.]

We note that you have provided funding information that is not currently declared in your Funding Statement. However, funding information should not appear in the Acknowledgments section or other areas of your manuscript. We will only publish funding information present in the Funding Statement section of the online submission form.

Please remove any funding-related text from the manuscript and let us know how you would like to update your Funding Statement. Currently, your Funding Statement reads as follows:

[SB IN212920 from PAPIIT, DGAPA, UNAM

GTT PICT2016-0210

GTT PIP 1220130100420CO CONICET

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.]

We have deleted the funding from the Acknowledgments Section and modified the Funding Statement.

"This work was supported by grant IN212920 from PAPIIT, DGAPA, UNAM to SB and grants PICT2016-0210 and PIP 2014-0420 to GTT. LABV received a Fellowship 384814 from Consejo Nacional de Ciencia y Tecnología. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

Point-to-point reply

Reviewer #1: This paper is an extension of very exciting previous work from the same group, which showed that conjugative transfer of pRetCFN42a is enhanced on plant surfaces and in nodules, using a very elegant labeling system. The current work seeks to address the nature of the effect of the plant on transfer. Different plants were examined (Corn, Alfalfa and Bean) and all promoted transfer, perhaps due to nutritional effects. Exudates from seeds/roots of alfalfa and bean were compared and there was a stronger effect of the host plant, bean. Known plant compounds were tested for stimulatory effects on conjugation, and an effect of two nodulation inducers, apigenin and naringenin, was noted. In all cases, transfer by conjugation required the AHL type QS system previously shown to be involved in transfer of this plasmid.

Overall this is a very well organized piece of work that adds to the story. It is very well written and easy to follow. I do not have too much to criticize except for minor editorial things (see below), but do have some suggestions for improving the paper or directing future work. Some of this might go in the discussion.

- Thank you, we have included many of the suggested ideas in the discussion.

1) It should probably be cited that conjugation of the plasmid pRL8JI (also a type I conjugation system) is stimulated by homoserine, a non-protein amino acid that is present in high concentration in pea root exudates (Vanderlinde et al. 2014, Environ Microbiol 16: 205-217).

Response: We have included this datum in the Introduction (lines 53, 82-83) and the Discussion (lines 354-356).

2) Some speculation as to other compounds that might be specific to beans or legumes in general would not be a bad idea. It is a little disappointing to look only at nod gene inducers.

Response: Yes, we had not mentioned specific compounds, but in the discussion, we mentioned in lines 356-360: “Our results showed that the sole presence of the plant plays an important role in increasing the conjugation frequency. This phenomenon could be due to secretion of signals that can be involved in regulation of CT, secretion of metabolites that the bacteria could use as energy supplies or as a support where the bacteria can adhere and conjugate”. Now we have re-enforced these ideas in the Discussion (lines 362-366).

3) Do the effects of naringenin and apigenin depend on the presence of a functional nodD gene ? This could be assayed fairly easily in a pSym cured derivative of CFN42, like your recipient, once it has acquired the p42a.

Response: We do not know if the effect is mediated directly by a functional nodD, but we have to point out that CFN42 has three copies of nodD. We think, with evidence provided by Ling et al (2016), that it could be a LysR-like transcriptional activator (actually, there are 69 in the genome of R. etli CFN42), including the nodD genes, but also other proteins. Also, Ling et al found that AhaR is a LysR-like transcriptional activator that detects flavonoids. By BLASTp we found some proteins similar to AhaR in CFN42. Of course, this question needs to be addressed in the future and the assay suggested, using a pSym- cured derivative of CFN42, could be achieved when we are able (hopefully soon) to return to work in the lab. We included an appropriate discussion of this issue in the discussion of the manuscript (Lines 387-398).

4) Ways of getting at what the particular compounds in exudates might be could be discussed. In this context the method used in Rosenblueth et al. (1998, MGG, 258:587) and Yost et al. (2004, Microbiology, 152:2061) could be mentioned. I.e. depletion of nutrients in exudates by plasmid cured strains to see what is left over and still has the ability to induce transfer.

