Abbreviations
- ADV
Aleutian disease virus
- CMV
Cytomegalovirus
- CVB
Coxsackie B virus
- CXV
Cactus X virus
- ESV
Espirito Santo virus
- HBV
Hepatitis B virus
- HIV
human immunodeficiency virus
- HSV
Herpes simplex virus
- JEV
Japanese encephalitis virus
- KSHV
Kaposi sarcoma herpes virus
- PV
polio virus
- RSV
respiratory syncytial virus
- SARS‐CoV
severe acute respiratory syndrome coronavirus
- VHSH
viral hemorrhagic septicemia virus
- VSV
vesicular stomatitis virus
- VV
vaccinia virus
- VZV
varicella zoster virus
In December 2019 in Wuhan city of China, a novel coronavirus emerged which was provisionally named as 2019‐nCoV responsible for causing the Coronavirus Disease‐2019 (COVID‐19). As of May 2020, the WHO reported more than 4 million positive cases of COVID‐19 all over the world.
Currently, no vaccine exists for the treatment of COVID‐19 and limited therapeutic options are available (Li & De Clercq, 2020). For centuries, traditional medicines have been used to cure several diseases including viral infections (Ahmad et al., 2020). The phytotherapy‐based approach to find new drugs have contributed as several plant species are a great source of modern medicines (Yaseen et al., 2019). Similarly, plant‐derived active compounds have been studied as viral inhibitors for many years (Serkedjieva, Manolova, Zgórniak‐Nowosielska, Zawilińska, & Grzybek, 1990). This study was aimed to briefly describe the potential use of ethno‐medicinal research in searching new therapeutic options against COVID‐19 and other coronaviruses and to provide some important directions to researcher for planning future studies. We have summarized various medicinal plants and their reported antiviral activities in Table 1. There is the possibility that studies on plant‐derived compounds listed in Table 1 have been not carried according to more recent scientific qualitative standards for plant‐derived products (Heinrich et al., 2020). For example, there is the possibility that high concentrations or doses have been used. The antiviral activities of medicinal plants have been mostly derived from laboratory studies (as clinical data are limited) and referred to multicomponent preparation of traditional medicines (Liu, Zhang, He, & Li, 2012). Similarly, the qualitative standards for reporting clinical trials in herbal medicine are not as rigorous as in the conventional pharmaceutical field (Williamson, Liu, & Izzo, 2020). In a study in 2012, it was reported that traditional herbal remedies along with Western medicines could help to improve symptoms, absorptions of pulmonary infiltrations, life‐quality, and decrease corticosteroids uses in SARS patients (Liu et al., 2012).
TABLE 1.
S. No. | Plant name | Family | Active compounds | Effective against virus | References |
---|---|---|---|---|---|
1 | Plantago major L. | Plantaginaceae | Caffeic acid, chlorogenic acid | HSV‐I, HSV‐II, ADV‐III, and ADV‐II | Nazarizadeh, Mikaili, Moloudizargari, Aghajanshakeri, & Javaherypour, 2013; Samuelsen, 2000 |
2 | Solanum torvum | Solanaceae | Torvanol‐A, Torvanol‐H | HSV‐I | Ikeda et al., 2000 |
3 | Euphorbia jokini | Euphorbiaceae | Diterpenes, putranjivain A | HSV‐II | Cheng et al., 2004 |
4 | Cassia javanica | Caesalpiniaceae | Ent‐epiafzel‐echin(4a‐8)epiafzelechin(EEE,S) | HSV‐II | Kashiwada et al., 1990 |
5 | Melaleuca alternifolia | Myrtaceae | Isoborneal | HSV‐I | Hammer, Carson, & Riley, 2002 |
6 | Phylanthus amarus | Phyllanthaceae | Elgic acid | HBV | Blumberg, Millman, Venkates, & Thyagarajan, 1990 |
7 | Bohmeria nivea | Urticaceae | HBV | Chang, Huang, Yuan, Lai, & Hung, 2010 | |
8 | Camellia sinensis | Theaceae | Tannic acid, theaflavin 3 gallate, theaflavin‐33‐gallate | HIV, HCV, influenza | Oh et al., 2013 |
9 | Dryopteris crassirhizoma | Dryopteridaceae | Kampferol | HIV | Min, Tomiyama, Nakamura, & Hattori, 2001 |
10 | Paeonia lactiflora | Paeoniaceae | Penta‐o‐gallyl‐βD‐glucose | HBV | Lee, Lee, Jung, & Mar, 2006 |
11 | Verbescum thapsiforme | Scrophulariaceae | Iridoid, phenyl thanoid | HSV‐I, influenza A and B, H7N | Zgorniak‐Nowosielska, Grzybek, Manolova, Serkedjieva, & Zawilińska, 1991 |
