Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
letter
. 2020 Aug 20:10.1002/ptr.6786. Online ahead of print. doi: 10.1002/ptr.6786

Phytotherapeutic options for the treatment of COVID‐19: A concise viewpoint

Misbahud Din 1, Fawad Ali 2, Abdul Waris 1, Fatima Zia 1, Muhammad Ali 1,
PMCID: PMC7461328  PMID: 32815574

Abbreviations

ADV

Aleutian disease virus

CMV

Cytomegalovirus

CVB

Coxsackie B virus

CXV

Cactus X virus

ESV

Espirito Santo virus

HBV

Hepatitis B virus

HIV

human immunodeficiency virus

HSV

Herpes simplex virus

JEV

Japanese encephalitis virus

KSHV

Kaposi sarcoma herpes virus

PV

polio virus

RSV

respiratory syncytial virus

SARS‐CoV

severe acute respiratory syndrome coronavirus

VHSH

viral hemorrhagic septicemia virus

VSV

vesicular stomatitis virus

VV

vaccinia virus

VZV

varicella zoster virus

In December 2019 in Wuhan city of China, a novel coronavirus emerged which was provisionally named as 2019‐nCoV responsible for causing the Coronavirus Disease‐2019 (COVID‐19). As of May 2020, the WHO reported more than 4 million positive cases of COVID‐19 all over the world.

Currently, no vaccine exists for the treatment of COVID‐19 and limited therapeutic options are available (Li & De Clercq, 2020). For centuries, traditional medicines have been used to cure several diseases including viral infections (Ahmad et al., 2020). The phytotherapy‐based approach to find new drugs have contributed as several plant species are a great source of modern medicines (Yaseen et al., 2019). Similarly, plant‐derived active compounds have been studied as viral inhibitors for many years (Serkedjieva, Manolova, Zgórniak‐Nowosielska, Zawilińska, & Grzybek, 1990). This study was aimed to briefly describe the potential use of ethno‐medicinal research in searching new therapeutic options against COVID‐19 and other coronaviruses and to provide some important directions to researcher for planning future studies. We have summarized various medicinal plants and their reported antiviral activities in Table 1. There is the possibility that studies on plant‐derived compounds listed in Table 1 have been not carried according to more recent scientific qualitative standards for plant‐derived products (Heinrich et al., 2020). For example, there is the possibility that high concentrations or doses have been used. The antiviral activities of medicinal plants have been mostly derived from laboratory studies (as clinical data are limited) and referred to multicomponent preparation of traditional medicines (Liu, Zhang, He, & Li, 2012). Similarly, the qualitative standards for reporting clinical trials in herbal medicine are not as rigorous as in the conventional pharmaceutical field (Williamson, Liu, & Izzo, 2020). In a study in 2012, it was reported that traditional herbal remedies along with Western medicines could help to improve symptoms, absorptions of pulmonary infiltrations, life‐quality, and decrease corticosteroids uses in SARS patients (Liu et al., 2012).

TABLE 1.

Medicinal plants and reported antiviral compounds

S. No. Plant name Family Active compounds Effective against virus References
1 Plantago major L. Plantaginaceae Caffeic acid, chlorogenic acid HSV‐I, HSV‐II, ADV‐III, and ADV‐II Nazarizadeh, Mikaili, Moloudizargari, Aghajanshakeri, & Javaherypour, 2013; Samuelsen, 2000
2 Solanum torvum Solanaceae Torvanol‐A, Torvanol‐H HSV‐I Ikeda et al., 2000
3 Euphorbia jokini Euphorbiaceae Diterpenes, putranjivain A HSV‐II Cheng et al., 2004
4 Cassia javanica Caesalpiniaceae Ent‐epiafzel‐echin(4a‐8)epiafzelechin(EEE,S) HSV‐II Kashiwada et al., 1990
5 Melaleuca alternifolia Myrtaceae Isoborneal HSV‐I Hammer, Carson, & Riley, 2002
6 Phylanthus amarus Phyllanthaceae Elgic acid HBV Blumberg, Millman, Venkates, & Thyagarajan, 1990
7 Bohmeria nivea Urticaceae HBV Chang, Huang, Yuan, Lai, & Hung, 2010
8 Camellia sinensis Theaceae Tannic acid, theaflavin 3 gallate, theaflavin‐33‐gallate HIV, HCV, influenza Oh et al., 2013
9 Dryopteris crassirhizoma Dryopteridaceae Kampferol HIV Min, Tomiyama, Nakamura, & Hattori, 2001
10 Paeonia lactiflora Paeoniaceae Penta‐o‐gallyl‐βD‐glucose HBV Lee, Lee, Jung, & Mar, 2006
11 Verbescum thapsiforme Scrophulariaceae Iridoid, phenyl thanoid HSV‐I, influenza A and B, H7N Zgorniak‐Nowosielska, Grzybek, Manolova, Serkedjieva, & Zawilińska, 1991
12 Radix glycyrrhiza Fabaceae Glycyrrhizin Influenza, SARS‐CoV Fang et al., 2007; Yang, Islam, Wang, Li, & Chen, 2020
13 Aesculus chinensis Sapindaceae Flavonoids RSV, influenza, rubella Liu, Wang, Lee, Wang, & Du, 2008; Wei et al., 2004
14 Melia azedarach Meliaceae Meliacine, cinnamoyl dihydroxymeliacarpin HSV‐I and HSV‐II, Junin virus, Sindbis virus, VSV, poliovirus, pseudorabies virus, tacaribe virus Andrei, Coto, & de Torres, 1985; Andrei, Damonte, de Torres, & Coto, 1988; Andrei, Lampuri, Coto, & De Torres, 1986; Castilla, Barquero, Mersich, & Coto, 1998
15 Humulus lupulus Cannabaceae Xanthohumol HSV and HIV Wang, Ding, Liu, & Zheng, 2004
16 Melissa officinalis Lamiaceae Citral a, citral b, citronellal, monoterpenes, aldehydes, lemon balm oil HSV Cohen, Kucera, & Herrmann, 1964
17 Prunella vulgari Lamiaceae Rosmarinic acid, phenol like apigenin, luteolin derivatives HIV Yao, Wainberg, & Parniak, 1992
18 Geum japonicum Rosaceae Ursolic acid, maslinic acid CMV Yukawa et al., 1996
19 Ocimum basilicum Lamiaceae Ursolic acid (HSV‐I), apigenin (HSV‐II) HSV‐I and HSV‐II Yucharoen, Anuchapreeda, & Tragoolpua, 2011
20 Glycyrrhiza glabra Fabaceae Glycyrrhizic acid VV, HSV, VSV, VZV, SARS‐COV, KSHV, HIV‐I HIV‐II, and influenza virus Fiore et al., 2008
21 Stephania cepharantha Menispermaceae Cepharathine HSV‐I, CVB‐3, HIV, SARS‐CoV Ma et al., 2002
22 Stylogne cauliflora Oligophenols are involved in antiviral activity HCV M Patil, Masand, & Prakash Gupta, 2016
23 Pithecellobium clypearia Leguminosae 7‐ogalloyltricetifavan 7,4‐di‐ogalloylricetifavan HSV‐I, HSV‐II, Junin virus, HBV, tacaribe virus Leung et al., 2006; Li, Leung, Yao, Ooi, & Ooi, 2006
24 Humulus lupulus Cannabaceae Xanthohumol HIV Wang et al., 2004
25 Melissa officinalis Labiatae Citral a, citral b,citronellal, monoterpenes, aldehydes, lemon balm oil HSV Allahverdiyev, Duran, Ozguven, & Koltas, 2004
26 Prunella vulgaris Ericaceae Rosmarinic acid, phenol like apigenin, luteolin derivatives HSV‐I Xu, Lee, Lee, White, & Blay, 1999
27 Geum japonicum Rosaceae Triterpenes HIV Xu, Zeng, Wan, & Sim, 1996
28 Ocimum basilicum Lamiaceae Ursolic acid (HSV‐I), apigenin (HSV‐II) HSV‐I and HSV‐II Yucharoen et al., 2011
29 Olea europea Oleaceae Oleuropein, leaf extract VHSH Antunes et al., 2017
30 Glycine max Leguminosae ADV‐I, CXV‐B1 Müller et al., 2007
31 Lycoris radiata Amaryllidaceae Lycorine and alkaloids; 2αmethoxy‐6‐oethyloduline, 2αmethoxy‐6‐omethyloduline, trispherine SARS‐CoV, influenza He et al., 2013
32 Blumea laciniate Asteraceae Polyphenols RSV Li, Ooi, Wang, But, & Ooi, 2004
33 Geranium sanguineum Geraniaceae Polyphenols RSV, influenza Chattopadhyay et al., 2009
34 Phyllanthus nanus Euphorbiaceae HBV Lam et al., 2006
35 Ardisia chinensis Primulaceae Phenolics HBV Leung et al., 2006
36 Alisma orientalis Alismataceae 25‐anhydroanisol, 13b,17b‐epoxyalisol, alisol b‐23‐acetate, alisol F24 acetate, alisol F HBV Jiang et al., 2006
37 Acacia nilotica Fabaceae Silybin, oxymatrine HCV Rehman, Ashfaq, Riaz, Javed, & Riazuddin, 2011
38 Nerium indicum Apocynaceae Caffeoylquinic acid, quercetin, luteolin‐5o‐rutinisid Influenza, HIV,HSV Farahani, 2014; Kitazato, Wang, & Kobayashi, 2007
39 Elephantopus scabe Asteraceae Polyphenols RSV Li, 2005
40 Eleutherococcs senticosus Araliaceae Ethanolic extract of roots HRV, RSV, influenza virus A Glatthaar‐Saalmüller, Sacher, & Esperester, 2001
41 Syzygium aromaticum Myrtaceae Eugeniin HSV‐I, EBV Carvalho, Andrade, de Sousa, & de Sousa, 2015; Kurokawa et al., 1998
42 Azadiracta indica Meliaceae Aqueous extract of leaves, azadiractin Dengue virus Parida, Upadhyay, Pandya, & Jana, 2002
43 Momordia charantia Cucurbitaceae Lectin MA30 Influenza Ahmad, Javed, Rao, & Husnain, 2016
44 Euphorbia segetalis Euphorbiaceae Lupenone HSV‐I and HSV‐II Álvarez, Habtemariam, & Parra, 2015
45 Guazuma ulmifolia Malvaceae Ethyl acetate extract PV Felipe et al., 2006
46 Argimonia pilosa Rosaceae Polyphenols Influenza virus A and B Shin, Lee, Park, & Seong, 2010
47 Punica granatum Lythraceae Polyphenols HSV‐I, norovirus Živković et al., 2018
48 Myrica rubra Myricaceae Rodelphinidin‐di‐ogallate HSV‐I Cheng et al., 2003
49 Podophyllum peltatum Berberidaceae Podohyllotoxin Measles, HSV Bedows & Hatfield, 1982
50 Psiadia dentate Asteraceae 3‐methylkaemfero PV Robin, Boustie, Amoros, & Girre, 1998
51 Loranthus yadoriki Loranthaceae Camp B,C Coxsackie virus Wang, Yang, Huang, Wen, & Liu, 2000
52 Scutellaia baicalensis Lamiaceae Isoscutellarein‐8methyl ether (5,7,4trihydroxy‐8methoxyflavone) Influenza A Nagai, Moriguchi, Suzuki, Tomimori, & Yamada, 1995
53 Poncirus trifoliate Rutaceae Flavonoids, coumarins, and triterpenoid Influenza Heo et al., 2018
54 Dianella longifolia Asphodelaceae Chrysophanic acid PV Semple, Pyke, Reynolds, & Flower, 2001
55 Callophylum lanigerum Calophyllaceae Calinode A‐1, calonide B‐4 HIV‐I Kashman et al., 1992
56 Curcuma longa Zingiberaceae Curcumin, curcuminoids HIV‐I, HBV, influenza Zorofchian Moghadamtousi et al., 2014
57 Dropteris crassirhizoma Dryopteridaceae Dryocrassin ABBA, Extract, kaemferol acethylrhamnoside Dengue virus Maryam et al., 2020
58 Scutellaria baicalensis Lamiaceae Baicalin, isosceutellarei n‐8‐methylether, wagonin, oroxylin A Influenza A and B, RSV, hepatitis B Hour et al., 2013; Ma et al., 2002
59 Urtica dioica Urticaceae n‐acethylglucosamine HIV‐I, HIV‐II, influenza A De Clercq, 2000; Rajbhandari et al., 2009
60 Brazilian propolis Asteraceae Moronic acid, kaemferol HIV, influenza virus Ito et al., 2001; Kai et al., 2014
61 Artemisia annua L. Asteraceae friedelan3‐β‐ol, artemetin, and quercetagetin 6,7,3′,4′‐tetramethyl ether SARS‐CoV Wang et al., 2007
62 Lycoris radiate Amaryllidaceae Lycorine, glycyrrhizin SARS‐CoV Shahrajabian, Sun, Shen, & Cheng, 2020
63 Glycyrrhiza uralensis Fabaceae HIV, RSV, SARS‐CoV Hoever et al., 2005; Ma et al., 2002

Abbreviations: ADV, Aleutian disease virus; CMV, Cytomegalovirus; CVB, Coxsackie B virus; CXV, Cactus X virus; HBV, Hepatitis B virus; HIV, human immunodeficiency virus; HSV, Herpes simplex virus; KSHV, Kaposi sarcoma herpes virus; SARS‐CoV, severe acute respiratory syndrome coronavirus; PV, polio virus; RSV, respiratory syncytial virus; VHSH, viral hemorrhagic septicemia virus; VSV, vesicular stomatitis virus; VV, vaccinia virus.

The Traditional Chinese Medicines (TCM) were highly considered by Government of China in their campaign against COVID‐19. To evaluate the safety and efficacy of treatments for COVID‐19 patients, China launched more than 300 clinical trials on March 1, 2020. Among the total treatments, 16.5% (50 trials) were linked to the use TCM where 4.6% (14 cases) were linked to examine the combine use of Western medicine and TCM. Among the trials of TCM, 22 (7.3%) were launched to evaluate the efficacy of self‐made herbal preparations including QingYi‐4, Xin Guan‐1 Formula and Xin Guan‐2 Formula. The commercially available TCM products like Lian Hua Qing Wen capsules and Tan Re Qing injections were also studied in 14 (4.6%) trials (Yang et al., 2020). The therapeutic effects of TCM herbal remedies for the treatment of SARS coronavirus have also been published (Luo et al., 2020; Yang et al., 2020). Regardless the complex formulation of TCM, herbs such as Scutellaria baicalensis and Glycyrrhiza glabra were available in tested TCM preparations. The extracted baicalin and glycyrrhizin compounds from the mentioned herbs have in vitro evidences of anticoronaviral activity (Chen et al., 2004). The anticoronavirus TCM remedies included plants such as Lonicerae japonicae, Saposhnikovia divaricate, Forsythia Vahl, and Atractylodis macrocephalae (Luo et al., 2020). This could identify new directions for future research.

For the treatment of coronavirus infections, two different research streams could be possibly followed to search useful phytotherapeutic compounds. One option is the herbal remedies that have potential preventive effects especially boosting the immune responses, that is, Echinacea purpurea and Astragalus membranaceus (Block & Mead, 2003). Astragals has been used in TCM herbal formulation against SARS (Liu et al., 2012). Immunomodulatory properties of polysaccharides and Uncaria tomentosa (from medicinal mushrooms) could also be used. The second option is the herbal remedies with therapeutic effects that have different antiviral mechanism of action. Regardless the etiology, clinical studies have proposed extract from plants, such as Pelargonium sidoides and Sambucus nigra to treat the infection of respiratory system (Agbabiaka, Guo, & Ernst, 2008; Hawkins, Baker, Cherry, & Dunne, 2019; Kalus et al., 2009). The anticoronaviral activities of polyphenols and pelargonium has also been studied (Michaelis, Doerr, & Cinatl Jr, 2011; Weng et al., 2019). A set of compounds such as quercetin, kaempferol, and cryptotanshinone have been identified with anti‐SARS‐CoV action (Zhang, Wu, Zhang, Deng, & Peng, 2020). Active compounds derived from medicinal plants has different antiviral mechanisms, such as viral pentation inhibition, replication inhibition or inhibiting the SARS‐3CLpro activity (Yang et al., 2020). Such studies can expand the area of plant‐based products to be investigated in future experiments. Similarly, the phytotherapy can be useful in the management or prevention the adverse effects of conventional drugs (Yang et al., 2020).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

  1. Agbabiaka, T. B. , Guo, R. , & Ernst, E. (2008). Pelargonium sidoides for acute bronchitis: A systematic review and meta‐analysis. Phytomedicine, 15, 378–385. [DOI] [PubMed] [Google Scholar]
  2. Ahmad, A. , Javed, M. R. , Rao, A. Q. , & Husnain, T. (2016). Designing and screening of universal drug from neem (Azadirachta indica) and standard drug chemicals against influenza virus nucleoprotein. BMC Complementary and Alternative Medicine, 16, 519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahmad, S. , Zafar, M. , Shinwari, S. , Ahmad, M. , Shinwari, Z. K. , Sultana, S. , & Butt, M. A. (2020). Ethno‐medicinal plants and traditional knowledge linked to primary health care among the indigenous communities living in Western hilly slopes of Dera Ghazi Khan, Pakistan. Pakistan Journal of Botany, 52, 519–530. [Google Scholar]
  4. Allahverdiyev, A. , Duran, N. , Ozguven, M. , & Koltas, S. (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against herpes simplex virus type‐2. Phytomedicine, 11, 657–661. [DOI] [PubMed] [Google Scholar]
  5. Álvarez, Á. L. , Habtemariam, S. , & Parra, F. (2015). Inhibitory effects of lupene‐derived pentacyclic triterpenoids from Bursera simaruba on HSV‐1 and HSV‐2 in vitro replication. Natural Product Research, 29, 2322–2327. [DOI] [PubMed] [Google Scholar]
  6. Andrei, G. , Coto, C. , & de Torres, R. (1985). Antiviral activity and cytotoxicity assays of crude and partial purified extracts of Melia azedarach L. green leaves. Revista Argentina de Microbiología, 17, 187–194. [PubMed] [Google Scholar]
  7. Andrei, G. , Lampuri, J. , Coto, C. , & De Torres, R. (1986). An antiviral factor from Melia azedarach L. prevents Tacaribe virus encephalitis in mice. Experientia, 42, 843–845. [DOI] [PubMed] [Google Scholar]
  8. Andrei, G. M. , Damonte, E. B. , de Torres, R. A. , & Coto, C. E. (1988). Induction of a refractory state to viral infection in mammalian cells by a plant inhibitor isolated from leaves of Melia azedarach L. Antiviral Research, 9, 221–231. [DOI] [PubMed] [Google Scholar]
  9. Bedows, E. , & Hatfield, G. (1982). An investigation of the antiviral activity of Podophyllum peltatum . Journal of Natural Products, 45, 725–729. [DOI] [PubMed] [Google Scholar]
  10. Block, K. I. , & Mead, M. N. (2003). Immune system effects of echinacea, ginseng, and astragalus: A review. Integrative Cancer Therapies, 2, 247–267. [DOI] [PubMed] [Google Scholar]
  11. Blumberg, B. , Millman, I. , Venkates, P. , & Thyagarajan, S. (1990). Hepatitis B virus and primary hepatocellular carcinoma: Treatment of HBV carriers with Phyllanthus amarus . Vaccine, 8, S86–S92. [DOI] [PubMed] [Google Scholar]
  12. Carvalho, A. A. , Andrade, L. N. , de Sousa, É. B. , & de Sousa, D. P. (2015). Antitumor phenylpropanoids found in essential oils. BioMed Research International, 2015 10.1155/2015/392674 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Castilla, V. , Barquero, A. A. , Mersich, S. E. , & Coto, C. E. (1998). In vitro anti‐Junin virus activity of a peptide isolated from Melia azedarach L. leaves. International Journal of Antimicrobial Agents, 10, 67–75. [DOI] [PubMed] [Google Scholar]
  14. Chang, J.‐M. , Huang, K.‐L. , Yuan, T. T.‐T. , Lai, Y.‐K. , & Hung, L.‐M. (2010). The anti‐hepatitis B virus activity of Boehmeria nivea extract in HBV‐viremia SCID mice. Evidence‐Based Complementary and Alternative Medicine, 7, 189–195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chattopadhyay, D. , Chawla‐Sarkar, M. , Chatterjee, T. , Dey, R. S. , Bag, P. , Chakraborti, S. , & Khan, M. T. H. (2009). Recent advancements for the evaluation of anti‐viral activities of natural products. New Biotechnology, 25, 347–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chen, F. , Chan, K. H. , Jiang, Y. , Kao, R. Y. , Lu, H. T. , Fan, K. W. , … Yuen, K. Y. (2004). In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31, 69–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cheng, H.‐Y. , Lin, T.‐C. , Ishimaru, K. , Yang, C.‐M. , Wang, K.‐C. , & Lin, C.‐C. (2003). In vitro antiviral activity of prodelphinidin B‐2 3, 3′‐di‐O‐gallate from Myrica rubra . Planta Medica, 69, 953–956. [DOI] [PubMed] [Google Scholar]
  18. Cheng, H.‐Y. , Lin, T.‐C. , Yang, C.‐M. , Wang, K.‐C. , Lin, L.‐T. , & Lin, C.‐C. (2004). Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. Journal of Antimicrobial Chemotherapy, 53, 577–583. [DOI] [PubMed] [Google Scholar]
  19. Cohen, R. A. , Kucera, L. S. , & Herrmann, E. C., Jr. (1964). Antiviral activity of Melissa officinalis (Lemon Balm) extract. Proceedings of the Society for Experimental Biology and Medicine, 117, 431–434. [DOI] [PubMed] [Google Scholar]
  20. De Clercq, E. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20, 323–349. [DOI] [PubMed] [Google Scholar]
  21. Fang, B.‐H. , Qiu, L.‐C. , Chen, J.‐X. , Chen, L.‐Z. , Zeng, Z.‐L. , & Chen, Z.‐L. (2007). The anti‐influenza H9N2 virus effects of active compounds from Radix Glycyrrhizae. Guangdong Agricultural Sciences, 03, 3 http://en.cnki.com.cn/Journal_en/D-D000-GDNY-2007-03.htm [Google Scholar]
  22. Farahani, M. (2014). Anti‐herpes simplex virus effect of Camellia sinesis, Echiumamoenum and Nerium oleander . Journal of Applied & Environmental Microbiology, 2, 102–105. [Google Scholar]
  23. Felipe, A. M. M. , Rincão, V. P. , Benati, F. J. , Linhares, R. E. C. , Galina, K. J. , De Toledo, C. E. M. , … Nozawa, C. (2006). Antiviral effect of Guazuma ulmifolia and Stryphnodendron adstringens on poliovirus and bovine herpesvirus. Biological and Pharmaceutical Bulletin, 29, 1092–1095. [DOI] [PubMed] [Google Scholar]
  24. Fiore, C. , Eisenhut, M. , Krausse, R. , Ragazzi, E. , Pellati, D. , Armanini, D. , & Bielenberg, J. (2008). Antiviral effects of Glycyrrhiza species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22, 141–148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Glatthaar‐Saalmüller, B. , Sacher, F. , & Esperester, A. (2001). Antiviral activity of an extract derived from roots of Eleutherococcus senticosus . Antiviral Research, 50, 223–228. [DOI] [PubMed] [Google Scholar]
  26. Hammer, K. , Carson, C. , & Riley, T. (2002). In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. Journal of Antimicrobial Chemotherapy, 50, 195–199. [DOI] [PubMed] [Google Scholar]
  27. Hawkins, J. , Baker, C. , Cherry, L. , & Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta‐analysis of randomized, controlled clinical trials. Complementary Therapies in Medicine, 42, 361–365. [DOI] [PubMed] [Google Scholar]
  28. He, J. , Qi, W. B. , Wang, L. , Tian, J. , Jiao, P. R. , Liu, G. Q. , … Liao, M. (2013). Amaryllidaceae alkaloids inhibit nuclear‐to‐cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza and Other Respiratory Viruses, 7, 922–931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Heinrich, M. , Appendino, G. , Efferth, T. , Fürst, R. , Izzo, A. A. , Kayser, O. , … Viljoen, A. (2020). Best practice in research – Overcoming common challenges in phytopharmacological research. Journal of Ethnopharmacology, 246, 112230. [DOI] [PubMed] [Google Scholar]
  30. Heo, Y. , Cho, Y. , Ju, K. , Cho, H. , Park, K. H. , Choi, H. , … Kim, Y. B. (2018). Antiviral activity of Poncirus trifoliata seed extract against oseltamivir‐resistant influenza virus. Journal of Microbiology, 56, 586–592. [DOI] [PubMed] [Google Scholar]
  31. Hoever, G. , Baltina, L. , Michaelis, M. , Kondratenko, R. , Baltina, L. , Tolstikov, G. A. , … Cinatl, J. (2005). Antiviral activity of glycyrrhizic acid derivatives against SARS− coronavirus. Journal of Medicinal Chemistry, 48, 1256–1259. [DOI] [PubMed] [Google Scholar]
  32. Hour, M.‐J. , Huang, S.‐H. , Chang, C.‐Y. , Lin, Y.‐K. , Wang, C.‐Y. , Chang, Y.‐S. , & Lin, C.‐W. (2013). Baicalein, ethyl acetate, and chloroform extracts of Scutellaria baicalensis inhibit the neuraminidase activity of pandemic 2009 H1N1 and seasonal influenza a viruses. Evidence‐Based Complementary and Alternative Medicine, 2013 10.1155/2013/750803 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ikeda, T. , Ando, J. , Miyazono, A. , Zhu, X. H. , Tsumagari, H. , Nohara, T. , … Uyeda, M. (2000). Anti‐herpes virus activity of solanum steroidal glycosides. Biological and Pharmaceutical Bulletin, 23, 363–364. [DOI] [PubMed] [Google Scholar]
  34. Ito, J. , Chang, F.‐R. , Wang, H.‐K. , Park, Y. K. , Ikegaki, M. , Kilgore, N. , & Lee, K.‐H. (2001). Anti‐AIDS agents. 48. Anti‐HIV activity of moronic acid derivatives and the new melliferone‐related triterpenoid isolated from Brazilian propolis. Journal of Natural Products, 64, 1278–1281. [DOI] [PubMed] [Google Scholar]
  35. Jiang, Z.‐Y. , Zhang, X.‐M. , Zhang, F.‐X. , Liu, N. , Zhao, F. , Zhou, J. , & Chen, J.‐J. (2006). A new triterpene and anti‐hepatitis B virus active compounds from Alisma orientalis. Planta Medica, 72, 951–954. [DOI] [PubMed] [Google Scholar]
  36. Kai, H. , Obuchi, M. , Yoshida, H. , Watanabe, W. , Tsutsumi, S. , Park, Y. K. , … Kurokawa, M. (2014). In vitro and in vivo anti‐influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF‐08). Journal of Functional Foods, 8, 214–223. [Google Scholar]
  37. Kalus, U. , Grigorov, A. , Kadecki, O. , Jansen, J.‐P. , Kiesewetter, H. , & Radtke, H. (2009). Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo‐controlled clinical study. Antiviral Research, 84, 267–271. [DOI] [PubMed] [Google Scholar]
  38. Kashiwada, Y. , Iizuka, H. , Yoshioka, K. , Chen, R.‐F. , Nonaka, G.‐i. , & Nishioka, I. (1990). Tannins and related compounds. XCIII: Occurrence of Enantiomeric Proanthocyanidins in the Leguminosae plants, Cassia fistula L. and C. javanica L. Chemical and Pharmaceutical Bulletin, 38, 888–893. [Google Scholar]
  39. Kashman, Y. , Gustafson, K. R. , Fuller, R. W. , Cardellina, J. H. , McMahon, J. B. , Currens, M. J. , … Boyd, M. R. (1992). The calanolides, a novel HIV‐inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. Journal of Medicinal Chemistry, 35, 2735–2743. [DOI] [PubMed] [Google Scholar]
  40. Kitazato, K. , Wang, Y. , & Kobayashi, N. (2007). Viral infectious disease and natural products with antiviral activity. Drug Discoveries & therapeutics, 1, 14–22. [PubMed] [Google Scholar]
  41. Kurokawa, M. , Hozumi, T. , Basnet, P. , Nakano, M. , Kadota, S. , Namba, T. , … Shiraki, K. (1998). Purification and characterization of Eugeniin as an anti‐herpesvirus compound from Geum japonicum and Syzygium aromaticum . Journal of Pharmacology and Experimental Therapeutics, 284, 728–735. [PubMed] [Google Scholar]
  42. Lam, W. Y. , Leung, K. T. , Law, P. T. W. , Lee, S. M. Y. , Chan, H. L. Y. , Fung, K. P. , … Waye, M. M. Y. (2006). Antiviral effect of Phyllanthus nanus ethanolic extract against hepatitis B virus (HBV) by expression microarray analysis. Journal of Cellular Biochemistry, 97, 795–812. [DOI] [PubMed] [Google Scholar]
  43. Lee, S.‐J. , Lee, H.‐K. , Jung, M.‐K. , & Mar, W. (2006). In vitro antiviral activity of 1, 2, 3, 4, 6‐penta‐O‐galloyl‐β‐D‐glucose against hepatitis B virus. Biological and Pharmaceutical Bulletin, 29, 2131–2134. [DOI] [PubMed] [Google Scholar]
  44. Leung, K. , Chiu, L. C. , Lam, W. , Li, Y. , Sun, S. S. , & Ooi, V. E. (2006). In vitro antiviral activities of Chinese medicinal herbs against duck hepatitis B virus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20, 911–914. [DOI] [PubMed] [Google Scholar]
  45. Li, G. , & De, C. E. (2020). Therapeutic options for the 2019 novel coronavirus (2019‐nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. 10.1038/d41573-020-00016-0. [DOI] [PubMed] [Google Scholar]
  46. Li, Y. (2005). Antiviral Screening of Medicinal Herbs Traditionally Used in South China Antiviral agents from selected Chinese herbal medicines, 1st, 1st, 43–50). ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106‐134: The Chinese University of Hong Kong (Hong Kong) https://search.proquest.com/openview/60a3ba8059f9aeaee53e0f93db0a79c4/1?pq-origsite=gscholar&cbl=18750&diss=y. [Google Scholar]
  47. Li, Y. , Leung, K.‐T. , Yao, F. , Ooi, L. S. , & Ooi, V. E. (2006). Antiviral flavans from the leaves of Pithecellobium c lypearia. Journal of Natural Products, 69, 833–835. [DOI] [PubMed] [Google Scholar]
  48. Li, Y. , Ooi, L. S. , Wang, H. , But, P. P. , & Ooi, V. E. (2004). Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18, 718–722. [DOI] [PubMed] [Google Scholar]
  49. Liu, A.‐L. , Wang, H.‐D. , Lee, S. M. , Wang, Y.‐T. , & Du, G.‐H. (2008). Structure‐activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti‐viral activities. Bioorganic & Medicinal Chemistry, 16, 7141–7147. [DOI] [PubMed] [Google Scholar]
  50. Liu, X. , Zhang, M. , He, L. , & Li, Y. (2012). Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database of Systematic Reviews, (12). https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004882.pub3/epdf/full. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Luo, H. , Q‐l, T. , Y‐x, S. , S‐b, L. , Yang, M. , Robinson, N. , & J‐p, L. (2020). Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID‐19)? A review of historical classics, research evidence and current prevention programs. Chinese Journal of Integrative Medicine, 26(4), 243–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. M Patil, V. , Masand, N. , & Prakash Gupta, S. (2016). HCV inhibitors: Role of compounds from botanical sources. Current Topics in Medicinal Chemistry, 16, 1402–1409. [DOI] [PubMed] [Google Scholar]
  53. Ma, C. M. , Nakamura, N. , Miyashiro, H. , Hattori, M. , Komatsu, K. , Kawahata, T. , & Otake, T. (2002). Screening of Chinese and Mongolian herbal drugs for anti‐human immunodeficiency virus type 1 (HIV‐1) activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 16(2), 186–189. 10.1002/ptr.922. [DOI] [PubMed] [Google Scholar]
  54. Ma, S.‐C. , du, J. , But, P. P. H. , Deng, X. L. , Zhang, Y. W. , Ooi, V. E. C. , … Lee, S. F. (2002). Antiviral Chinese medicinal herbs against respiratory syncytial virus. Journal of Ethnopharmacology, 79, 205–211. [DOI] [PubMed] [Google Scholar]
  55. Maryam, M. , Te, K. K. , Wong, F. C. , Chai, T. T. , Gary, K. , & Gan, S. C. (2020). Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. Journal of Integrative Agriculture, 19, 1085–1096. [Google Scholar]
  56. Michaelis, M. , Doerr, H. W. , & Cinatl, J., Jr. (2011). Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine, 18, 384–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Micol, V., Caturla, N., Pérez‐Fons, L., Más, V., Pérez, L., & Estepa, A. 2005. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral research, 66(2–3), 129–136. [DOI] [PubMed]
  58. Min, B.‐S. , Tomiyama, M. , Nakamura, N. , & Hattori, M. (2001). Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus‐1 reverse transcriptase. Chemical and Pharmaceutical Bulletin, 49, 546–550. [DOI] [PubMed] [Google Scholar]
  59. Müller, V. , Chávez, J. H. , Reginatto, F. H. , Zucolotto, S. M. , Niero, R. , Navarro, D. , … Simões, C. M. O. (2007). Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus. Phytotherapy Research, 21, 970–974. [DOI] [PubMed] [Google Scholar]
  60. Nagai, T. , Moriguchi, R. , Suzuki, Y. , Tomimori, T. , & Yamada, H. (1995). Mode of action of the anti‐influenza virus activity of plant flavonoid, 5, 7, 4′‐trihydroxy‐8‐methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Research, 26, 11–25. [DOI] [PubMed] [Google Scholar]
  61. Nazarizadeh, A. , Mikaili, P. , Moloudizargari, M. , Aghajanshakeri, S. , & Javaherypour, S. (2013). Therapeutic uses and pharmacological properties of Plantago major L. and its active constituents. Journal of Basic and Applied Scientific Research, 3, 212–221. [Google Scholar]
  62. Oh, E.‐G. , Kim, K. L. , Shin, S. B. , Son, K. T. , Lee, H. J. , Kim, T. H. , … Kim, J. H. (2013). Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Science and Biotechnology, 22, 593–598. [Google Scholar]
  63. Parida, M. , Upadhyay, C. , Pandya, G. , & Jana, A. (2002). Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type‐2 replication. Journal of Ethnopharmacology, 79, 273–278. [DOI] [PubMed] [Google Scholar]
  64. Rajbhandari, M. , Mentel, R. , Jha, P. K. , Chaudhary, R. P. , Bhattarai, S. , Gewali, M. B. , … Lindequist, U. (2009). Antiviral activity of some plants used in Nepalese traditional medicine. Evidence‐Based Complementary and Alternative Medicine, 6, 517–522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rehman, S. , Ashfaq, U. A. , Riaz, S. , Javed, T. , & Riazuddin, S. (2011). Antiviral activity of Acacia nilotica against hepatitis C virus in liver infected cells. Virology Journal, 8, 220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Robin, V. , Boustie, J. , Amoros, M. , & Girre, L. (1998). In‐vitro antiviral activity of seven psiadia species, Asteraceae: Isolation of two antipoliovirus flavonoids from Psiadia dentata. Pharmacy and Pharmacology Communications, 4, 61–64. [Google Scholar]
  67. Samuelsen, A. B. (2000). The traditional uses, chemical constituents and biological activities of Plantago major L. A Review Journal of Ethnopharmacology, 71, 1–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Semple, S. J. , Pyke, S. M. , Reynolds, G. D. , & Flower, R. L. (2001). In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Research, 49, 169–178. [DOI] [PubMed] [Google Scholar]
  69. Serkedjieva, J. , Manolova, N. , Zgórniak‐Nowosielska, I. , Zawilińska, B. , & Grzybek, J. (1990). Antiviral activity of the infusion (SHS‐174) from flowers of Sambucus nigra L., aerial parts of Hypericum perforatum L., and roots of Saponaria officinalis L. against influenza and herpes simplex viruses. Phytotherapy Research, 4, 97–100. [Google Scholar]
  70. Shahrajabian, M. H. , Sun, W. , Shen, H. , & Cheng, Q. (2020). Chinese herbal medicine for SARS and SARS‐CoV‐2 treatment and prevention, encouraging using herbal medicine for COVID‐19 outbreak. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 70(05), 437–443. [Google Scholar]
  71. Shin, W. J. , Lee, K. H. , Park, M. H. , & Seong, B. L. (2010). Broad‐spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiology and Immunology, 54, 11–19. [DOI] [PubMed] [Google Scholar]
  72. Wang, Q. , Ding, Z.‐H. , Liu, J.‐K. , & Zheng, Y.‐T. (2004). Xanthohumol, a novel anti‐HIV‐1 agent purified from hops Humulus lupulus . Antiviral Research, 64, 189–194. [DOI] [PubMed] [Google Scholar]
  73. Wang, S.‐Q. , Du, Q.‐S. , Zhao, K. , Li, A.‐X. , Wei, D.‐Q. , & Chou, K.‐C. (2007). Virtual screening for finding natural inhibitor against cathepsin‐L for SARS therapy. Amino Acids, 33, 129–135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wang, Z. , Yang, Z. , Huang, T. , Wen, L. , & Liu, Y. (2000). Experimental research on inhibitory effect of alcohol extracts from Loranthus yadoriki Sieb. On coxsackie B3 virus. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 25, 685–687. [PubMed] [Google Scholar]
  75. Wei, F. , Ma, S.‐C. , Ma, L.‐Y. , But, P. P.‐H. , Lin, R.‐C. , & Khan, I. A. (2004). Antiviral flavonoids from the seeds of Aesculus chinensis. Journal of Natural Products, 67, 650–653. [DOI] [PubMed] [Google Scholar]
  76. Weng, J.‐R. , Lin, C. S. , Lai, H. C. , Lin, Y. P. , Wang, C. Y. , Tsai, Y. C. , … Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Williamson, E. M. , Liu, X. , & Izzo, A. A. (2020). Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. British Journal of Pharmacology, 177(6), 1227–1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Xu, H.‐X. , Lee, S. H. , Lee, S. F. , White, R. L. , & Blay, J. (1999). Isolation and characterization of an anti‐HSV polysaccharide from Prunella vulgaris . Antiviral Research, 44, 43–54. [DOI] [PubMed] [Google Scholar]
  79. Xu, H.‐X. , Zeng, F.‐Q. , Wan, M. , & Sim, K.‐Y. (1996). Anti‐HIV triterpene acids from Geum japonicum. Journal of Natural Products, 59, 643–645. [DOI] [PubMed] [Google Scholar]
  80. Yang, Y. , Islam, M. S. , Wang, J. , Li, Y. , & Chen, X. (2020). Traditional Chinese medicine in the treatment of patients infected with 2019‐new coronavirus (SARS‐CoV‐2): A review and perspective. International Journal of Biological Sciences, 16, 1708–1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Yao, X.‐J. , Wainberg, M. A. , & Parniak, M. A. (1992). Mechanism of inhibition of HIV‐1 infection in vitro by purified extract of Prunella vulgaris . Virology, 187, 56–62. [DOI] [PubMed] [Google Scholar]
  82. Yaseen, G. , Ahmad, M. , Shinwari, S. , Potter, D. , Zafar, M. , Zhang, G. , … Sultana, S. (2019). Medicinal plant diversity used for livelihood of public health in deserts and arid regions of Sindh‐Pakistan. Pakistan Journal of Botany, 51, 657–679. [Google Scholar]
  83. Yucharoen, R. , Anuchapreeda, S. , & Tragoolpua, Y. (2011). Anti‐herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. African Journal of Biotechnology, 10, 860–866. [Google Scholar]
  84. Yukawa, T. A. , Kurokawa, M. , Sato, H. , Yoshida, Y. , Kageyama, S. , Hasegawa, T. , … Shiraki, K. (1996). Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Research, 32, 63–70. [DOI] [PubMed] [Google Scholar]
  85. Zgorniak‐Nowosielska, I. , Grzybek, J. , Manolova, N. , Serkedjieva, J. , & Zawilińska, B. (1991). Antiviral activity of Flos verbasci infusion against influenza and herpes simplex viruses. Archivum Immunologiae et Therapiae Experimentalis, 39, 103–108. [PubMed] [Google Scholar]
  86. Zhang, D.‐h. , Wu, K.‐l. , Zhang, X. , Deng, S.‐q. , & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18, 152–158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Živković, I. , Šavikin, K. , Zdunić, G. , Živković, J. , Bigović, D. , Menković, N. , & Radin, D. (2018). Antiviral activity of medicinal plants extracts against foodborne norovirus. Lekovite Sirovine, 38, 31–34. [Google Scholar]
  88. Zorofchian Moghadamtousi, S. , Abdul Kadir, H. , Hassandarvish, P. , Tajik, H. , Abubakar, S. , & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014(1), 1–12. https://www.hindawi.com/journals/bmri/ [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Phytotherapy Research are provided here courtesy of Wiley

RESOURCES