Response: Yes, the reviewer is right. Those papers describe strategies to search which molecules induce certain genes (using transcriptional fusions) or which replicon is needed to employ certain sugars. We discuss about these strategies and will direct some future work (Lines 398-404)

5) More could be made of the fact that genes encoding Xre-type regulators have been found in conjugation systems, including the one from pRetCFN42a, strongly suggesting additional effector molecules that have an input into regulation of transfer. It has always been a strong possibility that some plant produced compounds could be the effectors that interact with these regulators.

Response: We included this in the discussion (Lines 404-411). Regulators with Xre-domains (helix-turn-helix domain similar to that of the Lambda Cro and CI proteins) are regulators that have been described in pRet42a of R. etli CFN42 as RHE_PA00165 (Lopez-Fuentes et al., 2015), in pRleVF39b of R. leguminosarum VF39SM as trbR (Ding et al., 2013) and in ICEMlSymR7A of M. loti as qseC (Ramsay et al., 2013). RHE_PA00165 is needed by pRet42a to transfer from genomic backgrounds different from that of the wild-type. A mutation in trbR leads to a 1000-fold increase in pRleVF39b transfer. qseC modulates the excision and conjugative transfer of ICEMlSymR7A (Ramsay et al., 2013).

Many experts in the field don't like the use of the word "conjugal" and much prefer conjugative. Laura Frost, whom you cite in ref 1, gets quite angry at people who use conjugal.

Response: Corrected

Line 38. Homoserine is missing an e; same for line 64 and elsewhere

Response: Done

Line 49. Should be a semicolon (;) not a comma, after evaluated.

Response: Done

Line 195. no transconjugants (not not)

Response: Done

Lines 301/302. Not sure "above them in hierarchical order is correct. In agrobacterium, opines come first, with QS below opines in the cascade. But QS mutants (traR or traI will still not transfer in the presence of opines. Your situation could be the same. Maybe you need to explain what you mean by hierarchy here.

Response: Yes, the reviewer is right. We have not explained our idea properly. The sentence was changed to: “These results indicate that although some molecules present in plant exudates improve CT of pRet42a, the QS system is essential for plasmid transfer.” Lines 309-310

Table 2. Not all of these compounds are flavonoids, so the title is inaccurate. I suggest plant compounds, or plant produced phenolic compounds.

Response: Accepted. The title was changed to “Characteristics of the different plant compounds used”

References: some titles are written in sentence case (correct), others in title case (capital letters on most nouns and other important words) - be consistent. This is a common error caused by trusting reference manager programs and importing papers from PubMed etc. Also double check for accents on author names - some seem to be missing even on Spanish names, though this may be how the names were written on the original publication

Response: Done

Reviewer #2: The manuscript PONE-D-20-19518 reports data from experiments aimed to clarify the role of plant-derived compounds on the regulation of conjugative transfer of plasmid pRet42a from the legume microsymbiont Rhizobium etli. Obtained results indicate that quorum sensing system is playing the main role in the regulation, but also that compounds in plant root exudates may modulate the extent of conjugal transfer.

The results are interesting and novel, tough not conclusive over a mechanistic interpretation of the phenomenon. Consequently, the paper is mainly descriptive, though opening the way to several future experiments. A key experiment for a more mechanistic report could be the used of a nodD gene mutant strain (see point 6 below).

However, there are many points which need to be clarified and additional details reported to allow readers to better understand the results and let reproduce the experiments shown. Possible simple additional experiments could also be performed (see below).

Thank you. We addressed the nodD issue in point 6 (below). Responses to the additional details are mentioned in each case (see below).

1. Line 144. Please indicate the OD600 or the number of cells used.

Response: Done. Lines 138-141: “Conjugations between the strains were done biparentally, using overnight cultures grown to stationary phase, ca. 1.2 OD600nm [25]. Conjugations in liquid medium were done as follows: donor and recipient strains were mixed in a 1:1 volume ratio in 5 ml of PY or MM medium at a final OD600nm of 0.05 and incubated at 30 ºC overnight at 200 rpm.”

2. Line 146. Concentrations of used flavonoids should be indicated here.

Response: Done. Lines 141-142: “Flavonoids were included, respectively, at different concentrations (2 �M, 20 �M, and 50 �M).”

3. Lines 160 and followings. The plant assay must be described in detail. For instance, the volume used and the number of plants and root lengths. The number of planted cells (did you perform dilutions? Which volume of plant medium was taken?)