12 | Radix glycyrrhiza | Fabaceae | Glycyrrhizin | Influenza, SARS‐CoV | Fang et al., 2007; Yang, Islam, Wang, Li, & Chen, 2020 |
13 | Aesculus chinensis | Sapindaceae | Flavonoids | RSV, influenza, rubella | Liu, Wang, Lee, Wang, & Du, 2008; Wei et al., 2004 |
14 | Melia azedarach | Meliaceae | Meliacine, cinnamoyl dihydroxymeliacarpin | HSV‐I and HSV‐II, Junin virus, Sindbis virus, VSV, poliovirus, pseudorabies virus, tacaribe virus | Andrei, Coto, & de Torres, 1985; Andrei, Damonte, de Torres, & Coto, 1988; Andrei, Lampuri, Coto, & De Torres, 1986; Castilla, Barquero, Mersich, & Coto, 1998 |
15 | Humulus lupulus | Cannabaceae | Xanthohumol | HSV and HIV | Wang, Ding, Liu, & Zheng, 2004 |
16 | Melissa officinalis | Lamiaceae | Citral a, citral b, citronellal, monoterpenes, aldehydes, lemon balm oil | HSV | Cohen, Kucera, & Herrmann, 1964 |
17 | Prunella vulgari | Lamiaceae | Rosmarinic acid, phenol like apigenin, luteolin derivatives | HIV | Yao, Wainberg, & Parniak, 1992 |
18 | Geum japonicum | Rosaceae | Ursolic acid, maslinic acid | CMV | Yukawa et al., 1996 |
19 | Ocimum basilicum | Lamiaceae | Ursolic acid (HSV‐I), apigenin (HSV‐II) | HSV‐I and HSV‐II | Yucharoen, Anuchapreeda, & Tragoolpua, 2011 |
20 | Glycyrrhiza glabra | Fabaceae | Glycyrrhizic acid | VV, HSV, VSV, VZV, SARS‐COV, KSHV, HIV‐I HIV‐II, and influenza virus | Fiore et al., 2008 |
21 | Stephania cepharantha | Menispermaceae | Cepharathine | HSV‐I, CVB‐3, HIV, SARS‐CoV | Ma et al., 2002 |
22 | Stylogne cauliflora | Oligophenols are involved in antiviral activity | HCV | M Patil, Masand, & Prakash Gupta, 2016 | |
23 | Pithecellobium clypearia | Leguminosae | 7‐ogalloyltricetifavan 7,4‐di‐ogalloylricetifavan | HSV‐I, HSV‐II, Junin virus, HBV, tacaribe virus | Leung et al., 2006; Li, Leung, Yao, Ooi, & Ooi, 2006 |
24 | Humulus lupulus | Cannabaceae | Xanthohumol | HIV | Wang et al., 2004 |
25 | Melissa officinalis | Labiatae | Citral a, citral b,citronellal, monoterpenes, aldehydes, lemon balm oil | HSV | Allahverdiyev, Duran, Ozguven, & Koltas, 2004 |
26 | Prunella vulgaris | Ericaceae | Rosmarinic acid, phenol like apigenin, luteolin derivatives | HSV‐I | Xu, Lee, Lee, White, & Blay, 1999 |
27 | Geum japonicum | Rosaceae | Triterpenes | HIV | Xu, Zeng, Wan, & Sim, 1996 |
28 | Ocimum basilicum | Lamiaceae | Ursolic acid (HSV‐I), apigenin (HSV‐II) | HSV‐I and HSV‐II | Yucharoen et al., 2011 |
29 | Olea europea | Oleaceae | Oleuropein, leaf extract | VHSH | Antunes et al., 2017 |
30 | Glycine max | Leguminosae | ADV‐I, CXV‐B1 | Müller et al., 2007 | |
31 | Lycoris radiata | Amaryllidaceae | Lycorine and alkaloids; 2αmethoxy‐6‐oethyloduline, 2αmethoxy‐6‐omethyloduline, trispherine | SARS‐CoV, influenza | He et al., 2013 |
32 | Blumea laciniate | Asteraceae | Polyphenols | RSV | Li, Ooi, Wang, But, & Ooi, 2004 |
33 | Geranium sanguineum | Geraniaceae | Polyphenols | RSV, influenza | Chattopadhyay et al., 2009 |
34 | Phyllanthus nanus | Euphorbiaceae | HBV | Lam et al., 2006 | |
35 | Ardisia chinensis | Primulaceae | Phenolics | HBV | Leung et al., 2006 |
36 | Alisma orientalis | Alismataceae | 25‐anhydroanisol, 13b,17b‐epoxyalisol, alisol b‐23‐acetate, alisol F24 acetate, alisol F | HBV | Jiang et al., 2006 |
37 | Acacia nilotica | Fabaceae | Silybin, oxymatrine | HCV | Rehman, Ashfaq, Riaz, Javed, & Riazuddin, 2011 |
38 | Nerium indicum | Apocynaceae | Caffeoylquinic acid, quercetin, luteolin‐5o‐rutinisid | Influenza, HIV,HSV | Farahani, 2014; Kitazato, Wang, & Kobayashi, 2007 |
39 | Elephantopus scabe | Asteraceae | Polyphenols | RSV | Li, 2005 |
40 | Eleutherococcs senticosus | Araliaceae | Ethanolic extract of roots | HRV, RSV, influenza virus A | Glatthaar‐Saalmüller, Sacher, & Esperester, 2001 |
41 | Syzygium aromaticum | Myrtaceae | Eugeniin | HSV‐I, EBV | Carvalho, Andrade, de Sousa, & de Sousa, 2015; Kurokawa et al., 1998 |
42 | Azadiracta indica | Meliaceae | Aqueous extract of leaves, azadiractin | Dengue virus | Parida, Upadhyay, Pandya, & Jana, 2002 |
43 | Momordia charantia | Cucurbitaceae | Lectin MA30 | Influenza | Ahmad, Javed, Rao, & Husnain, 2016 |
44 | Euphorbia segetalis | Euphorbiaceae | Lupenone | HSV‐I and HSV‐II | Álvarez, Habtemariam, & Parra, 2015 |
45 | Guazuma ulmifolia | Malvaceae | Ethyl acetate extract | PV | Felipe et al., 2006 |
46 | Argimonia pilosa | Rosaceae | Polyphenols | Influenza virus A and B | Shin, Lee, Park, & Seong, 2010 |
47 | Punica granatum | Lythraceae | Polyphenols | HSV‐I, norovirus | Živković et al., 2018 |
48 | Myrica rubra | Myricaceae | Rodelphinidin‐di‐ogallate | HSV‐I | Cheng et al., 2003 |
49 | Podophyllum peltatum | Berberidaceae | Podohyllotoxin | Measles, HSV | Bedows & Hatfield, 1982 |
50 | Psiadia dentate | Asteraceae | 3‐methylkaemfero | PV | Robin, Boustie, Amoros, & Girre, 1998 |
51 | Loranthus yadoriki | Loranthaceae | Camp B,C | Coxsackie virus | Wang, Yang, Huang, Wen, & Liu, 2000 |
52 | Scutellaia baicalensis | Lamiaceae | Isoscutellarein‐8methyl ether (5,7,4trihydroxy‐8methoxyflavone) | Influenza A | Nagai, Moriguchi, Suzuki, Tomimori, & Yamada, 1995 |
53 | Poncirus trifoliate | Rutaceae | Flavonoids, coumarins, and triterpenoid | Influenza | Heo et al., 2018 |
54 | Dianella longifolia | Asphodelaceae | Chrysophanic acid | PV | Semple, Pyke, Reynolds, & Flower, 2001 |
55 | Callophylum lanigerum | Calophyllaceae | Calinode A‐1, calonide B‐4 | HIV‐I | Kashman et al., 1992 |
56 | Curcuma longa | Zingiberaceae | Curcumin, curcuminoids | HIV‐I, HBV, influenza | Zorofchian Moghadamtousi et al., 2014 |
57 | Dropteris crassirhizoma | Dryopteridaceae | Dryocrassin ABBA, Extract, kaemferol acethylrhamnoside | Dengue virus | Maryam et al., 2020 |
58 | Scutellaria baicalensis | Lamiaceae | Baicalin, isosceutellarei n‐8‐methylether, wagonin, oroxylin A | Influenza A and B, RSV, hepatitis B | Hour et al., 2013; Ma et al., 2002 |
59 | Urtica dioica | Urticaceae | n‐acethylglucosamine | HIV‐I, HIV‐II, influenza A | De Clercq, 2000; Rajbhandari et al., 2009 |
60 | Brazilian propolis | Asteraceae | Moronic acid, kaemferol | HIV, influenza virus | Ito et al., 2001; Kai et al., 2014 |
61 | Artemisia annua L. | Asteraceae | friedelan3‐β‐ol, artemetin, and quercetagetin 6,7,3′,4′‐tetramethyl ether | SARS‐CoV | Wang et al., 2007 |
62 | Lycoris radiate | Amaryllidaceae | Lycorine, glycyrrhizin | SARS‐CoV | Shahrajabian, Sun, Shen, & Cheng, 2020 |
63 | Glycyrrhiza uralensis | Fabaceae | HIV, RSV, SARS‐CoV | Hoever et al., 2005; Ma et al., 2002 |
Abbreviations: ADV, Aleutian disease virus; CMV, Cytomegalovirus; CVB, Coxsackie B virus; CXV, Cactus X virus; HBV, Hepatitis B virus; HIV, human immunodeficiency virus; HSV, Herpes simplex virus; KSHV, Kaposi sarcoma herpes virus; SARS‐CoV, severe acute respiratory syndrome coronavirus; PV, polio virus; RSV, respiratory syncytial virus; VHSH, viral hemorrhagic septicemia virus; VSV, vesicular stomatitis virus; VV, vaccinia virus.
The Traditional Chinese Medicines (TCM) were highly considered by Government of China in their campaign against COVID‐19. To evaluate the safety and efficacy of treatments for COVID‐19 patients, China launched more than 300 clinical trials on March 1, 2020. Among the total treatments, 16.5% (50 trials) were linked to the use TCM where 4.6% (14 cases) were linked to examine the combine use of Western medicine and TCM. Among the trials of TCM, 22 (7.3%) were launched to evaluate the efficacy of self‐made herbal preparations including QingYi‐4, Xin Guan‐1 Formula and Xin Guan‐2 Formula. The commercially available TCM products like Lian Hua Qing Wen capsules and Tan Re Qing injections were also studied in 14 (4.6%) trials (Yang et al., 2020). The therapeutic effects of TCM herbal remedies for the treatment of SARS coronavirus have also been published (Luo et al., 2020; Yang et al., 2020). Regardless the complex formulation of TCM, herbs such as Scutellaria baicalensis and Glycyrrhiza glabra were available in tested TCM preparations. The extracted baicalin and glycyrrhizin compounds from the mentioned herbs have in vitro evidences of anticoronaviral activity (Chen et al., 2004). The anticoronavirus TCM remedies included plants such as Lonicerae japonicae, Saposhnikovia divaricate, Forsythia Vahl, and Atractylodis macrocephalae (Luo et al., 2020). This could identify new directions for future research.
For the treatment of coronavirus infections, two different research streams could be possibly followed to search useful phytotherapeutic compounds. One option is the herbal remedies that have potential preventive effects especially boosting the immune responses, that is, Echinacea purpurea and Astragalus membranaceus (Block & Mead, 2003). Astragals has been used in TCM herbal formulation against SARS (Liu et al., 2012). Immunomodulatory properties of polysaccharides and Uncaria tomentosa (from medicinal mushrooms) could also be used. The second option is the herbal remedies with therapeutic effects that have different antiviral mechanism of action. Regardless the etiology, clinical studies have proposed extract from plants, such as Pelargonium sidoides and Sambucus nigra to treat the infection of respiratory system (Agbabiaka, Guo, & Ernst, 2008; Hawkins, Baker, Cherry, & Dunne, 2019; Kalus et al., 2009). The anticoronaviral activities of polyphenols and pelargonium has also been studied (Michaelis, Doerr, & Cinatl Jr, 2011; Weng et al., 2019). A set of compounds such as quercetin, kaempferol, and cryptotanshinone have been identified with anti‐SARS‐CoV action (Zhang, Wu, Zhang, Deng, & Peng, 2020). Active compounds derived from medicinal plants has different antiviral mechanisms, such as viral pentation inhibition, replication inhibition or inhibiting the SARS‐3CLpro activity (Yang et al., 2020). Such studies can expand the area of plant‐based products to be investigated in future experiments. Similarly, the phytotherapy can be useful in the management or prevention the adverse effects of conventional drugs (Yang et al., 2020).
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- Agbabiaka, T. B. , Guo, R. , & Ernst, E. (2008). Pelargonium sidoides for acute bronchitis: A systematic review and meta‐analysis. Phytomedicine, 15, 378–385. [DOI] [PubMed] [Google Scholar]
- Ahmad, A. , Javed, M. R. , Rao, A. Q. , & Husnain, T. (2016). Designing and screening of universal drug from neem (Azadirachta indica) and standard drug chemicals against influenza virus nucleoprotein. BMC Complementary and Alternative Medicine, 16, 519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmad, S. , Zafar, M. , Shinwari, S. , Ahmad, M. , Shinwari, Z. K. , Sultana, S. , & Butt, M. A. (2020). Ethno‐medicinal plants and traditional knowledge linked to primary health care among the indigenous communities living in Western hilly slopes of Dera Ghazi Khan, Pakistan. Pakistan Journal of Botany, 52, 519–530. [Google Scholar]
- Allahverdiyev, A. , Duran, N. , Ozguven, M. , & Koltas, S. (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against herpes simplex virus type‐2. Phytomedicine, 11, 657–661. [DOI] [PubMed] [Google Scholar]
- Álvarez, Á. L. , Habtemariam, S. , & Parra, F. (2015). Inhibitory effects of lupene‐derived pentacyclic triterpenoids from Bursera simaruba on HSV‐1 and HSV‐2 in vitro replication. Natural Product Research, 29, 2322–2327. [DOI] [PubMed] [Google Scholar]
- Andrei, G. , Coto, C. , & de Torres, R. (1985). Antiviral activity and cytotoxicity assays of crude and partial purified extracts of Melia azedarach L. green leaves. Revista Argentina de Microbiología, 17, 187–194. [PubMed] [Google Scholar]
- Andrei, G. , Lampuri, J. , Coto, C. , & De Torres, R. (1986). An antiviral factor from Melia azedarach L. prevents Tacaribe virus encephalitis in mice. Experientia, 42, 843–845. [DOI] [PubMed] [Google Scholar]
- Andrei, G. M. , Damonte, E. B. , de Torres, R. A. , & Coto, C. E. (1988). Induction of a refractory state to viral infection in mammalian cells by a plant inhibitor isolated from leaves of Melia azedarach L. Antiviral Research, 9, 221–231. [DOI] [PubMed] [Google Scholar]
- Bedows, E. , & Hatfield, G. (1982). An investigation of the antiviral activity of Podophyllum peltatum . Journal of Natural Products, 45, 725–729. [DOI] [PubMed] [Google Scholar]
- Block, K. I. , & Mead, M. N. (2003). Immune system effects of echinacea, ginseng, and astragalus: A review. Integrative Cancer Therapies, 2, 247–267. [DOI] [PubMed] [Google Scholar]
- Blumberg, B. , Millman, I. , Venkates, P. , & Thyagarajan, S. (1990). Hepatitis B virus and primary hepatocellular carcinoma: Treatment of HBV carriers with Phyllanthus amarus . Vaccine, 8, S86–S92. [DOI] [PubMed] [Google Scholar]
- Carvalho, A. A. , Andrade, L. N. , de Sousa, É. B. , & de Sousa, D. P. (2015). Antitumor phenylpropanoids found in essential oils. BioMed Research International, 2015 10.1155/2015/392674 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castilla, V. , Barquero, A. A. , Mersich, S. E. , & Coto, C. E. (1998). In vitro anti‐Junin virus activity of a peptide isolated from Melia azedarach L. leaves. International Journal of Antimicrobial Agents, 10, 67–75. [DOI] [PubMed] [Google Scholar]
- Chang, J.‐M. , Huang, K.‐L. , Yuan, T. T.‐T. , Lai, Y.‐K. , & Hung, L.‐M. (2010). The anti‐hepatitis B virus activity of Boehmeria nivea extract in HBV‐viremia SCID mice. Evidence‐Based Complementary and Alternative Medicine, 7, 189–195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay, D. , Chawla‐Sarkar, M. , Chatterjee, T. , Dey, R. S. , Bag, P. , Chakraborti, S. , & Khan, M. T. H. (2009). Recent advancements for the evaluation of anti‐viral activities of natural products. New Biotechnology, 25, 347–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen, F. , Chan, K. H. , Jiang, Y. , Kao, R. Y. , Lu, H. T. , Fan, K. W. , … Yuen, K. Y. (2004). In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31, 69–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng, H.‐Y. , Lin, T.‐C. , Ishimaru, K. , Yang, C.‐M. , Wang, K.‐C. , & Lin, C.‐C. (2003). In vitro antiviral activity of prodelphinidin B‐2 3, 3′‐di‐O‐gallate from Myrica rubra . Planta Medica, 69, 953–956. [DOI] [PubMed] [Google Scholar]
- Cheng, H.‐Y. , Lin, T.‐C. , Yang, C.‐M. , Wang, K.‐C. , Lin, L.‐T. , & Lin, C.‐C. (2004). Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. Journal of Antimicrobial Chemotherapy, 53, 577–583. [DOI] [PubMed] [Google Scholar]
- Cohen, R. A. , Kucera, L. S. , & Herrmann, E. C., Jr. (1964). Antiviral activity of Melissa officinalis (Lemon Balm) extract. Proceedings of the Society for Experimental Biology and Medicine, 117, 431–434. [DOI] [PubMed] [Google Scholar]
- De Clercq, E. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20, 323–349. [DOI] [PubMed] [Google Scholar]
- Fang, B.‐H. , Qiu, L.‐C. , Chen, J.‐X. , Chen, L.‐Z. , Zeng, Z.‐L. , & Chen, Z.‐L. (2007). The anti‐influenza H9N2 virus effects of active compounds from Radix Glycyrrhizae. Guangdong Agricultural Sciences, 03, 3 http://en.cnki.com.cn/Journal_en/D-D000-GDNY-2007-03.htm [Google Scholar]
- Farahani, M. (2014). Anti‐herpes simplex virus effect of Camellia sinesis, Echiumamoenum and Nerium oleander . Journal of Applied & Environmental Microbiology, 2, 102–105. [Google Scholar]
- Felipe, A. M. M. , Rincão, V. P. , Benati, F. J. , Linhares, R. E. C. , Galina, K. J. , De Toledo, C. E. M. , … Nozawa, C. (2006). Antiviral effect of Guazuma ulmifolia and Stryphnodendron adstringens on poliovirus and bovine herpesvirus. Biological and Pharmaceutical Bulletin, 29, 1092–1095. [DOI] [PubMed] [Google Scholar]
- Fiore, C. , Eisenhut, M. , Krausse, R. , Ragazzi, E. , Pellati, D. , Armanini, D. , & Bielenberg, J. (2008). Antiviral effects of Glycyrrhiza species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22, 141–148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glatthaar‐Saalmüller, B. , Sacher, F. , & Esperester, A. (2001). Antiviral activity of an extract derived from roots of Eleutherococcus senticosus . Antiviral Research, 50, 223–228. [DOI] [PubMed] [Google Scholar]
- Hammer, K. , Carson, C. , & Riley, T. (2002). In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. Journal of Antimicrobial Chemotherapy, 50, 195–199. [DOI] [PubMed] [Google Scholar]
- Hawkins, J. , Baker, C. , Cherry, L. , & Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta‐analysis of randomized, controlled clinical trials. Complementary Therapies in Medicine, 42, 361–365. [DOI] [PubMed] [Google Scholar]
- He, J. , Qi, W. B. , Wang, L. , Tian, J. , Jiao, P. R. , Liu, G. Q. , … Liao, M. (2013). Amaryllidaceae alkaloids inhibit nuclear‐to‐cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza and Other Respiratory Viruses, 7, 922–931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrich, M. , Appendino, G. , Efferth, T. , Fürst, R. , Izzo, A. A. , Kayser, O. , … Viljoen, A. (2020). Best practice in research – Overcoming common challenges in phytopharmacological research. Journal of Ethnopharmacology, 246, 112230. [DOI] [PubMed] [Google Scholar]
- Heo, Y. , Cho, Y. , Ju, K. , Cho, H. , Park, K. H. , Choi, H. , … Kim, Y. B. (2018). Antiviral activity of Poncirus trifoliata seed extract against oseltamivir‐resistant influenza virus. Journal of Microbiology, 56, 586–592. [DOI] [PubMed] [Google Scholar]
- Hoever, G. , Baltina, L. , Michaelis, M. , Kondratenko, R. , Baltina, L. , Tolstikov, G. A. , … Cinatl, J. (2005). Antiviral activity of glycyrrhizic acid derivatives against SARS− coronavirus. Journal of Medicinal Chemistry, 48, 1256–1259. [DOI] [PubMed] [Google Scholar]
- Hour, M.‐J. , Huang, S.‐H. , Chang, C.‐Y. , Lin, Y.‐K. , Wang, C.‐Y. , Chang, Y.‐S. , & Lin, C.‐W. (2013). Baicalein, ethyl acetate, and chloroform extracts of Scutellaria baicalensis inhibit the neuraminidase activity of pandemic 2009 H1N1 and seasonal influenza a viruses. Evidence‐Based Complementary and Alternative Medicine, 2013 10.1155/2013/750803 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda, T. , Ando, J. , Miyazono, A. , Zhu, X. H. , Tsumagari, H. , Nohara, T. , … Uyeda, M. (2000). Anti‐herpes virus activity of solanum steroidal glycosides. Biological and Pharmaceutical Bulletin, 23, 363–364. [DOI] [PubMed] [Google Scholar]
- Ito, J. , Chang, F.‐R. , Wang, H.‐K. , Park, Y. K. , Ikegaki, M. , Kilgore, N. , & Lee, K.‐H. (2001). Anti‐AIDS agents. 48. Anti‐HIV activity of moronic acid derivatives and the new melliferone‐related triterpenoid isolated from Brazilian propolis. Journal of Natural Products, 64, 1278–1281. [DOI] [PubMed] [Google Scholar]
- Jiang, Z.‐Y. , Zhang, X.‐M. , Zhang, F.‐X. , Liu, N. , Zhao, F. , Zhou, J. , & Chen, J.‐J. (2006). A new triterpene and anti‐hepatitis B virus active compounds from Alisma orientalis. Planta Medica, 72, 951–954. [DOI] [PubMed] [Google Scholar]
- Kai, H. , Obuchi, M. , Yoshida, H. , Watanabe, W. , Tsutsumi, S. , Park, Y. K. , … Kurokawa, M. (2014). In vitro and in vivo anti‐influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF‐08). Journal of Functional Foods, 8, 214–223. [Google Scholar]
- Kalus, U. , Grigorov, A. , Kadecki, O. , Jansen, J.‐P. , Kiesewetter, H. , & Radtke, H. (2009). Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo‐controlled clinical study. Antiviral Research, 84, 267–271. [DOI] [PubMed] [Google Scholar]
- Kashiwada, Y. , Iizuka, H. , Yoshioka, K. , Chen, R.‐F. , Nonaka, G.‐i. , & Nishioka, I. (1990). Tannins and related compounds. XCIII: Occurrence of Enantiomeric Proanthocyanidins in the Leguminosae plants, Cassia fistula L. and C. javanica L. Chemical and Pharmaceutical Bulletin, 38, 888–893. [Google Scholar]
- Kashman, Y. , Gustafson, K. R. , Fuller, R. W. , Cardellina, J. H. , McMahon, J. B. , Currens, M. J. , … Boyd, M. R. (1992). The calanolides, a novel HIV‐inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. Journal of Medicinal Chemistry, 35, 2735–2743. [DOI] [PubMed] [Google Scholar]
- Kitazato, K. , Wang, Y. , & Kobayashi, N. (2007). Viral infectious disease and natural products with antiviral activity. Drug Discoveries & therapeutics, 1, 14–22. [PubMed] [Google Scholar]
- Kurokawa, M. , Hozumi, T. , Basnet, P. , Nakano, M. , Kadota, S. , Namba, T. , … Shiraki, K. (1998). Purification and characterization of Eugeniin as an anti‐herpesvirus compound from Geum japonicum and Syzygium aromaticum . Journal of Pharmacology and Experimental Therapeutics, 284, 728–735. [PubMed] [Google Scholar]
- Lam, W. Y. , Leung, K. T. , Law, P. T. W. , Lee, S. M. Y. , Chan, H. L. Y. , Fung, K. P. , … Waye, M. M. Y. (2006). Antiviral effect of Phyllanthus nanus ethanolic extract against hepatitis B virus (HBV) by expression microarray analysis. Journal of Cellular Biochemistry, 97, 795–812. [DOI] [PubMed] [Google Scholar]
- Lee, S.‐J. , Lee, H.‐K. , Jung, M.‐K. , & Mar, W. (2006). In vitro antiviral activity of 1, 2, 3, 4, 6‐penta‐O‐galloyl‐β‐D‐glucose against hepatitis B virus. Biological and Pharmaceutical Bulletin, 29, 2131–2134. [DOI] [PubMed] [Google Scholar]
- Leung, K. , Chiu, L. C. , Lam, W. , Li, Y. , Sun, S. S. , & Ooi, V. E. (2006). In vitro antiviral activities of Chinese medicinal herbs against duck hepatitis B virus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20, 911–914. [DOI] [PubMed] [Google Scholar]
- Li, G. , & De, C. E. (2020). Therapeutic options for the 2019 novel coronavirus (2019‐nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. 10.1038/d41573-020-00016-0. [DOI] [PubMed] [Google Scholar]
- Li, Y. (2005). Antiviral Screening of Medicinal Herbs Traditionally Used in South China Antiviral agents from selected Chinese herbal medicines, 1st, 1st, 43–50). ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106‐134: The Chinese University of Hong Kong (Hong Kong) https://search.proquest.com/openview/60a3ba8059f9aeaee53e0f93db0a79c4/1?pq-origsite=gscholar&cbl=18750&diss=y. [Google Scholar]
- Li, Y. , Leung, K.‐T. , Yao, F. , Ooi, L. S. , & Ooi, V. E. (2006). Antiviral flavans from the leaves of Pithecellobium c lypearia. Journal of Natural Products, 69, 833–835. [DOI] [PubMed] [Google Scholar]
- Li, Y. , Ooi, L. S. , Wang, H. , But, P. P. , & Ooi, V. E. (2004). Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18, 718–722. [DOI] [PubMed] [Google Scholar]
- Liu, A.‐L. , Wang, H.‐D. , Lee, S. M. , Wang, Y.‐T. , & Du, G.‐H. (2008). Structure‐activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti‐viral activities. Bioorganic & Medicinal Chemistry, 16, 7141–7147. [DOI] [PubMed] [Google Scholar]
- Liu, X. , Zhang, M. , He, L. , & Li, Y. (2012). Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database of Systematic Reviews, (12). https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004882.pub3/epdf/full. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo, H. , Q‐l, T. , Y‐x, S. , S‐b, L. , Yang, M. , Robinson, N. , & J‐p, L. (2020). Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID‐19)? A review of historical classics, research evidence and current prevention programs. Chinese Journal of Integrative Medicine, 26(4), 243–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- M Patil, V. , Masand, N. , & Prakash Gupta, S. (2016). HCV inhibitors: Role of compounds from botanical sources. Current Topics in Medicinal Chemistry, 16, 1402–1409. [DOI] [PubMed] [Google Scholar]
- Ma, C. M. , Nakamura, N. , Miyashiro, H. , Hattori, M. , Komatsu, K. , Kawahata, T. , & Otake, T. (2002). Screening of Chinese and Mongolian herbal drugs for anti‐human immunodeficiency virus type 1 (HIV‐1) activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 16(2), 186–189. 10.1002/ptr.922. [DOI] [PubMed] [Google Scholar]
- Ma, S.‐C. , du, J. , But, P. P. H. , Deng, X. L. , Zhang, Y. W. , Ooi, V. E. C. , … Lee, S. F. (2002). Antiviral Chinese medicinal herbs against respiratory syncytial virus. Journal of Ethnopharmacology, 79, 205–211. [DOI] [PubMed] [Google Scholar]
- Maryam, M. , Te, K. K. , Wong, F. C. , Chai, T. T. , Gary, K. , & Gan, S. C. (2020). Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. Journal of Integrative Agriculture, 19, 1085–1096. [Google Scholar]
- Michaelis, M. , Doerr, H. W. , & Cinatl, J., Jr. (2011). Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine, 18, 384–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Micol, V., Caturla, N., Pérez‐Fons, L., Más, V., Pérez, L., & Estepa, A. 2005. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral research, 66(2–3), 129–136. [DOI] [PubMed]
- Min, B.‐S. , Tomiyama, M. , Nakamura, N. , & Hattori, M. (2001). Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus‐1 reverse transcriptase. Chemical and Pharmaceutical Bulletin, 49, 546–550. [DOI] [PubMed] [Google Scholar]
- Müller, V. , Chávez, J. H. , Reginatto, F. H. , Zucolotto, S. M. , Niero, R. , Navarro, D. , … Simões, C. M. O. (2007). Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus. Phytotherapy Research, 21, 970–974. [DOI] [PubMed] [Google Scholar]
- Nagai, T. , Moriguchi, R. , Suzuki, Y. , Tomimori, T. , & Yamada, H. (1995). Mode of action of the anti‐influenza virus activity of plant flavonoid, 5, 7, 4′‐trihydroxy‐8‐methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Research, 26, 11–25. [DOI] [PubMed] [Google Scholar]
- Nazarizadeh, A. , Mikaili, P. , Moloudizargari, M. , Aghajanshakeri, S. , & Javaherypour, S. (2013). Therapeutic uses and pharmacological properties of Plantago major L. and its active constituents. Journal of Basic and Applied Scientific Research, 3, 212–221. [Google Scholar]
- Oh, E.‐G. , Kim, K. L. , Shin, S. B. , Son, K. T. , Lee, H. J. , Kim, T. H. , … Kim, J. H. (2013). Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Science and Biotechnology, 22, 593–598. [Google Scholar]
- Parida, M. , Upadhyay, C. , Pandya, G. , & Jana, A. (2002). Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type‐2 replication. Journal of Ethnopharmacology, 79, 273–278. [DOI] [PubMed] [Google Scholar]
- Rajbhandari, M. , Mentel, R. , Jha, P. K. , Chaudhary, R. P. , Bhattarai, S. , Gewali, M. B. , … Lindequist, U. (2009). Antiviral activity of some plants used in Nepalese traditional medicine. Evidence‐Based Complementary and Alternative Medicine, 6, 517–522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehman, S. , Ashfaq, U. A. , Riaz, S. , Javed, T. , & Riazuddin, S. (2011). Antiviral activity of Acacia nilotica against hepatitis C virus in liver infected cells. Virology Journal, 8, 220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robin, V. , Boustie, J. , Amoros, M. , & Girre, L. (1998). In‐vitro antiviral activity of seven psiadia species, Asteraceae: Isolation of two antipoliovirus flavonoids from Psiadia dentata. Pharmacy and Pharmacology Communications, 4, 61–64. [Google Scholar]
- Samuelsen, A. B. (2000). The traditional uses, chemical constituents and biological activities of Plantago major L. A Review Journal of Ethnopharmacology, 71, 1–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Semple, S. J. , Pyke, S. M. , Reynolds, G. D. , & Flower, R. L. (2001). In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Research, 49, 169–178. [DOI] [PubMed] [Google Scholar]
- Serkedjieva, J. , Manolova, N. , Zgórniak‐Nowosielska, I. , Zawilińska, B. , & Grzybek, J. (1990). Antiviral activity of the infusion (SHS‐174) from flowers of Sambucus nigra L., aerial parts of Hypericum perforatum L., and roots of Saponaria officinalis L. against influenza and herpes simplex viruses. Phytotherapy Research, 4, 97–100. [Google Scholar]
- Shahrajabian, M. H. , Sun, W. , Shen, H. , & Cheng, Q. (2020). Chinese herbal medicine for SARS and SARS‐CoV‐2 treatment and prevention, encouraging using herbal medicine for COVID‐19 outbreak. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 70(05), 437–443. [Google Scholar]
- Shin, W. J. , Lee, K. H. , Park, M. H. , & Seong, B. L. (2010). Broad‐spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiology and Immunology, 54, 11–19. [DOI] [PubMed] [Google Scholar]
- Wang, Q. , Ding, Z.‐H. , Liu, J.‐K. , & Zheng, Y.‐T. (2004). Xanthohumol, a novel anti‐HIV‐1 agent purified from hops Humulus lupulus . Antiviral Research, 64, 189–194. [DOI] [PubMed] [Google Scholar]
- Wang, S.‐Q. , Du, Q.‐S. , Zhao, K. , Li, A.‐X. , Wei, D.‐Q. , & Chou, K.‐C. (2007). Virtual screening for finding natural inhibitor against cathepsin‐L for SARS therapy. Amino Acids, 33, 129–135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, Z. , Yang, Z. , Huang, T. , Wen, L. , & Liu, Y. (2000). Experimental research on inhibitory effect of alcohol extracts from Loranthus yadoriki Sieb. On coxsackie B3 virus. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 25, 685–687. [PubMed] [Google Scholar]
- Wei, F. , Ma, S.‐C. , Ma, L.‐Y. , But, P. P.‐H. , Lin, R.‐C. , & Khan, I. A. (2004). Antiviral flavonoids from the seeds of Aesculus chinensis. Journal of Natural Products, 67, 650–653. [DOI] [PubMed] [Google Scholar]
- Weng, J.‐R. , Lin, C. S. , Lai, H. C. , Lin, Y. P. , Wang, C. Y. , Tsai, Y. C. , … Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson, E. M. , Liu, X. , & Izzo, A. A. (2020). Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. British Journal of Pharmacology, 177(6), 1227–1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu, H.‐X. , Lee, S. H. , Lee, S. F. , White, R. L. , & Blay, J. (1999). Isolation and characterization of an anti‐HSV polysaccharide from Prunella vulgaris . Antiviral Research, 44, 43–54. [DOI] [PubMed] [Google Scholar]
- Xu, H.‐X. , Zeng, F.‐Q. , Wan, M. , & Sim, K.‐Y. (1996). Anti‐HIV triterpene acids from Geum japonicum. Journal of Natural Products, 59, 643–645. [DOI] [PubMed] [Google Scholar]
- Yang, Y. , Islam, M. S. , Wang, J. , Li, Y. , & Chen, X. (2020). Traditional Chinese medicine in the treatment of patients infected with 2019‐new coronavirus (SARS‐CoV‐2): A review and perspective. International Journal of Biological Sciences, 16, 1708–1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao, X.‐J. , Wainberg, M. A. , & Parniak, M. A. (1992). Mechanism of inhibition of HIV‐1 infection in vitro by purified extract of Prunella vulgaris . Virology, 187, 56–62. [DOI] [PubMed] [Google Scholar]
- Yaseen, G. , Ahmad, M. , Shinwari, S. , Potter, D. , Zafar, M. , Zhang, G. , … Sultana, S. (2019). Medicinal plant diversity used for livelihood of public health in deserts and arid regions of Sindh‐Pakistan. Pakistan Journal of Botany, 51, 657–679. [Google Scholar]
- Yucharoen, R. , Anuchapreeda, S. , & Tragoolpua, Y. (2011). Anti‐herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. African Journal of Biotechnology, 10, 860–866. [Google Scholar]
- Yukawa, T. A. , Kurokawa, M. , Sato, H. , Yoshida, Y. , Kageyama, S. , Hasegawa, T. , … Shiraki, K. (1996). Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Research, 32, 63–70. [DOI] [PubMed] [Google Scholar]
- Zgorniak‐Nowosielska, I. , Grzybek, J. , Manolova, N. , Serkedjieva, J. , & Zawilińska, B. (1991). Antiviral activity of Flos verbasci infusion against influenza and herpes simplex viruses. Archivum Immunologiae et Therapiae Experimentalis, 39, 103–108. [PubMed] [Google Scholar]
- Zhang, D.‐h. , Wu, K.‐l. , Zhang, X. , Deng, S.‐q. , & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18, 152–158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Živković, I. , Šavikin, K. , Zdunić, G. , Živković, J. , Bigović, D. , Menković, N. , & Radin, D. (2018). Antiviral activity of medicinal plants extracts against foodborne norovirus. Lekovite Sirovine, 38, 31–34. [Google Scholar]
- Zorofchian Moghadamtousi, S. , Abdul Kadir, H. , Hassandarvish, P. , Tajik, H. , Abubakar, S. , & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014(1), 1–12. https://www.hindawi.com/journals/bmri/ [DOI] [PMC free article] [PubMed] [Google Scholar]