Response: The Material and methods section was rewritten and the requested details were included.

Lines 142-148: “ Conjugations with exudates and extracts of roots and nodules were done in liquid medium by mixing 2.5 ml of Fahraeus containing the exudates or extracts (or nitrogen-free Fahraeus nutrient solution as control), 2.5 ml of PY medium, 0.25 ml of donor and 0.25 ml recipient (each ca. 1.2 OD600nm). The mixtures were incubated at 30 ºC overnight, and then centrifugated at 5000 rpm for 2 minutes and the supernatant was discarded. The pellet was suspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol).”

Lines 158-174: “Seeds from P. vulgaris cv Negro Jamapa were sterilized and germinated as previously described by Bañuelos-Vazquez et al [32]. Seedlings of two dpg (3-4 cm in length) were introduced in tubes with 40 ml of nitrogen-free Fahraeus nutrient solution [38] and in the indicated experiments, also supplemented with a carbon (succinic acid 0.01M) and nitrogen source (ammonium chloride 0.01M) [38]. Tubes were inoculated with donor and recipient strains adjusted at a final 0.05 OD600nm, in a 1:1 ratio. The conjugation frequency was measured at 1, 10 and 20 dpi. For each experiment, samples of three plants from medium in presence or absence of plants were collected. The 40 ml of medium from the tubes were centrifugated at 5000 rpm, supernatant was discarded, and the pellet was resuspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol). Serial dilutions were plated on the selective media supplemented with the corresponding antibiotics. Root samples were introduced in Falcon tubes with 30 ml of nitrogen-free Fahraeus nutrient solution and subjected to ultrasound for 20 min in a Branson 200 ultrasonic cleaner. Then, the roots were taken out and the medium was centrifuged for 15 min at 5000 rpm, at 4 ºC to recover the bacteria removed from the root's surface. The pellet was resuspended in 1 ml of 10 mM MgSO4 0.01% Tween 40 (vol/vol). Serial dilutions were plated on the selective media supplemented with the corresponding antibiotics. All experiments were repeated at least three times.”

4. Line 195-205. Why at at 20 dpi there were not transconjugants? This is really surprising since you observe transconjugants at 10 dpi. Were rhizobial cells titres comparable between 10 dpi and 20 dpi? Or rhizobial cells died after 10 dpi? This point strongly needs a clarification and hypotheses driven by possible additional control experiments, to support your sentence on line 352.

Response: Bacteria were plated 20 dpi, but when plants are not present, transconjugants did not grow. Donor and recipient titres were lower, indicating that a fraction of bacteria died. That is the reason that we suggest in (now line 361) “This result suggests that plants could also be important for long-term bacterial survival".

We modified the following sentences to clarify:

Line 202-204: “It is worth to mention that comparison of the number of donor and recipient bacteria at 10 dpi and 20 dpi, showed that there were ca. 2-4 million less UFC at 20 dpi.”

Line 207-210: “The lack of transconjugants at 20 dpi and the decrease in donor and recipient bacteria in the plant-free media allows us to consider the possibility that this may be caused by a nutrient limitation in the absence of plants”

Line 360-361: “Moreover, the lack of transconjugants (and the reduction of donor and recipient bacteria) at 20 dpi in absence of plants was remarkable”

5. Line 232. Experiment with plant root exudates must be clarified. In particular to allow proper data reproducibility the amount of root exudates (in terms of key compounds or total carbon for instance) must be reported and normalization of treatments among root exudates with respect to for instance total C must be performed. Otherwise we cannot appreciate if differences among root exudates may relate to different chemical composition (i.e. presence of elicitors) or to nutrient supplementation. This would be an additional proof of what authors later clarified with synthetic medium.

Response: As stated in response to query number 3, we modified Material and methods to provide the details and clarify the experiments. As the reviewer mentioned “we cannot appreciate if differences among root exudates may relate to different chemical composition or to nutrient supplementation”, we want to reinforce that exudates and extracts were only prepared in nitrogen-free Fahraeus nutrient solution. Thus, the differences observed among control and extracts or exudates, are due the presence of the molecules secreted by the plant, not by any nutrient supplementation.

We did not measure key compounds or total carbon in either exudates or extracts. Plant extracts and exudates could contain several hundreds of different compounds (Tawaraya et al., 2014, Wang et al., 2019) (we included some discussion about this in the discussion section). We think that not all the compounds will be used (or even detected) by the bacteria, thus, the amount of total carbon would not give much information and the chemical composition of the extracts and exudates are not the scope of the manuscript. Moreover, the molecules that regulate CT usually work at low concentrations, so the C contents could not reflect its potential as CT enhancer. Of course, it will be a future aim when we are able to go back to the laboratory, to identify the secreted molecules that are actually increasing the conjugative transfer.

6. Line 301. A figure with this hypothesis could be appreciated, where authors suggest the level where the interaction between plant compounds and QS system may occur. An additional experiment with null mutants of the flavonoid receptor could allow to better define the molecular level of interaction (see line 375).

Response: We do not know if the effect is mediated directly by a functional nodD, but we have to point out that CFN42 has three copies of nodD. We think, with evidence provided by Ling et al. (2016), it could be a LysR-like transcriptional activator (actually, there are 69 in the genome of R. etli CFN42: 46 in the chromosome, 6 in pRet42f, 8 in pRet42e, 5 in pRet42d -3 (nodD are included), 3 in pRet42c and 1 in pRet42b), this includes nodD genes, but also other proteins. We cannot disregard that the bioinformatics annotation could miss some others. Also, Ling et al. (2016) found that AhaR is a LysR-like transcriptional activator that detects flavonoids. By BLASTp we found some proteins similar to AhaR in CFN42. Thus, making a null mutant of flavonoid receptors would include at least a triple mutant and, nevertheless, many LysR-like genes would still be available in the genome. This question needs to be addressed in the future, when we are able to return to work in the lab. We have included an appropriate discussion of this issue in the manuscript and also a figure with our hypothesis (Lines 387-398).

Ding H, Yip CB & Hynes MF (2013) Genetic characterization of a novel rhizobial plasmid conjugation system in R. leguminosarum bv. viciae strain VF39SM. Journal of bacteriology 195: 328-339.

Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N, Zheng H, Masson-Boivin C, Zhong Z & Zhu J (2016) Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proceedings of the National Academy of Sciences of the United States of America 113: 13875-13880.

Lopez-Fuentes E, Torres-Tejerizo G, Cervantes L & Brom S (2015) Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Frontiers in microbiology 5: 793.

Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL, Hynes MF, Salmond GP & Ronson CW (2013) A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Molecular microbiology 87: 1-13.

Tawaraya K, Horie R, Saito S, Wagatsuma T, Saito K & Oikawa A (2014) Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency. Metabolites 4: 599-611.

Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P & Luo Y (2019) Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). The Science of the total environment 646: 212-219.

Decision Letter 1

Francisco Martinez-Abarca

13 Aug 2020

Role of plant compounds in the modulation of the conjugative transfer of pRet42a

PONE-D-20-19518R1

Dear Dr. %Torres-Tejerizo%,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Francisco Martinez-Abarca, Ph.D.

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Only a minor change isvrequired as pointed out by reviewr 2.

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: (No Response)

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: (No Response)

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: (No Response)

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: (No Response)

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The authors have addressed my minor concerns and provided a good response to my suggestions (and, in my view, those of the other reviewer). One very small issue that remains is that I don't think they quite grasped what I meant when I suggested using growth cured strains (or strains with mutations in given genes) to deplete the plant exudates and/or extracts of most the metaboliites. leaving behind only those that might induce transfer for the missing plasmid (this could indeed be assayed using fusions as they suggest). Such an approach would narrow down the number of compounds in exudates that might need to be screened. Not a big deal.

Reviewer #2: The manuscript has been revised by authors and amended following the suggestions from the previous reviewing assessment. I'm satified with the present version of the manuscript.

Minor editorial changes:

Line 221: Change UFC to CFU

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Acceptance letter

Francisco Martinez-Abarca

17 Aug 2020

PONE-D-20-19518R1

Role of plant compounds in the modulation of the conjugative transfer of pRet42a

Dear Dr. Torres Tejerizo:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Francisco Martinez-Abarca

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Data Availability Statement

    All relevant data are within the manuscript.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES