Skip to main content
Polymers logoLink to Polymers
. 2020 Jul 29;12(8):1701. doi: 10.3390/polym12081701

Flame Retardant Polypropylenes: A Review

Farzad Seidi 1, Elnaz Movahedifar 2, Ghasem Naderi 2, Vahideh Akbari 3, Franck Ducos 4, Ramin Shamsi 5, Henri Vahabi 3,*, Mohammad Reza Saeb 3,*
PMCID: PMC7464193  PMID: 32751298

Abstract

Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications.

Keywords: flame retardancy, polypropylene, Flame Retardancy Index (FRI), cone calorimetry, flame retardants

1. Introduction

Polymers are building blocks of advanced materials and systems, but their flammability has been a serious constraint in their usage in advanced applications [1,2,3]. Polypropylene (PP) is a commodity plastic widely used in a variety of applications, particularly in the form of composites in load-bearing uses due to its high rigidity and crystallinity [4]. By the end of 2020, the PP market size is expected to reach $112 billion, and it is estimated to reach $155 billion by 2026 [5,6]. Its global production was 56.0 million metric tons in 2018, and it is estimated to reach around 88.0 million metric tons by 2026. This growing demand reflects the importance of PP for applications where low density, hardness, high flexural modulus, and chemical resistance are needed [7,8]. Moreover, PP is a low-cost plastic capable of being processed with various methods, e.g., extrusion, thermoforming, and injection molding [9,10]. Therefore, a huge number of PP products, including fibers, films, sheets, textiles, pipes, and profiles, have been developed and used in the automotive, electrical and electronic, packaging, and construction industries [11,12,13,14]. On the other hand, due to the inherent flammability, the use of flame-retardant additives in PP is necessary to minimize the risk of fire [15]. Different types of flame retardants have been used in PP including minerals, phosphorus-based, nitrogen-based, and intumescent [16,17,18]. It was recognized that additive selection plays a crucial role in achieving acceptable flame retardancy [19], where the type, the size, and the loading percentage of flame retardants control the fire behavior of PP matrix.

A diversity of additives are used in PP to make it flame retardant. There is a need for a comprehensive survey to classify PP composites in terms of flame retardancy. In the present paper, several families of flame retardants examined in PP have been identified and categorized to evaluate their flame retardancy performance in terms of Flame Retardancy Index (FRI) [19,20]. FRI is a universal dimensionless index that takes into account well-known parameters obtained from cone calorimeter test (peak of heat release rate (pHRR), the total heat release (THR), and the time to ignition (TTI)). FRI can be simply calculated using Equation (1):

FRI=THR ×pHRRTTINeat PolymerTHR ×pHRRTTIComposite (1)

Basically, the use of FRI makes it possible to semi-qualitatively classify polymer composites by labeling them as Poor, Good, or Excellent flame retardancy performance and thus enables evaluation of the efficiency of the incorporated flame retardant (FR). There has always been a need for fast-tracking and classifying polymers for their flame retardant performance. The use of FRI made possible classifying polymers and polymer composites in terms of flame retardancy in a simple manner. For FRI values below 100 obtained by the use of Equation (1), we have the case (namely Poor) where the addition of FR adversely affects flame retardancy of polymer. When FRI takes values in the range of 100–101, we name it Good flame retardancy performance, such that addition of FR enhances the resistance of polymer against fire. For FRI values above 101, which is rare in practical cases, we have an Excellent case, where FR significantly improves flame retardancy. It is worth mentioning that some important parameters of testing such as irradiance and sample thickness as well as sample weight can be neglected due to the fact that, in the FRI formula, the parameters related to the neat polymer are divided by those of polymer/FR composite. Thus, the dimensionless value obtained can be used as a reliable measure of the efficiency of FR in polymer. In this survey, the data from the literature were extracted first, and five families of flame retardants that served as PP were considered including phosphorus-based, nitrogen-based, mineral, carbon-based, and bio-based flame retardants, and hybrid cases composed of the aforementioned five categories were distinguished. The main aim of the present survey is to give the readers a broad view of FR systems used in PP via FRI classification method. Certainly, this classification is not a precise and unique data set for FR selection for PP, but it can be considered as a database to compare different systems. The focus of this work was particularly placed on the reports in which cone calorimetry test was carried out. However, some other parameters such as smoke quantity or the percentage of FR elements (phosphorus, nitrogen, …) were not systematically given in this research paper due to the lack of data, which could lead to unreliable judgments. For some papers, limiting oxygen index (LOI) and UL-94 data were also available, which were used in finding possible correlations between the FRI variation and other criteria.

2. Phosphorus-Based Flame Retardants

Various types of phosphorus-based flame retardants have been incorporated into PP to make it flame-retardant [21,22,23]. Table 1 reviews the names and the percentages of these flame retardants incorporated into PP. Moreover, the values obtained from cone calorimetry such as the peak of heat release rate (pHRR), the total heat release (THR), and the time to ignition (TTI) are summarized in this Table. The FRI value, calculated from cone calorimetry parameters, as well as the LOI and UL-94 values, are also presented in Table 1. In some cases, if LOI and/or UL-94 values were not available, the sign “―” was used.

Table 1.

Flame-retardant PP materials containing phosphorus-based (P) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “―” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Phosphorus-Based (P) FR * wt.% TTI (s) pHRR
(kW·m−2)
THR
(MJ·m−2)
Irradiance
(kW·m−2)
Sample Thickness (mm) FRI LOI UL-94 Ref.
14 1104 106 35 0.4 [24]
Ammonium polyphosphate (APP) 10 24 925 92 35 0.4 2.35 [24]
54 1610 106 35 3 20.8 NR [25]
APP 12 37 510 97 35 3 2.36 22.3 V-2 [25]
APP 15 27 339 89 35 3 2.82 25.4 V-0 [25]
34 1294 154.2 50 4 19 NR [26]
APP 20 21 306 141.6 50 4 2.84 27 NR [26]
48 1351 107 35 3.2 18.5 NR [27]
APP 20 40 787 92 35 3.2 1.66 20.5 NR [27]
24.3 1388.3 80.3 50 2.4 NR [28]
APP 20 19.3 254.8 54.5 50 2.4 6.37 V-0 [28]
66 633 44.2 35 3 17 NR [23]
APP 20 31 424 38.6 35 3 0.80 21 NR [23]
18 1457 156 50 3 19 NR [29]
APP 25 20 1455 148 50 3 1.17 21.9 V-2 [29]
25 981 147 50 17.6 NR [30]
APP 25 18 579 109 50 1.64 23.2 NR [30]
48 988 88.3 35 3.2 17 NR [31]
APP 25 43 652 80 35 3.2 1.49 21 NR [31]
20 809 96 50 3 17.6 NR [32]
APP 25 11 397 87 50 3 1.23 20.6 NR [32]
21 1242 111 50 3.2 18.6 NR [33]
APP 25 21 979 107 50 3.2 1.31 21.7 NR [33]
35 1203 197.6 50 6 18.2 NR [34]
APP 25 33 390.8 196 50 6 2.92 20.9 NR [34]
25 841.6 89.1 50 3 18 NR [35]
APP 25 13 473.3 90.2 50 3 0.91 20 NR [35]
Piperazine-modified APP (m-APP) 25 17 162.6 84.5 50 3 3.71 32.5 V-0 [35]
33 1416 219 50 6 17 NR [36]
APP 25 19 526 180 50 6 1.88 19.6 NR [36]
Polysiloxane shell-coated APP (mc-APP) 25 19 214 137 50 6 6.08 25 NR [36]
45 759.2 98.8 35 3 17 NR [37]
Melamine and phytic acid-modified APP (m-APP) 25 33 218.1 80.6 35 3 3.12 22.5 V-2 [37]
37 1284 121 50 3 [38]
APP 30 22 767 111 50 3 1.08 21.7 NR [38]
48 988 88.3 35 3 17 NR [39]
APP 30 32 459 77.6 35 3 1.63 22 NR [39]
50 1350 91.2 35 3 17 NR [40]
APP 30 58 851 74.4 35 3 2.25 22 NR [40]
33 1238 123.7 50 3 17.8 NR [41]
Melamine-formaldehyde-tris(2-hydroxyethyl) isocyanurate resin microencapsulated APP (mc-APP) 30 24 375 116.4 50 3 2.55 32 V-0 [41]
44 831 158 35 3 17.5 NR [42]
APP 30 30 432 114 35 3 1.81 22 NR [42]
Dipentaerythritol and 4,4′ diphenylmethanediisocyanate and melamine microencapsulated APP (mc-APP) 30 27 300 100 35 3 2.68 32.1 V-0 [42]
29 1186 215 50 6 17 NR [43]
APP 30 18 543 180 50 6 1.61 20.1 NR [43]
Epoxy acrylate microencapsulated APP (mc-APP) 30 13 332 149 50 6 2.31 24.8 NR [43]
40 1174.7 102.2 35 3 17 NR [44]
APP 30 38 526.5 80.6 35 3 2.68 20 NR [44]
4,4′-diphenylmethane diisocyanate and melamine and pentaerythritol microencapsulated APP (mc-APP) 30 30 301.8 65.1 35 3 4.58 25 V-1 [44]
68 577.5 82.7 35 3 18.2 NR [45]
APP 30 41 201.1 44.5 35 3 3.21 20.1 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 5 57 395.4 67.2 35 3 1.50 18.7 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 10 42 282.5 63.7 35 3 1.63 19.6 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 15 40 214.9 59.9 35 3 2.18 20 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 20 32 193.6 57.3 35 3 2.02 20.3 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 25 30 145.4 64.1 35 3 2.26 22.2 NR [45]
Thermoplastic polyurethane microencapsulated APP (mc-APP) 30 31 140.6 41.8 35 3 3.70 22.9 NR [45]
25 841.6 89.1 50 3 18 NR [46]
APP 35 11 435.9 83.9 50 3 0.90 20.4 NR [46]
Ethylenediamine-modified APP (m-APP) 35 11 156.1 60.5 50 3 3.49 30.5 V-0 [46]
25 841.6 89.1 50 3 18 NR [47]
APP 35 11 435.9 83.9 50 3 0.90 20.4 NR [47]
Ethanolamine-modified APP (m-APP) 35 18 96.6 22.6 50 3 24.73 35 V-0 [47]
33 837 212 50 6 17 NR [48]
APP 40 30 440 186 50 6 1.97 20.8 NR [48]
Pentaerythritol triacrylate microencapsulated APP (mc-APP) 40 32 214 183 50 6 4.39 30.5 V-0 [48]
38 1284 214 50 6 18.2 NR [49]
APP 25 34 537 177 50 6 2.58 20.9 NR [49]
Phosphorus-based charring agent: 3,9-Bis-(1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2,2,2]oct-4-ylmethoxy)-2,4,8,10-tetraoxa-3,9 diphospha-spiro[5.5]undecane 3,9-dioxide (P-CA) 25 35 480 168 50 6 3.13 22.6 NR [49]
42 831 112 35 3 18 NR [50]
APP 25 36.4 578 83 35 3 1.68 21 NR [50]
36 1373 174.8 50 3 18.5 NR [51]
APP-based intumescent flame retardant (APP-IFR) 20 22 326 149.9 50 3 3.00 29.5 V-0 [51]
28 865 30.7 35 5 18.4 NR [52]
Phosphorus-based IFR: Six(1-oxo-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane-4-methyl) cyclotriphosphazene (P-IFR) 10 28 595 28.2 35 5 1.58 19.7 NR [52]
Phosphorus-based IFR: Six(1-oxo-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane-4-methyl) cyclotriphosphazene (P-IFR) 15 30 515 25.8 35 5 2.14 22.8 NR [52]
Phosphorus-based IFR: Six(1-oxo-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane-4-methyl) cyclotriphosphazene (P-IFR) 20 33 433 23 35 5 3.14 26.1 V-2 [52]
Phosphorus-based IFR: Six(1-oxo-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane-4-methyl) cyclotriphosphazene (P-IFR) 25 35 407 19.5 35 5 4.18 29.4 V-0 [52]
30 390 44 35 1.6 17.4 [53]
Phosphorus-based IFR: Poly (4,4-diamino diphenyl methane Obicyclicpentaerythritol phosphate-phosphate) (P-IFR) 20 24 224 27 35 1.6 2.26 25 [53]
37 363 56 35 3 [54]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%) (P-IFR) 28 33 62 24 35 3 12.18 [54]
37 363 56 35 3 [55]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%) (P-IFR) 28 33 62 24 35 3 12.18 [55]
29 980 136 50 18.5 [56]
Phosphorus and Nitrogene-based IFR 30 22 229 93 50 4.74 36.3 [56]
65 1416.6 128.5 35 3 NR [57]
Phosphorus-based flame retardant: Tri (1-oxo-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane-methyl) phosphate (P-FR) 30 38 640.2 104.8 35 3 1.58 NR [57]
54 1199 97.8 35 [58]
Phosphorus-based FR: Poly(4,4-diaminodiphenyl methane spirocyclicpentaerythritol bisphosphonate) (P-FR) 20 69 620 78.5 35 3.07 [58]
61 1026 166 35 4 [15]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 10 60 648 141 35 4 1.83 [15]
84 1000 96 35 3 [59]
Tetraethyl orthosilicate microencapsulated bisphenol-A bis (diphenyl phosphate) (mc-BDP) 10 57 808 101 35 3 0.79 [59]
Tetraethyl orthosilicate microencapsulated BDP (mc-BDP) 20 60 932 93 35 3 0.79 [59]
44 1172 87.1 35 2.5 18.1 NR [60]
Organic phosphinate (OP) 20 46 1052 84.2 35 2.5 1.20 20.1 V-2 [60]
34 1052.4 90.8 50 3 17.5 NR [61]
Aluminum hypophosphite (AHP) 24 23 267.1 77.3 50 3 3.13 [61]
66 480 93 35 3 17 [62]
Aluminium phosphinate (ALPi) 30 73 524 89.8 35 3 1.04 26 [62]
44 1175 106 35 3 [63]
Pentaerythritol phosphate (PEPA) 40 35 776 81 35 3 1.57 [63]

The information provided in Table 1 clearly reveals that APP is quite frequently used as a major phosphorus flame retardant in PP matrix. The percentage of incorporation of phosphorus flame retardants was variable from 10 to 40 wt.%. Figure 1 displays the FRI as a function of wt.% phosphorus-based FR in PP systems. The name/type of each phosphorus flame retardant is provided in the caption of Figure 1. Three formulations reached the Excellent level of flame retardancy, which is quite rare among such data pool. The loading percentage of FR in these formulations varied from 28 to 35 wt.%. Many additives were modified APP and modified phosphorus-nitrogen flame retardants. It can also be speculated that a high loading percentage cannot necessarily guarantee the Excellent level of flame retardancy; besides, the type of phosphorus FR is also an important parameter. Figure 1 also reveals that the majority of points are located in the Good zone of FRI. Therefore, it can be concluded that phosphorus-based flame retardants have quite satisfactorily reinforced PP against flame.

Figure 1.

Figure 1

Flame Retardancy Index (FRI) values as a function of phosphorus flame retardant (FR) type and content. Symbols are indicative of different types of phosphorus flame retardant used. Here: APP-10 [24], Inline graphic APP-12, APP-15 [25], Inline graphic APP-20 [26], Inline graphic APP-20 [27], Inline graphic APP-20 [28], Inline graphic APP-20 [23], Inline graphic APP-25 [29], Inline graphic APP-25 [30], Inline graphic APP-25 [31], Inline graphic APP-25 [32], Inline graphic APP-25 [33], Inline graphic APP-25 [34], Inline graphic APP-25, m-APP-25 [35], Inline graphic APP-25, mc-APP-25 [36], Inline graphic m-APP-25 [37], Inline graphic APP-30 [38], Inline graphic APP-30 [39], Inline graphic APP-30 [40], Inline graphic mc-APP-30 [41], Inline graphic APP-30, mc-APP-30 [42], Inline graphic APP-30, mc-APP-30 [43], Inline graphic APP-30, mc-APP-30 [44], Inline graphic APP-30, mc-APP-5, mc-APP-10, mc-APP-15, mc-APP-20, mc-APP-25, mc-APP-30 [45], Inline graphic APP-35, m-APP-35 [46], Inline graphic APP-35, m-APP-35 [47], Inline graphic APP-40, mc-APP-40 [48], Inline graphic APP-25, P-CA-25 [49], Inline graphic APP-25 [50], Inline graphic APP-IFR-20 [51], Inline graphic P-IFR-10, P-IFR-15, P-IFR-20, P-IFR-25 [52], Inline graphic P-IFR-20 [53], Inline graphic P-IFR-28 [54], Inline graphic P-IFR-28 [55], Inline graphic PN-IFR-30 [56], Inline graphic P-FR-30 [57], Inline graphic P-FR-20 [58], Inline graphic DOPO-10 [15], Inline graphic mc-BDP-10, mc-BDP-20 [59], Inline graphic OP-20 [60], Inline graphic AHP-24 [61], Inline graphic ALPi-30 [62], Inline graphic PEPA-40 [63].

There has always been interest in exploring possible correlations between the data collected from different analyses made on PP materials. Figure 2 shows the flame retardancy performance of phosphorus FR-containing PP in terms of FRI versus the corresponding UL-94 test outcomes. From these data, it is evident that no specified correlation exists between the qualitative results collected from UL-94 and the quantitative ones obtained in cone calorimeter measurements. However, in the case of LOI results, Figure 3 suggests a meaningful relationship can be drawn among data achieved from the calculated FRI and the LOI test results. The LOI value for pure PP is around 17; however, it is increased by addition of flame retardant up to 36, more than a two-fold rise.

Figure 2.

Figure 2

FRI values versus UL-94 test results. Symbols are indicative of different types of phosphorus flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1) may have different vertical quantities, e.g., both reveal V-1 behavior in the UL-94 test, but the upper contains more FR in Polypropylene (PP).

Figure 3.

Figure 3

FRI values of PP as a function of limiting oxygen index (LOI) test results. Symbols are indicative of different types of phosphorus flame retardant used.

3. Nitrogen-Based Flame Retardants

Nitrogen-based flame retardants have also been used in PP to make it resistant against fire. Table 2 gives the names and the percentages of incorporation of these flame retardants, where the data were obtained in cone calorimetry (pHRR, THR, and TTI), FRI calculated from cone calorimetry parameters, as well as LOI and UL-94 values. Some of the nitrogen-based FRs listed in Table 2 also contain a phosphorus element. However, the percentage of nitrogen is more important, and therefore these FRs are listed in this Table.

Table 2.

Flame retardant PP materials containing nitrogen-based (N) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “―” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Nitrogen-Based (N) FR * wt.% TTI
(s)
pHRR
(kW·m−2)
THR
(MJ·m−2)
Irradiance
(kW·m−2)
Sample Thickness (mm) FRI LOI UL-94 Ref.
44 1175 106 35 3 [63]
Melamine phosphate (MP) 40 39 296 78 35 3 4.78 [63]
54 930 140 35 4 NR [64]
Melamine salt of pentaerythritol phosphate kaolinite (MPPK) 15 30 208 70 35 4 4.96 NR [64]
MPPK 20 28 148 42 35 4 10.86 V-0 [64]
MPPK 25 34 130 33 35 4 19.10 V-0 [64]
30 929 134 50 3 17 NR [65]
Melamine salt of tripentaerythriol phosphate (MTP) 15 22 480 101 50 3 1.88 [65]
MTP 20 22 267 91 50 3 3.75 28 V-1 [65]
MTP 25 22 226 73 50 3 5.53 32 V-0 [65]
MTP 30 22 219 72 50 3 5.78 35 V-0 [65]
Methyl hydrogen siloxane modified MTP (m-MTP) 30 21 253 72 50 3 4.78 30 V-0 [65]
65 1417 128.5 35 3 NR [57]
Melamine pyrophosphate (MPyP) 30 36 437 103.1 35 3 2.23 NR [57]
34 1727 112 35 3 17 NR [66]
MPyP 30 19 511 83 35 3 2.54 25.5 NR [66]
Triazine-based charring foaming agent: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (TA-CFA) 30 13 584 96 35 3 1.31 24 NR [66]
48 988 88.3 35 3 17 NR [39]
Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (TA-CFA) 30 34 468 86.6 35 3 1.52 20.5 V-1 [39]
50 1350 91.2 35 3 17 NR [40]
Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di-(2-hydroxyethylamino)-s-triazine (TA-CFA) 30 38 518 86.7 35 3 2.08 23.5 NR [40]
45 759.2 98.8 35 3 17 NR [37]
Triazine-based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamino groups (TA-CFA) 25 34 487.4 91.6 35 3 1.26 21.9 NR [37]
20 809 96 50 3 17.6 NR [32]
Triazine-based CFA: Poly[N4-bis(ethylenediamino)-phenyl phosphonic-N2, N6-bis(ethylenediamino)-1,3,5-triazine-N-phenyl (TA-CFA) 25 12 529 88 50 3 1.00 20.6 NR [32]
18 1457 156 50 3 19 NR [29]
Triazin-based CA—Zinc oxide (TA-CA-ZnO) 25 17 694 149 50 3 2.07 18.3 NR [29]
41 840.3 115.7 35 3 16.4 NR [67]
Triazin-based CA: Poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (TA-CA) 25 30 684 106.7 35 3 0.97 17.8 NR [67]
48 1351 107 35 3.2 18.5 NR [27]
Triazin-based CA: compound containing pentaerythritol and triazine structure (TA-CA) 20 42 994 98 35 3.2 1.29 22 NR [27]
66 633 44.2 35 3 17 NR [23]
Triazin-based CA: synthesized by
reaction of tris (2-hydrooxyethyl) isocyanurate and 2-carboxyethyl (phenyl) phosphinic acid (TA-CA)
20 31 417 37.6 35 3 0.83 22 NR [23]
31 1239 123.6 50 3 18.5 NR [68]
Triazin-based IFR: synthesized by
reaction of tris(2-hydroxyethyl) isocyanurate and polyphosphoric acid and melamine (TA-IFR)
20 18 289.9 89 50 3 3.44 29.3 V-0 [68]
48 988 88.3 35 3.2 17 NR [31]
Triazin-based IFR: synthesized by
reaction of cyanuric chloride
and N-amino ethylpiperazine (TA-IFR)
25 38 504 86.6 35 3.2 1.58 23 V-1 [31]
20 904.4 126.2 50 3 18 NR [69]
Piperazine-based FR: synthesized by
reaction of diphenylphosphinyl chloride and piperazine (PI-FR)
25 58 487.7 87.5 50 3 7.75 27 V-0 [69]
45 1269 146.4 50 3 17.5 NR [70]
Piperazine-based IFR: Piperazine spirocyclic phosphoramidate (PI-IFR) 30 17 240.4 120.2 50 3 2.42 30.5 V-0 [70]
47 802 104 35 3 18 NR [71]
Piperazine-based IFR: synthesized by
reaction of phosphorus chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]-octane-4-methanol and anhydrous piperazine (PI-IFR)
20 36 275 78 35 3 2.97 24 NR [71]
Piperazine-based IFR: synthesized by
reaction of phosphorus chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]-octane-4-methanol and anhydrous piperazine (PI-IFR)
30 37 209 74 35 3 4.24 27 NR [71]
Piperazine-based IFR: synthesized by
reaction of phosphorus chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]-octane-4-methanol and anhydrous piperazine (PI-IFR)
40 37 162 60 35 3 6.75 29 V-0 [71]
36 799.3 170.9 35 4 18 NR [72]
N-alkoxy hindered amine (NOR116) 0.5 44 738.8 156.5 35 4 1.44 19 NR [72]
36 799 170 35 4 17.5 NR [73]
NOR116 0.3 44 738 156 35 4 1.44 19.5 NR [73]
42 831 112 35 3 18 NR [50]
Polyurethane containing Phosphorus-based CA (PPU-CA) 25 27.3 475 83 35 3 1.53 29 NR [50]
42 1025 137.7 35 4 [74]
Nitrogen-based FR: compound containing Nitrogen (27.5.wt.%) and Phosphorus (15.6 wt.%) (N-FR) 22 22 170 50.3 35 4 8.64 32 V-1 [74]
Nitrogen-based FR: compound containing Nitrogen (27.5 wt.%) and Phosphorus (15.6 wt.%) (N-FR) 25 21 160 49.1 35 4 8.98 34 V-0 [74]
30 1093 108.2 50 3 18 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe-based IFR (N-IFR) 5 28 968.5 103.4 50 3 1.10 20.2 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe-based IFR (N-IFR) 10 25 626.2 97.1 50 3 1.62 22 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe-based IFR (N-IFR) 15 23 543.1 94.3 50 3 1.76 24.4 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe-based IFR (N-IFR) 20 21 443.9 90.1 50 3 2.06 26.3 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe-based IFR (N-IFR) 25 18 335.3 83.9 50 3 2.52 27.5 V-2 [75]
25 874.1 89.3 50 3 18 NR [76]
Nitrogen-based IFR: compound containing Nitrogen (23%) and Phosphorus (21%) (N-IFR) 25 12 94.9 68.2 50 3 5.78 33 V-0 [76]
29 980 136 50 18.5 [56]
Phosphorus and Nitrogene based IFR 30 22 229 93 50 4.74 36.3 [56]

To give a bright view of the variation trend, Figure 4 illustrates the FRI values as a function of wt.% of nitrogen-based flame retardants incorporated into the PP. The percentage of incorporation was changed from 15 to 40 wt.%. Of note, all points are located in the Good zone of FRI, except two points remarked as Excellent. These two points correspond to a kaolinite additive modified with nitrogen and phosphorus agents. A very noticeable point to be considered is that increasing the amount of diallyldimethylammonium (nominated with the Inline graphic symbol in Figure 4) from 5 to 25 has no serious effect on the value of FRI, so that they are aligned vertically around FRI values between 1.0 and 2.5. Overall, like what happened to other polymers [77,78], combinatorial flame retardants may be the solution to flammability reduction of PP materials.

Figure 4.

Figure 4

FRI values as a function of nitrogen FR type and content. Symbols are indicative of different types of nitrogen flame retardant used. Here: MP-40 [63], Inline graphic MPPK-15, MPPK-20, MPPK-25 [64], Inline graphic MTP-15, MTP-20, MTP-25, MTP-30, m-MTP-30 [65], Inline graphic MPyP-30 [57], Inline graphic MPyP-30, TA-CFA-30 [66], Inline graphic TA-CFA-30 [39], Inline graphic TA-CFA-30 [40], Inline graphic TA-CFA-25 [37], Inline graphic TA-CFA-25 [32], Inline graphic TA-CA-ZnO-25 [29], Inline graphic TA-CA-25 [67], Inline graphic TA-CA-20 [27], Inline graphic TA-CA-20 [23], Inline graphic TA-IFR-20 [68], Inline graphic TA-IFR-25 [31], Inline graphic PI-FR-25 [69], Inline graphic PI-IFR-30 [70], Inline graphic PI-IFR-20, PI-IFR-30, PI-IFR-40 [71], Inline graphic NOR116-0.5 [72], Inline graphic NOR116-0.3 [73], Inline graphic PPU-CA-25 [50], Inline graphic N-FR-22, N-FR-25 [74], Inline graphic N-IFR-5, N-IFR-10, N-IFR-15, N-IFR-20, N-IFR-25 [75], Inline graphic N-IFR-25 [76], Inline graphic PN-IFR-30 [56].

Figure 5 patterns UL-94 results as a function of FRI for nitrogen-based flame retardant in PP. It can be observed that even at small quantities of FRI, V0 in UL-94 was achieved. The diversity of data in Figure 5 can be taken as a signature of sensitivity of UL-94 to FRI. Figure 6 shows LOI values as a function of FRI. There is a quite reasonable correlation between the LOI and FRI values, up to FRI value of 6.

Figure 5.

Figure 5

FRI values versus UL-94 test results. Symbols are indicative of different types of nitrogen flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities; e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 6.

Figure 6

FRI values of PP as a function of LOI test results. Symbols are indicative of different types of nitrogen flame retardant used.

4. Mineral-Based Flame Retardants

Mineral additives have been widely used in polymers for their acceptable cost and properties [79]. Mineral-based flame retardants including clays are widely used in PP due to their low cost and acceptable thermal resistance. In this family, the most used flame retardants in volume were aluminum trihydroxide (ATH) and magnesium dihydroxide (MDH). However, due to their low efficiency, a high percentage of loading was necessary for achieving an acceptable level of flame retardancy of polymers. The name and the percentage of the used mineral-based flame retardants in PP are listed in Table 3. Cone calorimetry data, FRI, LOI, and UL-94 values are also given so as to make possible a detailed view on the status of flame retardant efficiency of PP materials.

Table 3.

Flame-retardant PP materials containing mineral-based (M) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “―” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Mineral-Based (M) FR * wt.% TTI
(s)
pHRR
(kW·m−2)
THR (MJ·m−2) Irradiance
(kW·m−2)
Sample Thickness (mm) FRI LOI UL-94 Ref.
37 1425 121.4 50 3 17.3 NR [80]
Aluminum trihydroxide (ATH) 50 52 539 96.6 50 3 4.66 23.6 NR [80]
32 1470 175 50 4 18 [81]
ATH 60 34 280 98 50 4 9.96 25.6 [81]
26 1967 112 50 3 [82]
ATH 20 27 817 90 50 3 3.11 [82]
ATH 40 28 467 70 50 3 7.25 [82]
Magnesium dihydroxide (MDH) 20 31 1000 98 50 3 2.68 [82]
MDH 40 34 433 75 50 3 8.87 [82]
30 1684 89 50 3 [82]
MDH 40 3 377 71 50 3 0.55 [82]
MDH 60 29 228 51 50 3 12.46 [82]
63.2 521.35 49.8 30 [83]
MDH 62.5 81.1 115.5 75.7 30 3.81 [83]
71 2283 218 35 1 [84]
MDH 50 97 789 238 35 1 3.62 [84]
38 1425 121.4 50 3 17.5 NR [85]
MDH 40 46 548 99.1 50 3 3.85 23.3 NR [85]
29 1660 33.4 35 1 [86]
MDH 30 39 989 28.3 35 1 2.66 [86]
Dodecanoic acid-treated MDH (m-MDH) 30 32 882 28.7 35 1 2.41 [86]
Dodecylphosphate treated MDH (m-MDH) 30 29 651 28.8 35 1 2.95 [86]
37 584 75.6 50 3 [87]
MDH 10 33 471 65.9 50 3 1.26 [87]
MDH 15 31 381 61.2 50 3 1.58 [87]
54 930 140 35 4 NR [64]
Kaolinite (Kaol) 25 32 463 116 35 4 1.43 NR [64]
29 1474 142 50 3 18 NR [88]
Kaol 0.5 28 1429 142 50 3 0.99 18.3 NR [88]
Kaol 1.5 27 1346 140 50 3 1.03 18.3 NR [88]
Kaol 3 26 1279 135 50 3 1.08 18.4 NR [88]
Ammonium sulfamate intercalated kaol
(m-Kaol)
0.5 27 1389 141 50 3 0.99 18.4 NR [88]
Ammonium sulfamate intercalated kaol
(m-Kaol)
1.5 28 1169 133 50 3 1.29 18.6 NR [88]
Ammonium sulfamate intercalated kaol
(m-Kaol)
3 27 1079 126 50 3 1.43 18.7 NR [88]
27 1474 142 50 18 NR [89]
Kaol 1.5 27 1346 140 50 1.11 18.3 NR [89]
Ammonium sulfamate intercalated Kaol
(m-Kaol)
1.5 28 1169 133 50 1.39 18.6 NR [89]
44 1000 145 50 [90]
Kaol 10 35 634 144 50 1.26 [90]
Kaol 20 38 396 136 50 2.33 [90]
Kaol 30 41 348 126 50 3.08 [90]
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol) 10 35 850 140 50 0.96 [90]
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol) 20 38 650 141 50 1.36 [90]
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol) 30 50 430 137 50 2.79 [90]
Talc (TC) 10 49 377 128 50 3.34 [90]
TC 20 56 341 118 50 4.58 [90]
TC 30 50 295 112 50 4.98 [90]
45 1831.96 110.8 50 [91]
Ni-Al layered double hydroxide (LDH) 0.5 53 1635.53 106.8 50 1.36 [91]
Ni-Al LDH (LDH) 1 92 1430.59 117.8 50 2.46 [91]
Ni-Al LDH (LDH) 1.5 41 1266.66 129.1 50 1.13 [91]
Organically modified Ni-Al LDH (m-LDH) 0.5 59 1116.37 70.2 50 3.39 [91]
Organically modified Ni-Al LDH (m-LDH) 1 45 1026.86 81.24 50 2.43 [91]
Organically modified Ni-Al LDH (m-LDH) 1.5 49 1254.95 111.1 50 1.58 [91]
Cu-Al LDH (LDH) 0.5 45 1026.86 81.2 50 2.43 [91]
Cu-Al LDH (LDH) 1 57 1276.46 123 50 1.63 [91]
Cu-Al LDH (LDH) 1.5 50 1449.98 121.8 50 1.27 [91]
Organically modified Cu-Al LDH (m-LDH) 0.5 69 985.91 120 50 2.63 [91]
Organically modified Cu-Al LDH (m-LDH) 1 54 1175.99 121.6 50 1.70 [91]
Organically modified Cu-Al LDH (m-LDH) 1.5 54 1345.14 114.3 50 1.58 [91]
20 1849 121 50 3 [92]
Mg-Al LDH with mole ratio: Zn:Mg:Al/0:2:1 (A-LDH) 1 15 1981 141 50 3 0.60 [92]
A-LDH 2 16 1764 139 50 3 0.73 [92]
Zn-Mg-Al LDH with mole ratio: Zn:Mg:Al/0.5:1.5:1 (B-LDH) 1 14 1997 136 50 3 0.57 [92]
B-LDH 2 14 1512 133 50 3 0.77 [92]
B-LDH 4 13 1153 128 50 3 0.98 [92]
Zn-Mg-Al LDH with mole ratio: Zn:Mg:Al/1:1:1 (C-LDH) 1 18 2004 135 50 3 0.74 [92]
C-LDH 2 14 1546 132 50 3 0.76 [92]
C-LDH 4 12 1225 125 50 3 0.87 [92]
Zn-Mg-Al LDH with mole ratio: Zn:Mg:Al/1.5:0.5:1 (D-LDH) 1 18 1938 135 50 3 0.76 [92]
D-LDH 2 15 1656 130 50 3 0.77 [92]
D-LDH 4 13 1294 123 50 3 0.91 [92]
Zn-Al LDH with mole ratio: Zn:Mg:Al/2:0:1 (E-LDH) 1 16 1977 136 50 3 0.66 [92]
E-LDH 2 17 1543 113 50 3 1.09 [92]
E-LDH 4 14 1382 126 50 3 0.89 [92]
17 2380 140 50 3 [92]
A-LDH 1 20 1906 135 50 3 1.52 [92]
A-LDH 4 16 1137 129 50 3 2.13 [92]
B-LDH 1 17 1715 134 50 3 1.44 [92]
B-LDH 4 17 1025 124 50 3 2.62 [92]
C-LDH 1 16 1875 130 50 3 1.28 [92]
C-LDH 4 14 992 125 50 3 2.21 [92]
D-LDH 1 15 2008 135 50 3 1.08 [92]
D-LDH 4 16 997 126 50 3 2.49 [92]
E-LDH 1 17 1796 13 50 3 14.27 [92]
E-LDH 4 16 757 125 50 3 3.31 [92]
26 1975 125 50 3 [92]
A-LDH 1 21 1831 149 50 3 0.73 [92]
A-LDH 4 23 1274 127 50 3 1.34 [92]
B-LDH 1 23 1838 135 50 3 0.88 [92]
B-LDH 4 18 1017 126 50 3 1.33 [92]
C-LDH 1 20 1676 137 50 3 0.82 [92]
C-LDH 4 17 981 124 50 3 1.32 [92]
D-LDH 1 19 1833 136 50 3 0.72 [92]
D-LDH 4 15 1061 126 50 3 1.06 [92]
E-LDH 1 18 1966 136 50 3 0.63 [92]
E-LDH 4 17 965 126 50 3 1.32 [92]
23 1726 133 50 3 [92]
A-LDH 1 22 1763 121 50 3 1.02 [92]
A-LDH 4 20 1283 125 50 3 1.24 [92]
C-LDH 1 19 1795 131 50 3 0.80 [92]
C-LDH 4 16 897 121 50 3 1.47 [92]
E-LDH 1 21 1845 130 50 3 0.87 [92]
E-LDH 4 18 750 122 50 3 1.96 [92]
16 1443 141 50 3 [93]
Sodium dodecyl sulphate modified Ni-Al LDH (m-LDH) 1 30 1100 122 50 3 2.84 [93]
Sodium dodecyl sulphate modified Ni-Al LDH (m-LDH) 3 32 1040 120 50 3 3.26 [93]
Sodium dodecyl sulphate modified Ni-Al LDH (m-LDH) 5 36 975 113 50 3 4.15 [93]
44 1443 158 35 3 [94]
Undecenoate modified Mg-Al LDH (m-LDH) 3 40 1627 174 35 3 0.73 [94]
Undecenoate modified Mg-Al LDH (m-LDH) 5 32 1629 167 35 3 0.60 [94]
Undecenoate modified Mg-Al LDH (m-LDH) 10 42 1339 157 35 3 1.03 [94]
31 1302 114 50 4 17.8 NR [95]
Carbonate intercalated Mg-Al LDH (LDH) 10.7 22 837 78 50 4 1.61 19 NR [95]
Dihydrogen phosphate intercalated Mg-Al LDH (m-LDH) 10.7 23 534 62 50 4 3.32 21.2 NR [95]
52 1792 219.4 35 [96]
Octadecyltrimethyl ammonium chloride (alkyl-NH4Cl) 1.2 53 1463 215.6 35 1.27 [96]
Montmorillonite (MMT) 5 45 1196 216.7 35 1.31 [96]
Protoned MMT (H-MMT) 5 42 1000 211.4 35 1.50 [96]
Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT) 5 43 996 210.8 35 1.54 [96]
55 1740 219.8 35 [96]
Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT) 5 50 982 208.6 35 1.69 [96]
37 2655 131 35 3 [97]
Methyl tallow bis(2-hydroxyethyl) ammonium modified MMT (m-MMT) 4.75 27 1365 123 35 3 1.51 [97]
Silica pillared methyl tallow bis(2-hydroxyethyl) ammonium modified MMT (m-MMT) 4.75 22 2585 132 35 3 0.60 [97]
Silica pillared methyl tallow bis(2-hydroxyethyl) ammonium modified MMT powder supported with CuO (m-MMT) 4.75 24 2315 132 35 3 0.73 [97]
14 1104 106 35 0.4 [24]
MMT 10 18 1005 99 35 0.4 1.51 [24]
Modified MMT (m-MMT) 10 19 925 98 35 0.4 1.75 [24]
53 1896 102 35 3 [98]
Alkylstyrene surfactant modified MMT (m-MMT) 3 50 1502 99 35 3 1.22 [98]
Alkylstyrene surfactant modified MMT (m-MMT) 10 50 1200 94 35 3 1.61 [98]
Alkylstyrene surfactant modified MMT (m-MMT) 16 51 882 95 35 3 2.22 [98]
60 1136 296 35 [99]
MMT 2 51 633 295 35 1.53 [99]
Alkylammonium modified MMT (m-MMT) 2 58 870 297 35 1.25 [99]
Alkylammonium modified MMT (m-MMT) 5 55 459 295 35 2.27 [99]
Alkylammonium modified MMT (m-MMT) 10 56 357 293 35 3.00 [99]
52 1897 101 35 3 [100]
Ammonium salt of an oligomer modified MMT (m-MMT) 3 48 1577 95 35 3 1.18 [100]
Ammonium salt of an oligomer modified MMT (m-MMT) 8 49 1309 97 35 3 1.42 [100]
Ammonium salt of an oligomer modified MMT (m-MMT) 12 52 1160 93 35 3 1.77 [100]
43 1845 118 50 OR 35 [101]
Styrene-vinylbenzyl chloride copolymer modified MMT (m-MMT) 2.5 47 1953 114 50 OR 35 1.06 [101]
Styrene-vinylbenzyl chloride copolymer modified MMT (m-MMT) 5 45 1889 111 50 OR 35 1.08 [101]
Styrene-vinylbenzyl chloride copolymer modified MMT (m-MMT) 15 37 1448 108 50 OR 35 1.19 [101]
Styrene-vinylbenzyl chloride copolymer modified MMT (m-MMT) 25 38 1191 102 50 OR 35 1.58 [101]
Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) 2.5 44 2025 123 50 OR 35 0.89 [101]
Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) 5 42 1738 120 50 OR 35 1.01 [101]
Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) 15 39 1651 115 50 OR 35 1.04 [101]
Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) 25 41 1139 105 50 OR 35 1.73 [101]
55 1586 113 35 [102]
Methyl methacrylate modified MMT
(m-MMT)
1 66 1108 104 35 1.86 [102]
Methyl methacrylate modified MMT
(m-MMT)
3 44 839 87 35 1.96 [102]
Methyl methacrylate modified MMT
(m-MMT)
5 35 557 77 35 2.65 [102]
50.2 789 156.6 35 17.5 [103]
Nanofil (Nf) 5 48 739 173.4 35 0.92 22 [103]
Organically modified bentonite (m-BT) 5 45.6 774 166.6 35 0.87 22 [103]
33 847 159.8 50 17.5 [103]
Nf 5 37 1047 174 50 0.83 22 [103]
m-BT 5 36 1093 164 50 0.82 22 [103]
35 1622 103 35 3 [104]
Cloisite 20A: Dimethyl, dihydrogenated tallow ammonium modified MMT (C20A) 1 33 1751 105 35 3 0.85 [104]
C20A 3 34 1874 107 35 3 0.80 [104]
C20A 5 39 1487 105 35 3 1.19 [104]
44 1172 87.1 35 2.5 18.1 NR [60]
Cloisite 15A: dimethyl dehydrogenated tallow ammonium cation modified sodium MMT (C15A) 5 41 1050 88.2 35 2.5 1.02 18.1 NR [60]
88 565.9 71.9 35 3 [105]
C20A 5 76 518.2 75.9 35 3 0.89 20 [105]
C20A 5 89 415.6 73 35 3 1.35 20 [105]
Titanium dioxide (TiO2) 0.5 99 488.1 75 35 3 1.25 20 [105]
49 1247 114.2 35 [106]
Activated alumina (Al2O3) 2 35 943 108.2 35 0.99 [106]
28 1633 132 50 4 18 [107]
NiFeO 2 27 1372 129 50 4 1.17 18 [107]
CoFeO 2 24 1335 127 50 4 1.08 18 [107]
38 1284 241 50 6 [108]
Ni2O3 7.5 53 655 161 50 6 4.09 [108]
64 1909 254 50 3 [109]
Mo/Mg/Ni/O catalysts (Nmm-cat) 1 62 490 205 50 3 4.67 [109]
Nmm-cat 2 63 292 168 50 3 9.72 [109]
Nmm-cat 3 60 275 149 50 3 11.09 [109]
52 915.7 112.5 50 3 18 [110]
Magnesium oxysulfate whisker (MOSw) 30 62 259.1 90.4 50 3 5.24 24.7 [110]
Dodecyl dihydrogen phosphate modified MOSw (m-MOSw) 30 64 243.3 72.8 50 3 7.15 26.1 [110]
48 195.5 28.6 35 2 [111]
Manganese oxide (MnO) 10 54 233.7 31.8 35 2 0.84 [111]
Manganese oxide (Mn2O3) 10 48 271.3 31.5 35 2 0.65 [111]
Manganese oxalate (MnC2O4) 10 50 281.6 29.3 35 2 0.70 [111]
30 390 44 35 1.6 17.4 [53]
Zinc acetyl acetonate (Znacac) 1 31 366 28 35 1.6 1.73 19.5 [53]
Chromium acetyl acetonate (Cracac) 1 31 307 28 35 1.6 2.06 20.7 [53]
51 1053 117.6 35 3 [112]
Zirconium phenylphosphonate (ZrPP) 2 34 754 99.4 35 3 1.10 [112]
40 364 40 35 2 [113]
Siloxane silsesquioxane resin (S4SQH) 1 41 354 47 35 2 0.89 [113]
S4SQH 5 21 500 44 35 2 0.34 [113]
S4SQH 10 19 445 44 35 2 0.35 [113]
n-octyl functionalized S4SQH (m-S4SQH) 1 43 227 29 35 2 2.37 [113]
n-octyl functionalized S4SQH (m-S4SQH) 5 40 481 48 35 2 0.63 [113]
n-octadecyl functionalized S4SQH (m-S4SQH) 1 40 168 22 35 2 3.93 [113]
n-octadecyl functionalized S4SQH (m-S4SQH) 5 43 328 42 35 2 1.13 [113]
n-octadecyl functionalized S4SQH (m-S4SQH) 10 47 391 47 35 2 0.93 [113]
25 981 147 50 17.6 NR [30]
Polysiloxane based FR (Si-FR) 25 18 624 110 50 1.51 24.1 NR [30]
54 1610 106 35 3 20.8 NR [25]
Sepiolite (SEP) 0.5 48 1701 108 35 3 0.82 20 NR [25]
Organically modified SEP (m-SEP) 0.5 46 1665 106 35 3 0.82 19.2 NR [25]
37 584 75.6 50 3 [87]
SEP 5 24 533 68.1 50 3 0.78 [87]
Organically treated SEP (m-SEP) 5 23 515 66.1 50 3 0.80 [87]
60 968 100 35 3 19.2 [114]
Methyl polyhedral oligomeric silsesquioxane (me-POSS) 1.95 54 1023 100 35 3 0.85 [114]
me-POSS 6.5 60 786 96 35 3 1.28 19.2 [114]
Phenyl POSS (ph-POSS) 3.75 61 858 98 35 3 1.17 [114]
ph-POSS 12.5 53 872 96 35 3 1.02 19.5 [114]
56 1103 111 35 3 [115]
Octaisobutyl POSS (T8-POSS) 10 50 1325 112 35 3 0.73 [115]
Al-POSS 10 37 624 98 35 3 1.32 [115]
Zn-POSS 10 54 1069 108 35 3 1.02 [115]
54 1242 221 35 6 17.5 [5]
Silica aerogel (SA) 10 57 892 203 35 6 1.60 25.1 [5]
49.5 622 74.5 50 3 [116]
Halloysite nanotube (HNT) 8 44 495 68.5 50 3 1.21 [116]
HNT-Water injection (HNT-W) 8 45.5 451 66.5 50 3 1.42 [116]
52.5 620 70.5 50 3 [116]
HNT 8 48 495 67 50 3 1.20 [116]
HNT-W 4 49 507 66.5 50 3 1.21 [116]
HNT-W 8 46 367 60.5 50 3 1.72 [116]
HNT-W 16 42.5 219 55 50 3 2.93 [116]
35 749 90.1 50 3 [117]
HNT 5 34 936.7 98 50 3 0.71 [117]
HNT 10 31 773.6 99.3 50 3 0.77 [117]
HNT 15 32 557.9 91.9 50 3 1.20 [117]
Melamine and phytic acid modified HNT
(m-HNT)
5 30 713.2 89.4 50 3 0.90 [117]
Melamine and phytic acid modified HNT
(m-HNT)
10 28 708.4 93.4 50 3 0.81 [117]
Melamine and phytic acid modified HNT
(m-HNT)
15 27 678.8 89.3 50 3 0.85 [117]

Figure 7 visualizes the variation of FRI value as a function of flame retardant loading in PP systems (for the convenience of readers, two figures are added for giving a better zoom on data points). This figure clearly shows that even at low loading percentages, it is possible to achieve a relatively high FRI value depending on the type of mineral. There is no denying that some parameters such as the state of dispersion and size of particles are important factors affecting the flame retardant properties.

Figure 7.

Figure 7

Figure 7

FRI values as a function of the mineral FR type and content from close-up and long-shot views. Symbols are indicative of different types of mineral flame retardant used. The diversity and abundance of data were reasons why such different scales were provided for detection of behavior of PP against flame. Here: ATH-50 [80], Inline graphic ATH-60 [81], Inline graphic ATH-20, ATH-40, MDH-20, MDH-40 [82], Inline graphic MDH-40, MDH-60 [82], Inline graphic MDH-62.5 [83], Inline graphic MDH-50 [84], Inline graphic MDH-40 [85], Inline graphic MDH-30, m-MDH-30, m-MDH-30 [86], Inline graphic MDH-10, MDH-15 [87], Inline graphic Kaol-25 [64], Inline graphic Kaol-0.5, Kaol-1.5, Kaol-3, m-Kaol-0.5, m-Kaol-1.5, m-Kaol-3 [88], Inline graphic Kaol-1.5, m-Kaol-1.5 [89], Inline graphic Kaol-10, Kaol-20, Kaol-30, m-Kaol-10, m-Kaol-20, m-Kaol-30, TC-10, TC-20, TC-30 [90], Inline graphic LDH-0.5, LDH-1, LDH-1.5, m-LDH-0.5, m-LDH-1, m-LDH-1.5, LDH-0.5, LDH-1, LDH-1.5, m-LDH-0.5, m-LDH-1, m-LDH-1.5 [91], Inline graphic A-LDH-1, A-LDH-2, B-LDH-1, B-LDH-2, B-LDH-4, C-LDH-1, C-LDH-2, C-LDH-4, D-LDH-1, D-LDH-2, D-LDH-4, E-LDH-1, E-LDH-2, E-LDH-4 [92], Inline graphic A-LDH-1, A-LDH-4, B-LDH-1, B-LDH-4, C-LDH-1, C-LDH-4, D-LDH-1, D-LDH-4, E-LDH-1, E-LDH-4 [92], Inline graphic A-LDH-1, A-LDH-4, B-LDH-1, B-LDH-4, C-LDH-1, C-LDH-4, D-LDH-1, D-LDH-4, E-LDH-1, E-LDH-4 [92], Inline graphic A-LDH-1, A-LDH-4, C-LDH-1, C-LDH-4, E-LDH-1, E-LDH-4 [92], Inline graphic m-LDH-1, m-LDH-3, m-LDH-5 [93], Inline graphic m-LDH-3, m-LDH-5, m-LDH-10 [94], Inline graphic LDH-10.7, m-LDH-10.7 [95], Inline graphic alkyl-NH4Cl-1.2, MMT-5, H-MMT-5, m-MMT-5 [96], Inline graphic m-MMT-5 [96], Inline graphic m-MMT-4.75, m-MMT-4.75, m-MMT-4.75 [97], Inline graphic MMT-10, m-MMT-10 [24], Inline graphic m-MMT-3, m-MMT-10, m-MMT-16 [98], Inline graphic MMT-2, m-MMT-2, m-MMT-5, m-MMT-10 [99], Inline graphic m-MMT-3, m-MMT-8, m-MMT-12 [100], Inline graphic m-MMT-2.5, m-MMT-5, m-MMT-15, m-MMT-25, m-MMT-2.5, m-MMT-5, m-MMT-15, m-MMT-25 [101], Inline graphic m-MMT-1, m-MMT-3, m-MMT-5 [102], Inline graphic Nf-5, m-BT-5 [103], Inline graphic Nf-5, m-BT-5 [103], Inline graphic C20A-1, C20A-3, C20A-5 [104], Inline graphic C15A-5 [60], Inline graphic C20A-5, C20A-5, TiO2-0.5 [105], Inline graphic Al2O3-2 [106], Inline graphic NiFeO-2, CoFeO-2 [107], Inline graphic Ni2O3-7.5 [108], Inline graphic Nmm-cat-1, Nmm-cat-2, Nmm-cat-3 [109], Inline graphic MOSw-30, m-MOSw-30 [110], Inline graphic MnO-10, Mn2O3-10, MnC2O4-10 [111], Inline graphic Znacac-1, Cracac-1 [53], Inline graphic ZrPP-2 [112], Inline graphic S4SQH-1, S4SQH-5, S4SQH-10, m-S4SQH-1, m-S4SQH-5, m-S4SQH-1, m-S4SQH-5, m-S4SQH-10 [113], Inline graphic Si-FR-25 [30], Inline graphic SEP-0.5, m-SEP-0.5 [25], Inline graphic SEP-5, m-SEP-5 [87], Inline graphic me-POSS-1.95, me-POSS-6.5, ph-POSS-3.75, ph-POSS-12.5 [114], Inline graphic T8-POSS-10, Al-POSS-10, Zn-POSS-10 [115], Inline graphic SA-10 [5], Inline graphic HNT-8, HNT-W-8 [116], Inline graphic HNT-8, HNT-W-4, HNT-W-8, HNT-W-16 [116], Inline graphic HNT-5, HNT-10, HNT-15, m-HNT-5, m-HNT-10, m-HNT-15 [117].

Unfortunately, the number of papers in which cone calorimetry, UL-94, and LOI values were studied was indeed limited, but the ones available are used plotting Figure 8. It should be noted that no formulation among studied ones is rated at V0. In conclusion, it is quite difficult to find a correlation between quantitative and qualitative parameters based on such a tiny set of data. In regard to the relationship between LOI and FRI, a meaningful trend can still be seen in Figure 9.

Figure 8.

Figure 8

FRI values versus UL-94 test results. Symbols are indicative of different types of mineral flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 9.

Figure 9

FRI values of PP as a function of LOI test results. Symbols are indicative of different types of mineral flame retardant used.

5. Carbon-Based Flame Retardants

Carbon-based additives have been widely used in developing polymer composites and nanocomposites [118,119,120,121]. However, due to expense and limited interaction with PP, a few works based on carbon-based flame retardants have been reported on flame-retardant PP materials. Table 4 summarizes all information available on the flame-retardant PP materials containing carbon-based additives.

Table 4.

Flame-retardant PP materials containing carbon-based (C) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “―” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Carbon-Based (C) FR * wt.% TTI
(s)
pHRR
(kW·m−2)
THR
(MJ·m−2)
Irradiance
(kW·m−2)
Sample Thickness (mm) FRI LOI UL-94 Ref.
49 1247 114.2 35 [106]
Graphene (GN) 2 35 989 107.9 35 0.95 [106]
Activated alumina decorated GN (m-GN) 2 41 866 110.5 35 1.24 [106]
51 1053 118.4 35 3 [122]
P-phenylenediamine modified reduced graphene oxide (m–rGNO) 2 33 928 104 35 3 0.83 [122]
Polyaniline nanofiber modified rGNO
(m–rGNO)
2 27 763 98.4 35 3 0.87 [122]
45 1230 113.6 35 3 [123]
rGNO 2 30 1105 97.5 35 3 0.86 [123]
Hexachlorocyclotriphosphazene modified rGNO (m–rGNO) 2 27 967 112.9 35 3 0.76 [123]
Hexachlorocyclotriphosphazene modified rGNO decoration with Ni(OH)2 nanosheet
(m–rGNO)
2 35 829 92 35 3 1.42 [123]
51 1053 117.6 35 3 [112]
rGNO 2 31 835 98.3 35 3 0.91 [112]
Zirconium phenylphosphonate decorated rGNO (m-rGNO) 2 39 676 89.8 35 3 1.55 [112]
50 1044 101.4 35 3 [124]
Graphene oxide (GNO) 2 33 979 108.2 35 3 0.65 [124]
Melamine modified GNO (m-GNO) 0.5 40 892 104.1 35 3 0.91 [124]
Melamine modified GNO (m-GNO) 1 37 834 100.6 35 3 0.93 [124]
Melamine modified GNO (m-GNO) 2 33 739 98.7 35 3 0.95 [124]
38 1526 47.4 35 [125]
GN 2.5 39 1279 58.8 35 0.98 [125]
GN-Nickel oxide (GN-NiO) 2.5 35 1110 45.4 35 1.32 [125]
GN and Ni–Ce mixed oxide (GN-NiCexOy) 2.5 32 956 39.2 35 1.62 [125]
32 909 45.8 35 [126]
rGNO 2 28 778 40 35 1.17 [126]
Phosphomolybdic acid modified rGNO
(m-rGNO)
1 27 773 39.6 35 1.14 [126]
Phosphomolybdic acid modified rGNO
(m-rGNO)
2 23 737 38.4 35 1.05 [126]
Phosphomolybdic acid modified rGNO
(m-rGNO)
3 25 700 38.4 35 1.21 [126]
54 1199 97.8 35 [58]
Poly(4,4-diaminodiphenyl methane spirocyclicpentaerythritol bisphosphonate)-4,4-diaminodiphenyl methane modified rGNO (m-rGNO) 20 66 397 73.9 35 4.88 [58]
66 383 76 35 3 [127]
Expandable graphite with commercial name ES 350 F5 (EG(ES 350 F5)) 10 32 91 56 35 3 2.76 [127]
EG with commercial name ES 700 F5 (EG(ES 700 F5)) 10 35 92 57 35 3 2.94 [127]
EG with commercial name Nyagraph FP (EG(Nyagraph FP)) 10 44 92 66 35 3 3.19 [127]
EG with commercial name TEG 315 (EG(TEG 315)) 10 53 134 69 35 3 2.52 [127]
EG with commercial name Nyagraph KP251 (EG(Nyagraph KP251)) 10 54 308 69 35 3 1.12 [127]
38 1361 85 35 3 [128]
Carbon nanotube (CNT) 1 37 431 75 35 3 3.48 [128]
Modofied CNT (m-CNT) 0.5 42 361 62 35 3 5.71 [128]
Modofied CNT (m-CNT) 1 42 342 66 35 3 5.66 [128]
Modofied CNT (m-CNT) 2 41 386 70 35 3 4.61 [128]
Modofied CNT (m-CNT) 4 39 450 79 35 3 3.33 [128]
40 1360 80 35 3 [129]
CNT 1 35 462 73 35 3 2.82 [129]
Fullerene C60 decorated CNT (m-CNT) 0.5 38 443 71 35 3 3.28 [129]
Fullerene C60 decorated CNT (m-CNT) 1 39 400 69 35 3 3.84 [129]
Fullerene C60 decorated CNT (m-CNT) 2 38 385 65 35 3 4.13 [129]
35 1203 208 50 6 18.2 [130]
Multiwall carbon nanotube (MWCNT) 1 24 945 211 50 6 0.86 19.3 [130]
MWCNT 3 23 845 208 50 6 0.93 21.8 [130]
MWCNT 5 23 553 199 50 6 1.49 23.4 [130]
Modified MWCNT (m-MWCNT) 1 25 775 208 50 6 1.10 20 [130]
Modified MWCNT (m-MWCNT) 3 24 670 200 50 6 1.28 22.6 [130]
Modified MWCNT (m-MWCNT) 5 24 485 198 50 6 1.78 24.1 [130]
30 1261 208 50 6 18 [131]
MWCNT 1 21 678 195 50 6 1.38 19.5 [131]
MWCNT 3 20 584 192 50 6 1.55 22.6 [131]
24 1620 110 50 3 [132]
MWCNT 3 17 931 102 50 3 1.32 [132]
38 1284 214 50 6 18.2 [133]
MWCNT 10 25 367 199 50 6 2.47 24.6 [133]
Carbon fiber (CF) 10 30 915 207 50 6 1.14 20.6 [133]
35 1212 198 50 6 18.2 [134]
CF 3 25 1203 203 50 6 0.70 19.9 [134]
CF 8 26 777 198 50 6 1.15 20.2 [134]
Carbon black (CB) 5 23 417 186 50 6 2.03 24.6 [134]
38 1284 241 50 6 [108]
Activated carbon (AC) 7.5 15 682 185 50 6 0.96 [108]
48 1518 112.4 35 3.1 [6]
Vapor grown carbon nanofiber (VGCNF) 4 35 610 113.1 35 3.1 1.80 [6]
VGCNF 8 47 525 108.6 35 3.1 2.93 [6]
VGCNF 12 49 547 102.4 35 2.9 3.10 [6]

Figure 10 shows that with low loading percentage (1 wt.%) of carbon nanotubes, it is possible to achieve the Good FRI. No data were available for UL-94 tests. Comparison between Figure 7 and Figure 10 also suggests that low-cost minerals were used at higher loadings, while carbon-based additives were used almost at loadings below 10 wt.%. A limited number of data have also been reported on LOI values. These points are plotted as a function of FRI in Figure 11, where a good correlation can be established between FRI and LOI values. Deeper understanding of the mechanism behind such correlation requires a detailed view of the origin of tests as well as the chemical structure of additives and possible interaction between the PP and additives.

Figure 10.

Figure 10

FRI values as a function of carbonaceous FR type and content. Symbols are indicative of different types of carbonaceous flame retardant used. Here: GN-2, m-GN-2 [106], Inline graphic m–rGNO-2, m–rGNO-2 [122], Inline graphic rGNO-2, m-rGNO-2, m-rGNO-2 [123], Inline graphic rGNO-2, m-rGNO-2 [112], Inline graphic GNO-2, m-GNO-0.5, m-GNO-1, m-GNO-2 [124], Inline graphic GN-2.5, GN-NiO-2.5, GN-NiCexOy-2.5 [125], Inline graphic rGNO-2, m-rGNO-1, m-rGNO-2, m-rGNO-3 [126], Inline graphic m-rGNO-20 [58], Inline graphic EG(ES 350 F5)-10, EG(ES 700 F5)-10, EG(Nyagraph FP)-10, EG(TEG 315)-10, EG(Nyagraph KP251)-10 [127], Inline graphic CNT-1, m-CNT-0.5, m-CNT-1, m-CNT-2, m-CNT-4 [128], Inline graphic CNT-1, m-CNT-0.5, m-CNT-1, m-CNT-2 [129], Inline graphic MWCNT-1, MWCNT-3, MWCNT-5, m-MWCNT-1, m-MWCNT-3, m-MWCNT-5 [130], Inline graphic MWCNT-1, MWCNT-3 [131], Inline graphic MWCNT-3 [132], Inline graphic MWCNT-10, CF-10 [133], Inline graphic CF-3, CF-8, CB-5 [134], Inline graphic AC-7.5 [108], Inline graphic VGCNF-4, VGCNF-8, VGCNF-12 [6].

Figure 11.

Figure 11

FRI values of PP as a function of LOI test results. Symbols are indicative of different types of carbon-based flame retardant used.

6. Bio-Based Flame Retardants

In recent years, due to sustainability issues, the use of bio-based additives has also been investigated in PP. However, the number of research papers is limited on this subject. Table 5 gives the name and loading percentage of these bio-based FR. The obtained results from cone calorimetry, LOI, and UL-94 tests are also listed in Table 5. Figure 12 and Figure 13 display UL-94 and LOI results as a function of FRI for bio-based flame retardant in PP, respectively.

Table 5.

Flame-retardant PP materials containing bio-based (Bio) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “―” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Bio-Based (Bio) FR * wt.% TTI (s) pHRR (kW·m−2) THR (MJ·m−2) Irradiance (kW·m−2) Sample Thickness (mm) FRI LOI UL-94 Ref.
46 1541 90 35 3 [135]
Cyclodextrin nanosponge (CD) 10 34 1462 80 35 3 0.87 [135]
61 1026 166 35 4 [15]
Hydroxyapatite and Cyclodextrin-based FR (HAandCD-FR) 10 32 708 156 35 4 0.80 [15]
Propylene-block-ethylene copolymer 49 1350 87.3 35 3 17.5 [136]
Phosphorus and nitrogen elements modified lignin (m-lig) 20 38 380 74.2 35 3 3.24 22.5 [136]
22.5 1004.7 122.6 50 3.2 18 NR [137]
Phytic acid and Piperazine-based FR (PHPI-FR) 15 17.5 388.5 108.5 50 3.2 2.27 24 V-2 [137]
PHPI-FR 18 17 386.2 108.4 50 3.2 2.22 25 V-0 [137]
PHPI-FR 20 17 346 106.1 50 3.2 2.53 25.5 V-0 [137]
PHPI-FR 25 16.5 303.4 105.4 50 3.2 2.82 27 V-0 [137]
29 1054 97 50 [138]
Biochar (BC) 15 12 753.01 112.68 50 0.49 [138]
BC 25 13.3 616.31 111.26 51 0.68 [138]
BC 30 15 539.34 101.2 52 0.96 [138]
BC 35 16.3 477.22 98.31 53 1.22 [138]
24.3 1388.3 80.3 50 2.4 NR [28]
Wool 40 12.3 858.7 77.3 50 2.4 0.85 NR [28]
Phosphoric acid-treated wool fiber (m-wool) 40 14.3 426.7 72 50 2.4 2.13 NR [28]
Phosphoric acid-treated wool fiber (m-wool) 40 15 436.3 65.3 50 2.4 2.41 V-0 [28]
Phosphoric acid-treated chicken feather
(m-CF)
40 14.7 336.7 57 50 2.4 3.51 V-0 [28]
24.7 1198.2 78.7 50 2.4 NR [139]
Chicken feather (CF) 40 17 1234.1 76.1 50 2.4 0.69 NR [139]
Phosphoric acid and ethylenediamine treated chicken feather (m-CF) 40 19.3 280.5 58.7 50 2.4 4.47 V-0 [139]
Phosphoric acid and ethylenediamine treated chicken feather (m-CF) 40 17.7 216.1 52.4 50 2.4 5.96 V-0 [139]

Figure 12.

Figure 12

FRI values versus UL-94 test results. Symbols are indicative of different types of bio-based flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1) may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 13.

Figure 13

FRI values of PP as a function of LOI test results. Symbols are indicative of different types of bio-based flame retardant used. The green triangles are related to a mixture of phytic acid and piperazine-based FR. The increase of LOI is directly related to the percentage of FR loading, 15, 18, 20, and 25 wt.%.

FRI values are plotted as a function of loading percentage of bio-based FR in Figure 14. It can be observed that a high quantity of bio-based FR, 40 wt.% is needed to achieve FRI equal to 6.

Figure 14.

Figure 14

FRI values as a function of bio-based FR type and content. Symbols are indicative of different types of bio-based flame retardant used. Here: CD-10 [135], Inline graphic HAandCD-FR-10 [15], Inline graphic m-lig-20 [136], Inline graphic PHPI-FR-15, PHPI-FR-18, PHPI-FR-20, PHPI-FR-25 [137], Inline graphic BC-15, BC-25, BC-30, BC-35 [138], Inline graphic Wool-40, m-wool-40, m-wool-40, m-CF-40 [28], Inline graphic CF-40, m-CF-40, m-CF-40 [139].

7. Combination of Flame Retardants

As observed in previous sections, using an additive alone can to a limited extent improve flame-retardant properties of PP. Combination of flame retardants is a strategy to improve further the flame retardancy via synergism between various flame retardants [140,141,142]. Moreover, the quantity of the used flame retardant can be reduced in polymer so as to prevent mechanical properties deterioration. Different combinative additive systems were considered in PP. The corresponded data are collected and summarized in Table 6. The third column gives the ratio between flame retardants.

Table 6.

The flame retardancy performance of PP containing various combinations of flame retardants in terms of FRI (* the name and percentage of incorporated flame retardants are given after PP). P = phosphorus FR, Np = non-phosphorus FR, N = nitrogen FR, nN = non-nitrogen-based FR, M = mineral FR, Bio = bio-based FR, nBio = non bio-based FR (one can also consider some nitrogen-based FRs containing phosphorus element as the combination of phosphorus and nitrogen resulting in synergism, Table 2). Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

Name wt.% Type of FR TTI
(s)
pHRR
(kW·m−2)
THR
(MJ·m−2)
Irradiance
(kW·m−2)
Sample Thickness (mm) FRI LOI UL-94 Ref.
31 1239 123.6 50 3 18.5 NR [68]
APP/Pentaerythritol (APP/PER) 20 P:nP
2:1
18 514.7 92.6 50 3 1.86 27.6 V-2 [68]
25 1239 123.6 50 3 18.5 NR [143]
APP/PER 25 P:nP
2:1
17 442.3 98.8 50 3 2.38 30.1 V-0 [143]
41 840.3 115.7 35 3 16.4 NR [67]
APP/PER 25 P:nP
3:1
32 354.7 82 35 3 2.60 24.7 V-1 [67]
34 1727 112 35 3 18 NR [144]
APP/PER 30 P:nP
3:1
13 392 80 35 3 2.35 31 V-0 [144]
Hydroxyl silicone oil co-microencapsulated APP and PER (mc-(APPandPER)) 30 P:nP
3:1
10 325 78 35 3 2.24 32.5 V-0 [144]
166 412 105 25 3 [145]
APP/PER /Melamine (APP/PER/MEL) 29.4 P:nP:nP
1.07:1:0.92
175 76.4 55 25 3 10.85 [145]
APP/PER/MEL 33.2 P:nP:nP
1.64:1:0.94
188 65 46.3 25 3 16.27 [145]
APP/PER/MEL 36.2 P:nP:nP
2.14:1:0.92
180 68 49.4 25 3 13.96 [145]
24 687 119 50 3 [145]
APP/PER/MEL 29.4 P:nP:nP
1.07:1:0.92
33 158 72.5 50 3 9.81 [145]
APP/PER/MEL 33.2 P:nP:nP
1.64:1:0.94
36 115 67.8 50 3 15.72 [145]
APP/PER/MEL 36.2 P:nP:nP
2.14:1:0.92
30 133 73.2 50 3 10.49 [145]
24 687 119 25 3 17.8 [146]
APP/PER/MEL 33.2 P:nP:nP
1.64:1:0.93
36 115 67.8 25 3 15.72 34.5 [146]
APP/PER/MEL/MDH 37.3 P:nP:nP:nP
1.64:1:0.9:0.7
36 156 63.9 25 3 12.30 25.2 [146]
166 412 105 50 3 17.8 [146]
APP/PER/MEL 33.2 P:nP:nP
1.64:1:0.93
188 65 46.3 50 3 16.27 34.5 [146]
APP/PER/MEL/MDH 37.3 P:nP:nP:nP
1.64:1:0.9:0.7
196 79.5 45.1 50 3 14.24 25.2 [146]
35 1622 103 35 3 [104]
APP/PER/MEL/C20A 21 P:nP:nP:nP
3:1:1:0.25
25 463 89 35 3 2.89 [104]
APP/PER/MEL/C20A 23 P:nP:nP:nP
3:1:1:0.75
26 430 91 35 3 3.17 [104]
APP and MMT/PER/MEL/C20A 21 P:nP:nP:nP
3:1:1:0.25
24 306 81 35 3 4.62 [104]
APP and MMT/PER/MEL/C20A 23 P:nP:nP:nP
3:1:1:0.75
21 344 80 35 3 3.64 [104]
48 662 83.3 35 4 17.6 NR [147]
γ-aminopropyltriethoxysilane modified APP/Dipentaerythritol/MEL
(m-APP/DPER/MEL)
25 P:nP:nP
4:1:1
30 71 32.5 35 4 14.93 34.4 V-1 [147]
γ-aminopropyltriethoxysilane modified APP/ DPER/MEL/SEP
(m-APP-/DPER/MEL/SEP)
25 P:nP:nP:nP
4:1:1:0.25
29 51 30.8 35 4 21.20 36 V-0 [147]
48 1007 126.3 35 3.2 17.5 NR [148]
APP/PER 18 P:nP
3:1
45 423.5 112 35 3.2 2.51 24.6 NR [148]
APP/PER/Melamine fomaldehyde (APP/PER/MF) 18 P:nP:nP
3:1:0.2
48 352.3 110.4 35 3.2 3.27 26.3 NR [148]
APP/PER/Adenosine monophosphate embedded Melamine fomaldehyde (APP/PER/MFA) 18 P:nP:nP
3:1:0.2
49 355.1 108.1 35 3.2 3.38 27 V-0 [148]
70 1267 147 50 3 17.5 NR [149]
APP/PER 30 P:nP
3:1
40 321 80 50 3 4.14 29.5 V-1 [149]
47 991.4 140.8 35 3.2 18.4 NR [150]
APP/PER 18 P:nP
2.4:1
44 434.1 123.8 35 3.2 2.43 26.2 NR [150]
APP/PER /Triazine-based FR: N, N′, N″-1, 3, 5-triazine-2, 4, 6-triyltris-glycine (APP/PER/TA-FR) 18 P:nP:nP
2.4:1:0.2
42 323.3 126 35 3.2 3.06 29.5 V-0 [150]
36 799.3 170.9 35 4 18 NR [72]
APP/PER 25 P:nP
2:1
23 322 144.5 35 4 1.87 31 V-1 [72]
APP/PER/NOR116 25 P:nP:nP
2:1:0.06
33 313.8 136.5 35 4 2.92 35 V-0 [72]
51 888 125 35 3.2 17.5 NR [151]
APP/PER 18 P:nP
3:1
45 439 111 35 3.2 2.00 24.6 NR [151]
APP/PER/Guanine: nitrogenous bases (APP/PER/G-bases) 18 P:nP:nP
3:1:0.3
46 324 105 35 3.2 2.94 27.6 NR [151]
APP/PER/Uracil: nitrogenous bases (APP/PER/U-bases) 18 P:nP:nP
3:1:0.3
46 293 105 35 3.2 3.25 28.7 V-0 [151]
38 886 144 50 3 17.6 NR [152]
APP/DPER 25 P:nP
2.2:1
30 386 117 50 3 2.23 26.8 V-1 [152]
Aluminum chloride modified APP/ DPER (m-APP/DPER) 25 P:nP
2.2:1
25 226 104 50 3 3.57 32.1 V-0 [152]
APP/DPER/ATH 25 P:nP:nP
2:1:0.1
28 381 108 50 3 2.28 28.7 V-0 [152]
31 1002 114 50 4 17.8 NR [70]
APP/PER 28.5 P:nP
3:1
24 318 122 50 4 2.27 30 V-0 [70]
APP/PER/Kaol 28.5 P:nP:nP
3:1:0.2
22 222 131 50 4 2.78 33 V-0 [70]
70 415.6 99.6 35 3 17 NR [153]
APP/PER 29 P:nP
3:1
21 160.7 94.2 35 3 0.82 29.5 V-0 [153]
APP/PER/MMT 29 P:nP:nP
3:1:0.46
42 149.8 69.5 35 3 2.38 34.5 V-0 [153]
APP/PER/Melamine modified MMT (APP/PER/m-MMT) 29 P:nP:nP
3:1:0.46
37 157.9 55.1 35 3 2.51 36.5 V-0 [153]
70 415.6 99.6 35 3 17 NR [154]
APP/PER 29 P:nP
3:1
21 160.7 94.2 35 3 0.82 29.5 V-0 [154]
APP/PER/MMT 29 P:nP:nP
3:1:0.46
42 149.8 69.5 35 3 2.38 34.5 V-0 [154]
APP/PER/Melamine modified MMT (APP/PER/m-MMT) 29 P:nP:nP
3:1:0.46
37 157.9 55.1 35 3 2.51 36.5 V-0 [154]
APP/PER/Triphenylphonium modified MMT (APP/PER/m-MMT) 29 P:nP:nP
3:1:0.46
38 168.2 84.7 35 3 1.57 34.8 V-0 [154]
50 720 136 35 4 17 NR [155]
APP/PER 25 P:nP
3:1
39 267 111 35 4 2.57 26.3 V-1 [155]
APP/PER/Zn-Ni-Al LDH(APP/PER/LDH) 25 P:nP:nP
3:1:0.16
35 296 109 35 4 2.12 27 V-1 [155]
APP/PER/Azobenzene-4,4′-dicarboxylic acid modified Ni-Zn-Al LDH
(APP/PER/m-LDH)
25 P:nP:nP
3:1:0.16
39 271 102 35 4 2.76 29.3 V-0 [155]
53 655 108.1 35 3 17.1 NR [156]
APP/PER 25 P:nP
3:1
32 261 93.4 35 3 1.75 28.9 V-2 [156]
APP/PER/Acid-treated waste silicon rubber composite insulator (APP/PER/m-SiR) 25 P:nP:nP
3:1:0.16
29 273 92.6 35 3 1.53 28.5 V-0 [156]
APP/PER/Acid and N2 plasma-treated SiR (APP/PER/m-SiR) 25 P:nP:nP
3:1:0.16
29 205 91.8 35 3 2.05 30.9 V-0 [156]
APP/PER/Acid and N2 plasma-treated SiR (APP/PER/m-SiR) 25 P:nP:nP
3:1:0.16
24 208 97.5 35 3 1.58 27.4 V-0 [156]
30 930 135 50 3 17 NR [157]
Methyl hydrogen siloxane-treated APP/DPER (m-APP/DPER) 25 P:nP
2:1
19 347 113 50 3 2.02 32.5 V-0 [157]
Methyl hydrogen siloxane-treated APP/DPER/Zeolite (m-APP/DPER/Z) 26 P:nP:nP
2:1:0.1
21 209 50 50 3 8.41 35.6 V-0 [157]
Methyl hydrogen siloxane-treated APP/DPER/ Z/MWCNT
(m-APP/DPER/Z/MWCNT)
26.1 P:nP:nP:nP
2:1:0.1:0.01
21 226 60 50 3 6.48 34.3 V-0 [157]
76 590 93 35 3 18 NR [158]
APP/PER 25 P:nP
3:1
55 200 74 35 3 2.68 27 V-1 [158]
APP/PER/Allophane:hydrated aluminosilicate (APP/PER/ALL) 27 P:nP:nP
3:1:0.3
53 149 68 35 3 3.77 35 V-0 [158]
28 1547 123 50 3 17.7 NR [159]
APP/PER 25 P:nP
2:1
18 436 123 50 3 2.28 27.6 V-1 [159]
APP/PER/Mesoporous aluminosilicate oxide (APP/PER/MAO) 25 P:nP:nP
2:1:0.33
31 188 55 50 3 20.37 33.9 V-0 [159]
APP/PER/Zn-MAO 25 P:nP:nP
2:1:0.33
28 136 40 50 3 34.97 36.7 V-0 [159]
38 1060 151.1 50 4 18.5 NR [160]
APP/PER 25 P:nP
2:1
24 263 134.6 50 4 2.85 28.8 V-1 [160]
APP/PER/Organo modified SEP (APP/PER/m-SEP) 25 P:nP:nP
2:1:0.125
27 223 105.6 50 4 4.83 30 V-0 [160]
APP/PER/Organo modified SEP (APP/PER/m-SEP) 25 P:nP:nP
2:1:0.25
30 247 114.1 50 4 4.48 36.5 V-0 [160]
APP/PER/Organo modified SEP (APP/PER/m-SEP) 25 P:nP:nP
2:1:0.41
31 237 104.3 50 4 5.28 35 V-0 [160]
APP/PER/Organo modified SEP (APP/PER/m-SEP) 25 P:nP:nP
2:1:0.57
29 263 135.8 50 4 3.42 24.5 NR [160]
APP/PER/Organo modified SEP (APP/PER/m-SEP) 25 P:nP:nP
2:1:0.74
29 362 158.4 2.13 21.5 NR [160]
43 460 58 35 3 17.7 NR [161]
APP/PER 20 P:nP
3:1
27.2 229 44 35 3 1.67 24.5 NR [161]
APP/PER/Octaphenyl POSS
(APP/PER/OP-POSS)
20 P:nP:nP
3:1:0.2
33.2 199 36 35 3 2.87 26 V-1 [161]
APP/PER/Aminopropyl isobutyl-octaphenyl POSS (APP/PER/A-POSS) 20 P:nP:nP
3:1:0.2
32.3 178 27 35 3 4.17 28.1 V-1 [161]
APP/PER/Octaammonium POSS (APP/PER/OA-POSS) 20 P:nP:nP
3:1:0.2
37.7 164 26 35 3 5.48 29.7 V-1 [161]
APP/PER/Trissulfonic acid propyl POSS (APP/PER/TS-POSS) 20 P:nP:nP
3:1:0.2
35.4 153 29 35 3 4.95 32.4 V-1 [161]
59 347.1 80.97 35 3 17 [162]
APP/PER 30 P:nP
2:1
52.5 70.43 49.96 35 3 7.10 29 [162]
APP/PER/Thermally-treated solid waste (APP/PER/T-RS) 33.5 P:nP:nP
2:1:0.5
48 65.71 40.21 35 3 8.65 41 [162]
APP/PER/Volcanic ash (APP/PER/CV) 33.5 P:nP:nP
2:1:0.5
101 19.73 29.48 35 3 82.72 37 [162]
APP/PER/Rice husk ash (APP/PER/CR) 33.5 P:nP:nP
2:1:0.5
62 48.16 31.36 35 3 19.55 40 [162]
65 920 145 35 4 17.5 NR [163]
APP/PER 20 P:nP
3:1
32 305 93 35 4 2.31 23 NR [163]
APP/PER/Zinc borate (APP/PER/ZnB) 20 P:nP:nP
3:1:0.2
37 330 125 35 4 1.84 29.5 V-0 [163]
APP/PER/Borophosphate (APP/PER/BPO4) 20 P:nP:nP
3:1:0.2
33 226 53 35 4 5.65 30 V-0 [163]
APP/PER/Boron silicon containing preceramic oligomer (APP/PER/Bsi) 20 P:nP:nP
3:1:0.2
34 255 70 35 4 3.90 25.5 V-0 [163]
APP/PER/Lanthanum borate (APP/PER/LaB) 20 P:nP:nP
3:1:0.2
43 260 97 35 4 3.49 27 V-0 [163]
28 1633 132 50 4 18 [107]
APP/PER 25 P:nP
2:1
21 483 116 50 4 2.88 27.5 [107]
APP/PER/NiFeO 25 P:nP:nP
2:1:0.35
20 425 107 50 4 3.38 34.6 [107]
APP/PER/CoFeO 25 P:nP:nP
2:1:0.35
19 323 124 50 4 3.65 35 [107]
28 1337 95.1 35 3 18 NR [164]
APP/PER 25 P:nP
2:1
41 588.8 88.4 35 3 3.57 28 V-0 [164]
APP/PER/Nickel phosphide nanocrystalline (APP/PER/Ni12P5) 25 P:nP:P
2:1:0.26
54 363.2 88.2 35 3 7.65 36 V-0 [164]
APP/PER/Cobaltous phosphide nanocrystalline (APP/PER/Co2P) 25 P:nP:P
2:1:0.26
79 306.6 89.1 35 3 13.12 34 V-0 [164]
APP/PER/Cupric phosphide nanocrystalline (APP/PER/Cu3P) 25 P:nP:P
2:1:0.26
42 562.4 93.2 35 3 3.63 31.5 V-1 [164]
75 471 102 50 3 18 NR [165]
APP/PER 25 P:nP
3:1
45 265 83 50 3 1.31 27 V-1 [165]
APP/PER/Zinc hydroxystannate (APP/PER/ZHS) 25 P:nP:nP
3:1:0.16
40 193 75 50 3 1.77 32 V-0 [165]
24 1361 107.5 50 3 [166]
APP/PER 25 P:nP
3:1
21 455 85.4 50 3 3.29 V-2 [166]
APP/PER/Manganese acetate (APP/PER/MnAc) 26 P:nP:nP
3:1:0.16
23 372 75.2 50 3 5.01 V-0 [166]
APP/PER/MnAc 27 P:nP:nP
3:1:0.32
19 366 74.1 50 3 4.27 V-0 [166]
APP/PER/MnAc 28 P:nP:nP
3:1:0.48
19 383 83.6 50 3 3.61 V-0 [166]
APP/PER/MnAc 29 P:nP:nP
3:1:0.64
18 369 96.1 50 3 3.09 V-0 [166]
15 782 230 35 4 [167]
APP/DPER/phosphorylated sodium alginate (APP/DPER/m-SA) 35 P:nP:nP
3:1:1
27 335 128 35 4 7.55 [167]
46 631.6 135.4 35 4 19 NR [168]
APP/PEPA 23 P:nP
2:1
38 297.9 113.8 35 4 2.08 30.5 NR [168]
APP/PEPA/NOR116 25 P:nP:nP
2:1:0.26
36 260.3 112.5 35 4 2.28 34 V-2 [168]
APP/PEPA/Zirconium phosphate (APP/PEPA/ZrP) 25 P:nP:nP
2:1:0.26
41 221.8 112.5 35 4 3.05 31.5 V-2 [168]
APP/PEPA/Macromolecular N-alkoxy hindered amine functionalized ZrP (APP/PEPA/m-ZrP) 25 P:nP:nP
2:1:0.26
40 157 112.2 35 4 4.22 33 V-0 [168]
27 1474 142 50 3 18 NR [169]
MCAPP/PEPA 25 P:P
2:1
18 438 123 50 3 2.59 31.1 V-2 [169]
MCAPP/PEPA/Kaol 25 P:P:nP
2:1:0.2
17 373 123 50 3 2.87 32.5 V-0 [169]
MCAPP/PEPA/Acidically modified kaol (MCAPP/PEPA/m-Kaol) 25 P:P:nP
2:1:0.2
20 233 105 50 3 6.33 34.9 V-0 [169]
27 1474 142 50 3 18.1 NR [170]
MCAPP/PEPA 25 P:P
2:1
18 438 123 50 3 2.59 31.1 V-2 [170]
MCAPP/PEPA/Kaol 25 P:P:nP
2:1:0.2
17 372 123 50 3 2.88 32.5 V-0 [170]
MCAPP/PEPA/Thiourea modified kaol (MCAPP/PEPA/m-Kaol) 25 P:P:nP
2:1:0.2
21 291 103 50 3 5.43 35.4 V-0 [170]
27 1474 142 50 3 18 NR [171]
MCAPP/PEPA 25 P:P
2:1
18 438 123 50 3 2.59 31.1 V-2 [171]
MCAPP/PEPA/Kaol 25 P:P:nP
2:1:0.2
17 373 123 50 3 2.87 32.5 V-0 [171]
MCAPP/PEPA/Kaol nanoroll (MCAPP/PEPA/Kaol nanoroll) 25 P:P:nP
2:1:0.2
19 269 120 50 3 4.56 34.5 V-0 [171]
27 1474 142 50 18 NR [89]
MCAPP/PEPA 25 P:nP
2:1
18 438 123 50 2.59 31.1 V-2 [89]
MCAPP/PEPA/Kaol 25 P:P:nP
2:1:0.2
17 373 123 50 2.87 32.5 V-0 [89]
MCAPP/PEPA/Ammonium sulfamate intercalated kaol (MCAPP/PEPA/m-Kaol) 25 P:P:nP
2:1:0.2
18 309 125 50 3.61 35.3 V-0 [89]
27 1474 142 50 3 18 NR [172]
Microcapsulated APP/PEPA
(mc-APP/PEPA)
25 P:P
2:1
18 438 123 50 3 2.59 31 V-2 [172]
Microcapsulated APP/PEPA/Kaol
(mc-APP/PEPA/Kaol)
25 P:P:nP
2:1:0.2
17 373 123 50 3 2.87 32.5 V-0 [172]
Microcapsulated APP/PEPA/HNT
(mc-APP/PEPA/HNT)
25 P:P:nP
2:1:0.2
18 341 109 50 3 3.75 35.2 V-0 [172]
Microcapsulated APP/PEPA/Kaol/HNT (mc-APP/PEPA/Kaol/HNT) 25 P:P:nP:nP
2:1:0.18:0.2
19 263 97 50 3 5.77 36.9 V-0 [172]
27 1474 142 50 3 18 NR [173]
Microcapsulated APP/PEPA
(mc-APP/PEPA)
25 P:P
2:1
18 436 123 50 3 2.60 31.2 V-2 [173]
Microcapsulated APP/PEPA/Kaol
(mc-APP/PEPA/Kaol)
25 P:P:nP
2:1:0.2
17 374 122 50 3 2.88 32.5 V-2 [173]
Microcapsulated APP/PEPA/HSA-A
(mc-APP/PEPA/HSA-A)
25 P:P:nP
2:1:0.2
23 299 106 50 3 5.62 34.1 V-0 [173]
Microcapsulated APP/PEPA/HSA-P
(mc-APP/PEPA/HSA-P)
25 P:P:nP
2:1:0.2
20 257 84 50 3 7.18 35.1 V-0 [173]
Microcapsulated APP/PEPA/ HSA-A-La (mc-APP/PEPA/HSA-A-La) 25 P:P:nP
2:1:0.2
16 248 103 50 3 4.85 35.5 V-0 [173]
Microcapsulated APP/PEPA/HSA-P-La
(mc-APP/PEPA/HSA-P-La)
25 P:P:nP
2:1:0.2
17 212 82 50 3 7.58 37.5 V-0 [173]
38 1284 214 50 6 18.2 NR [49]
APP/Phosphorus based CA: 3,9-Bis-(1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2,2,2]oct-4-ylmethoxy)-2,4,8,10-tetraoxa-3,9 diphospha-spiro[5.5]undecane 3,9-dioxide
(APP/P-CA)
25 P:P
1:1
31 318 161 50 6 4.37 30.5 V-0 [49]
37 1284 121 50 3 [38]
APP/Phosphorus-based FR: Cyclotriphosphazene containing six (aminopropyl)-triethoxysilicone groups (APP/P-FR) 30 P:P
14:1
18 596 114 50 3 1.11 22.2 NR [38]
APP/Phosphorus-based FR: Cyclotriphosphazene containing six (aminopropyl)-triethoxysilicone groups (APP/P-FR) 30 P:P
6.5:1
17 420 109 50 3 1.55 22.4 NR [38]
APP/Phosphorus-based FR: Cyclotriphosphazene containing six (aminopropyl)-triethoxysilicone groups (APP/P-FR) 30 P:P
4:1
18 382 95 50 3 2.08 23.5 V-2 [38]
APP/Phosphorus based FR: Cyclotriphosphazene containing six (aminopropyl)-triethoxysilicone groups (APP/P-FR) 30 P:P
2.751
17 282 95 50 3 2.66 26.5 V-2 [38]
33 1238 123.7 50 3 17.8 NR [41]
Melamine-formaldehyde-tris(2-hydroxyethyl) isocyanurate resin microencapsulated APP/Tris(2-hydroxyethyl) isocyanurate
(mc-APP/THEIC)
30 P:nP
3:1
28 232 100.7 50 3 5.56 36 V-0 [41]
42 831 112 35 3 18 NR [50]
APP/Polyurethane containing phosphorus-based CA (APP/PPU-CA) 25 P:nP
2:1
19.8 232 69 35 3 2.74 24.5 V-2 [50]
APP/PPU-CA 25 P:N
1:1
17.1 288 70 35 3 1.87 25.5 V-1 [50]
37 1677 184.4 50 4 17 NR [95]
APP/Triazine-based CFA (APP/TA-CFA) 22 P:nP
4:1
21 397.3 161.1 50 4 2.74 30.4 V-0 [95]
(3-Aminopropyl) triethoxysilane modified APP microcapsulated with methylpolysiloxane/Triazine-based CFA
(m-APP/TA-CFA)
22 P:nP
4:1
16 271.7 140.8 50 4 3.49 31.7 V-0 [95]
20 809 96 50 3 17.6 NR [32]
APP/Triazine based CFA: Poly[N4-bis(ethylenediamino)-phenyl phosphonic-N2, N6-bis(ethylenediamino)-1,3,5-triazine-N-phenyl (APP/TA-CFA) 25 P:nP
2:1
11 121 81 50 3 4.35 34 V-0 [32]
45 759.2 98.8 35 3 17 NR [37]
APP/Triazine based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamino groups
(APP/TA-CFA)
25 P:nP
4:1
40 167.6 82.5 35 3 4.82 34 V-0 [37]
Melamine and phytic acid modified APP/Triazine-based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamino groups
(m-APP/TA-CFA)
25 P:nP
4:1
43 115.6 82.3 35 3 7.53 35 V-0 [37]
50 1350 91.2 35 3 17 NR [40]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di-(2-hydroxyethylamino)-s-triazine
(APP/TA-CFA)
30 P:nP
2:1
56 422 70.7 35 3 4.62 32.5 V-0 [40]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di-(2-hydroxyethylamino)-s-triazine
(APP/TA-CFA)
30 P:nP
3:1
48 316 68.8 35 3 5.43 33 V-0 [40]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di-(2-hydroxyethylamino)-s-triazine
(APP/TA-CFA)
30 P:nP
4:1
52 414 71.1 35 3 4.35 31.5 V-0 [40]
48 988 88.3 35 3 17 NR [39]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA) 30 P:N
1:1
32 82.4 77.9 35 3 9.06 29 V-0 [39]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA) 30 P:nP
2:1
52 94.2 78.4 35 3 12.79 32 V-0 [39]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA) 30 P:nP
3:1
34 167 83.4 35 3 4.43 34 V-0 [39]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA) 30 P:nP
4:1
56 163.6 67.9 35 3 9.16 29.5 V-0 [39]
48 906 90.3 35 3.2 17 NR [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA) 20 P:nP
3:1
34 143 60.1 35 3.2 6.74 29 V-1 [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT) 20 P:nP:nP
3:1:0.1
36 132 58.7 35 3.2 7.91 31 V-0 [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT) 20 P:nP:nP
3:1:0.2
36 90 58.6 35 3.2 11.63 30.5 V-0 [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT) 20 P:nP:nP
3:1:0.3
32 52.6 35.5 35 3.2 29.20 30.5 V-0 [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT) 20 P:nP:nP
3:1:0.5
38 55.2 38.5 35 3.2 30.47 31.5 V-0 [174]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT) 20 P:nP:nP
3:1:0.7
36 112.7 41.4 35 3.2 13.15 30.5 NR [174]
34 1052 90.8 50 3 17.5 NR [61]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/Silicon dioxide (APP/TA-CFA/SiO2) 24 P:nP:nP
4:1:0.26
30 236.6 84.7 50 3 4.20 36.4 V-1 [61]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/AHP/SiO2 (APP/TA-CFA/AHP/SiO2) 24 P:nP:nP:nP
4:1:0.86:0.2
33 221 83.2 50 3 5.04 35.8 V-0 [61]
36 1153 130 50 17.5 NR [175]
APP/Triazine-based CFA: N-ethyl triazineepiperazine copolymer/SiO2 (APP/TA-CFA/SiO2) 24 P:nP:nP
4:1:0.26
26 88 20 50 61.50 34.1 V-0 [175]
APP/Triazine-based CFA: N-ethyl triazineepiperazine copolymer/SiO2 (APP/TA-CFA/SiO2) 24 P:nP:nP
4:1:0.26
27 95 24 50 49.30 33.5 V-0 [175]
50 1025 110.8 35 3 17 NR [176]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(APP/TA-CFA)
25 P:nP
4:1
36 213 90.5 35 3 4.24 34 V-0 [176]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO) 25 P:nP:nP
4:1:0.1
35 140 90.4 35 3 6.28 32 V-0 [176]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO) 25 P:nP:nP
4:1:0.2
34 156 86 35 3 5.75 28 V-0 [176]
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO) 25 P:nP:nP
4:1:0.4
36 262 94.4 35 3 3.30 25 V-2 [176]
45 1456 139.1 35 3 17 NR [177]
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (m-APP/TA-CFA) 25 P:nP
4:1
41 501 126 35 3 2.92 35 V-0 [177]
Piperazine modified APP/Triazine based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO
(m-APP/TA-CFA/rGNO)
25 P:nP:nP
4:1:0.1
39 434 125.1 35 3 3.23 34 V-0 [177]
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO
(m-APP/TA-CFA/rGNO)
25 P:nP:nP
4:1:0.2
37 350 123.9 35 3 3.84 32 V-0 [177]
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO
(m-APP/TA-CFA/rGNO)
25 P:nP:nP
4:1:0.4
37 397 125.4 35 3 3.34 30 V-0 [177]
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/Piperazine modified APP attached with rGNO
(m-APP/TA-CFA/m-APP@rGNO)
25 P:nP:nP
3.6:1:0.5
38 401 117.3 35 3 3.63 33 V-0 [177]
Piperazine modified APP/Piperazine modified APP attached with rGNO/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(m-APP/m-APP@rGNO/TA-CFA)
25 P:nP:nP
3.04:1:0.96
34 290 117.1 35 3 4.50 30.5 V-0 [177]
Piperazine modified APP/Piperazine modified APP attached with rGNO/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(m-APP/m-APP@rGNO/TA-CFA)
25 P:nP:nP
1.04:1:0.46
31 464 125.8 35 3 2.39 26.5 V-2 [177]
66 633 44.2 35 3 17 NR [23]
APP/Triazine-based CA: synthesized by reaction of 2-carboxyethyl (phenyl) phosphinic acid and tris (2-hydrooxyethyl) isocyanurate (APP/TA-CA) 20 P:N
1:1
38 83 41 35 3 4.73 30 V-0 [23]
48 1351 107 35 3.2 18.5 NR [27]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo [2,2,2]octane-4-methanol and piperazine (APP/TA-CA) 20 P:nP
2:1
39 255 101 35 3.2 4.56 27.5 V-0 [27]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo [2,2,2]octane-4-methanol and piperazine (APP/TA-CA) 20 P:nP
3:1
37 253 98 35 3.2 4.49 28 V-0 [27]
41 840.3 115.7 35 3 16.4 NR [67]
APP/Triazine-based CA: Poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (APP/TA-CA) 25 P:nP
2:1
28 227.9 62 35 3 4.69 30.3 V-0 [67]
33 1416 219 50 6 17 NR [36]
APP/Triazin-based CA: poly(1,3,5-triazin-2-aminoethanol diethylenetriamine) (APP/TA-CA) 25 P:nP
3:1
17 219 165 50 6 4.42 32.7 V-0 [36]
Polysiloxane shell-coated APP/Triazin-based CA: poly(1,3,5-triazin-2-aminoethanol diethylenetriamine) (mc-APP/TA-CA) 25 P:nP
3:1
18 176 82 50 6 11.72 35 V-0 [36]
70 1267 147 50 3 17.5 NR [149]
APP/Triazine based CA: synthesized by reaction of cyanuric trichloride and diphenylamine and ethylenediamine (APP/TA-CA) 30 P:nP
2:1
35 187 68 50 3 7.32 31.5 V-0 [149]
25 1239 123.6 50 3 18.5 NR [178]
APP/Triazine-based CA: Tris(2-hydroxyethyl) isocyanurate (APP/TA-CA) 30 P:nP
2:1
18 253.7 91.2 50 3 4.76 32.8 V-0 [178]
APP/Triazine-based CA: Tris(2-hydroxyethyl) isocyanurate homopolymer (APP/Homo-TA-CA) 30 P:nP
2:1
18 349.9 91.3 50 3 3.45 34.6 V-0 [178]
47 860.6 110.3 35 3 18 NR [179]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]octane-4-methanol and diethylenetriamine (APP/TA-CA) 30 P:N
1:1
31 136.5 81 35 3 5.66 32 V-0 [179]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]octane-4-methanol and diethylenetriamine (APP/TA-CA) 30 P:nP
4:1
35 257.6 80.8 35 3 3.39 35.5 V-0 [179]
36 799 170 35 4 17.5 NR [73]
APP/Triazine-based CA: synthesized by reaction of Cyanuric chloride and Ethanedi-amine and γ-Aminopropyl triethoxysilane (APP/TA-CA) 25 P:nP
2:1
25 180 131 35 4 4.00 35.5 V-0 [73]
APP/Triazine-based CA: synthesized by reaction of Cyanuric chloride and Ethanedi-amine and γ-Aminopropyl triethoxysilane/ NOR116 (APP/TA-CA/NOR116) 25 P:nP:nP
2:1:0.03
32 76 122 35 4 13.02 42.5 V-0 [73]
55 818 213 35 6 [180]
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine
(APP/TA-CA)
20 P:nP
2.8:1
35 218 126 35 6 4.03 30.8 V-1 [180]
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine/Organically modified MMT (APP/TA-CA/m-MMT) 20 P:nP:nP
2.8:1:0.2
34 159 64 35 6 10.58 33 V-0 [180]
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine/Organically modified MMT (APP/TA-CA/m-MMT) 20 P:nP:nP
2.8:1:0.6
37 270 156 35 6 2.78 28.9 NR [180]
29 1603 133 50 4 17.5 NR [181]
APP/Triazine-based CFA: N-methyl triazineethylenediamine copolymer/SiO2 (APP/TA-CFA/SiO2) 22 P:nP:nP
4:1:0.26
16 91 62 50 4 20.84 29.6 V-0 [181]
APP/Triazine-based CFA: N-methyl triazineethylenediamine copolymer/SiO2 (APP/TA-CFA/SiO2) 22 P:nP:nP
4:1:0.26
22 74 69 50 4 31.67 29.3 V-0 [181]
18 1457 156 50 3 19 NR [29]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and γ-aminopropyltriethoxy silane and trimethylamine and ethylenediamine-Zinc oxide (APP/TA-CA-ZnO) 25 P:nP
2:1
19 191 112 50 3 11.21 31.1 V-0 [29]
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and γ-aminopropyltriethoxy silane and trimethylamine and ethylenediamine/ZnO (APP/TA-CA/ZnO) 25 P:nP:nP
2.25:1:0.12
18 430 132 50 3 4.00 26.1 V-1 [29]
62 1221 265 35 6 19 NR [182]
APP and Triazine-based IFR (APPandTA-IFR) 10 P:N
44 313 235 35 6 3.12 26 NR [182]
APP and Triazine-based IFR (APPandTA-IFR) 15 P:N
45 148 191 35 6 8.30 29 NR [182]
APP and Triazine-based IFR (APPandTA-IFR) 20 P:N
43 115 153 35 6 12.75 31 V-0 [182]
48 988 88.3 35 3.2 17 NR [31]
APP/Triazin-based IFR: synthesized by reaction of cyanuric chloride
and N-amino ethylpiperazine (APP/TA-IFR)
25 P:N
1:1
44 123 73.3 35 3.2 8.86 27.5 V-0 [31]
APP/Triazin-based IFR: synthesized by reaction of cyanuric chloride
and N-amino ethylpiperazine (APP/TA-IFR)
25 P:nP
2:1
38 117 23.2 35 3.2 25.44 29.5 V-0 [31]
APP/Triazin-based IFR: synthesized by reaction of cyanuric chloride
and N-amino ethylpiperazine (APP/TA-IFR)
25 P:nP
3:1
36 113 73.9 35 3.2 7.83 30.5 V-0 [31]
21 1242 111 50 3.2 18.6 NR [33]
APP/Piperazine-Triazine-based CA: synthesized by reaction of cyanuric chloride and anhydrous piperazine (APP/PI-TI-CA) 25 P:nP
4:1
22 330 103 50 3.2 4.24 34.1 V-0 [33]
APP/Piperazine-Triazine-based CA cluster: synthesized by reaction of cyanuric chloride and anhydrous piperazine (APP/PI-TI-CA) 25 P:nP
4:1
21 242 96 50 3.2 5.93 33.9 V-0 [33]
45 1269 146.35 50 3 17.5 NR [70]
APP/Piperazine-based IFR: Piperazine spirocyclic phosphoramidate (APP/PI-IFR) 30 P:nP
3:1
23 208.8 81.41 50 3 5.58 32.5 V-0 [70]
APP/Piperazine-based IFR: Piperazine spirocyclic phosphoramidate/Triazine based CFA (APP/PI-IFR/TA-CFA) 30 P:nP:nP
2:1:0.65
23 116.1 41.57 50 3 19.66 39.8 V-0 [70]
76 455 102 35 3 17 NR [183]
APP/ATH 30 P:M
1:1
40 210 75 35 3 1.55 24 V-1 [183]
4,4′-diphenylmethane diisocyanateandmelamine co-microencapsulated APP and ATH
(mc-(APPandATH))
30 P:M
1:1
75 120 53 35 3 7.20 25.5 V-0 [183]
14 1104 106 35 0.4 [24]
APP/MMT 10 P:nP
4:1
25 769 66 35 0.4 4.11 [24]
APP/MMT 10 P:nP
1.5:1
27 765 65 35 0.4 4.53 [24]
APP/Modified MMT (APP/m-MMT) 10 P:nP
4:1
29 715 64 35 0.4 5.29 [24]
APP/Modified MMT (APP/m-MMT) 10 P:nP
1.5:1
30 619 63 35 0.4 6.43 [24]
50.2 789 156.6 35 17.5 [103]
APP/Nf 20 P:nP
3:1
40.8 399 167.9 35 1.49 23 [103]
APP/organically modified BT (APP/m-BT) 20 P:nP
3:1
42.6 386 155.1 35 1.75 23 [103]
33 847 159.8 50 17.5 [103]
APP/Nf 20 P:nP
3:1
29 426 168.2 50 1.66 23 [103]
APP/organically modified BT (APP/m-BT) 20 P:nP
3:1
24 445 150 50 1.47 23 [103]
44 1172 87.1 35 2.5 18.1 NR [60]
APP/C15A 20 P:nP
3:1
61 490 72.7 35 2.5 3.97 20.1 NR [60]
OP/C15A 20 P:nP
3:1
50 400 83.6 35 2.5 3.46 20.8 NR [60]
35 1622 103 35 3 [104]
APP/C20A/PER/MEL 25 P:nP:nP:nP
2.4:1:0.8:0.8
26 403 93 35 3 3.31 [104]
APPandMMT/C20A/PER/MEL 25 P:nP:nP:nP
2.4:1:0.8:0.8
23 385 80 35 3 3.56 [104]
APPandMMT/C20A/PER/MEL 15 P:nP:nP:nP
1.2:1:0.4:0.4
18 460 86 35 3 2.17 [104]
APPandMMT/C20A/PER/MEL 20 P:nP:nP:nP
1.8:1:0.6:0.6
18 411 86 35 3 2.43 [104]
34 1294 154.2 50 4 19 NR [26]
APP/Phytic acid modified LDH
(APP/m-LDH)
20 P:nP
19:1
20 200 59.3 50 4 9.89 V-1 [26]
APP/Phytic acid modified LDH
(APP/m-LDH)
20 P:nP
9:1
19 291 144.3 50 4 2.65 V-0 [26]
APP/Phytic acid modified LDH
(APP/m-LDH)
20 P:nP
5.6:1
18 327 150.8 50 4 2.14 V-1 [26]
36 1373 174.8 50 3 18.5 NR [51]
APP based IFR/Mg-Al LDH (APP-IFR/LDH) 20 P:nP
9:1
18 286 108.8 50 3 3.85 32.5 V-0 [51]
APP-based IFR/Mg-Al LDH (APP-IFR/LDH) 20 P:nP
4:1
15 326 120.3 50 3 2.54 NR [51]
APP-based IFR/Mg-Zn-Al LDH
(APP-IFR/LDH)
20 P:nP
9:1
16 306 136 50 3 2.56 V-0 [51]
APP-based IFR/Mg-Zn-Al LDH
(APP-IFR/LDH)
20 P:nP
4:1
14 265 90.4 50 3 3.89 V-0 [51]
25 981 147 50 17.6 NR [30]
APP/Polysiloxane-based FR (APP/Si-FR) 25 P:M
1:1
14 277 97 50 3.00 28.9 V-0 [30]
APP/Polysiloxane-based FR (APP/Si-FR) 25 P:nP
1.5:1
15 168 91 50 5.65 29.8 V-0 [30]
APP/Polysiloxane-based FR (APP/Si-FR) 25 P:nP
1.5:1
14 238 98 50 3.46 28.2 V-0 [30]
APP/Polysiloxane-based FR (APP/Si-FR) 25 P:nP
2:1
18 245 93 50 4.55 29.1 V-0 [30]
APP/Polysiloxane-based FR (APP/Si-FR) 25 P:nP
3:1
20 197 98 50 5.97 28.4 V-0 [30]
54 1610 106 35 3 20.8 NR [25]
APP/SEP 12.5 P:nP
24:1
27 320 88 35 3 3.03 25.7 NR [25]
APP/Organically modified SEP
(APP/m-SEP)
12.5 P:nP
24:1
28 241 92 35 3 3.99 26.3 V-0 [25]
36 1153 130 50 17.5 NR [175]
APP/SiO2 24 P:nP
19:1
30 502 151 50 1.64 [175]
35 1203 197.6 50 6 18.2 NR [34]
APP/CB 25 P:nP
7.3:1
32 343.6 157.2 50 6 4.02 28.3 NR [34]
APP/CB 25 P:nP
4:1
31 316.2 136.9 50 6 4.86 29.1 V-1 [34]
APP/CB 25 P:nP
2.5:1
33 302.1 121.4 50 6 6.11 29.8 V-0 [34]
46 1541 90 35 3 [135]
APP/CD 15 P:Bio
1:1
24 910 89 35 3 0.89 [135]
38 1284 214 50 6 18.2 NR [184]
Phosphorus based CA: 3,9-Bis-(1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2,2,2]oct-4-ylmethoxy)- 2,4,8,10-tetraoxa-3,9-diphospha-spiro[5.5]undecane 3, 9-dioxide/MEL (P-CA/MEL) 30 P:nP
4:1
18 198 175 50 6 3.75 31.6 V-0 [184]
65 1417 128.5 35 3 NR [57]
Phosphorus based FR: Tri (1-oxo-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane-methyl) phosphate/MPyP (P-FR/MPyP) 30 P:N
1:1
40 175.2 90.6 35 3 7.05 V-0 [57]
54 1199 97.8 35 [58]
Phosphorus-based FR: Poly(4,4-diaminodiphenyl methane spirocyclicpentaerythritol bisphosphonate)/GNO (P-FR/GNO) 20 P:nP
10:1
64 473 79 35 3.71 [58]
30 390 44 35 1.6 17.4 [53]
Phosphorus-based IFR: Poly (4,4-diamino diphenyl methane Obicyclicpentaerythritol phosphate-phosphate)/Znacac (P-IFR/Znacac) 20 P:nP
19:1
23 175 25 35 1.6 3.00 27.4 [53]
Phosphorus-based IFR: Poly (4,4-diamino diphenyl methane Obicyclicpentaerythritol phosphate-phosphate)/Cracac
(P-IFR/Cracac)
20 P:nP
19:1
24 184 24 35 1.6 3.10 28.2 [53]
29 980 136 50 18.5 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
59:1
20 173 102 50 5.20 38.5 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
29:1
22 192 127 50 4.14 38 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
19:1
21 173 134 50 4.16 37.7 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
14:1
22 176 133 50 4.31 35.7 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
11:1
20 135 131 50 5.19 35.8 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
9:1
21 155 134 50 4.64 31 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:n
P6.5:1
10 202 132 50 1.72 28.5 [56]
Phosphorus and Nitrogene-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT
(PN-IFR/m-MMT)
30 P:nP
5:1
19 202 133 50 3.25 25.5 [56]
37 363 56 35 3 [55]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/Octadecyl trimethyl ammonium bromide modified MMT
(P-IFR/m-MMT)
28 P:nP
10.2:1
31 45 18 35 3 21.02 [55]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/Sodium dodecyl sulfonate intercalated Ni-Al LDH (P-IFR/m-LDH) 28 P:nP
10.2:1
30 64 20 35 3 12.87 [55]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/A-POSS (P-IFR/A-POSS) 28 P:nP
10.2:1
32 55 16 35 3 19.97 [55]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/MWCNT (P-IFR/MWCNT) 28 P:nP
10.2:1
33 145 54 35 3 2.31 [55]
37 363 56 35 3 [54]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/MWCNT (P-IFR/MWCNT) 28 P:nP
17.6:1
33 225 73 35 3 1.10 [54]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/MWCNT (P-IFR/MWCNT) 28 P:nP
10.2:1
33 145 54 35 3 2.31 [54]
Phosphorus-based IFR: compound containing Phosphorus(22%) and Nitrogene(18%)/MWCNT (P-IFR/MWCNT) 28 P:nP
7:1
31 140 79 35 3 1.53 [54]
24.7 1198.2 78.7 50 2.4 NR [139]
Phosphoric acid/ethylenediamine (PA/EDA) 25 P:nP
1.7:1
12.8 263.1 57.1 50 2.4 3.25 V-0 [139]
42 831 112 35 3 18 NR [50]
PPU-CA/APP 25 N:P
1:1
17.1 288 70 35 3 1.87 25.5 V-1 [50]
PPU-CA/APP 25 N:nN
2:1
19.7 568 75 35 3 1.02 25.5 V-0 [50]
PPU-CA/APP 25 N:nN
3:1
26.8 605 77 35 3 1.27 26.5 V-0 [50]
PPU-CA/APP 25 N:nN
4:1
22.2 642 77 35 3 0.99 27 V-0 [50]
54 930 140 35 4 NR [64]
MP/PER 25 N:nN
1.5:1
28 250 99 35 4 2.72 V-0 [64]
MP/PER/Kaol 25 N:nN:nN
1.66:1:0.11
35 305 110 35 4 2.51 V-0 [64]
MP/PER/Kaol 25 N:nN:nN
1.87:1:0.25
37 400 114 35 4 1.95 NR [64]
42 1290 228 50 6 18.1 NR [185]
MP/PER 20 N:nN
1.6:2
25 380 212 50 6 2.17 29 V-2 [185]
MP/PER 25 N:nN
1.6:2
24 265 206 50 6 3.07 34 V-0 [185]
MP/PER/Organically modified MMT (MP/PER/m-MMT) 20 N:nN:nN
1.6:2:0.13
23 228 207 50 6 3.41 31.5 V-0 [185]
MP/PER/Organically modified MMT (MP/PER/m-MMT) 25 N:nN:nN
1.6:2:0.1
24 197 205 50 6 4.16 35 V-0 [185]
51 903 119.6 35 3 17.5 NR [186]
MMP/PER 26 N:nN
1.7:1
40 308 99 35 3 2.77 27.5 V-2 [186]
MMP/PER/Lanthanum oxide (MMP/PER/La2O3) 26 N:nN:nN
1.7:1:0.1
45 271 94.3 35 3 3.72 32 V-0 [186]
MMP/PER/La2O3 26 N:nN:nN
1.7:1:0.23
47 247 91.4 35 3 4.40 31.5 V-0 [186]
MMP/PER/La2O3 26 N:nN:nN
1.7:1:0.36
50 221 85 35 3 5.63 31.5 V-0 [186]
38 1166 89.1 35 3 17 NR [187]
MPP/DPER 30 N:nN
3:1
45 427.6 79.4 35 3 3.62 28.7 V-0 [187]
MPP/EG/DPER 30 N:nN:nN
1.5:1:0.5
20 218.2 68.7 35 3 3.64 33.2 V-0 [187]
25 1239 123.6 50 3 18.5 NR [143]
Amino trimethylene phosphonic acid melamine salt/PER (MATMP/PER) 25 N:nN
2:1
17 256.4 103.2 50 3 3.93 30.3 V-0 [143]
54 961 175 35 4 [188]
MPyP/PER 25 N:nN
3:1
32 343 136 35 4 2.13 29 V-1 [188]
MPyP/PER/Epoxy crosslinked β-cyclodextrin nanosponge
(MPyP/PER/m-CD)
25 N:nN:nN
3:1:0.35
30 235 118 35 4 3.36 32.5 V-0 [188]
65 1417 128.5 35 3 NR [57]
MPyP/Phosphorus-based FR: Tri (1-oxo-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane-methyl) phosphate (MPyP/P-FR) 30 N:P
1:1
40 175.2 90.6 35 3 7.05 V-0 [57]
34 1727 112 35 3 17 NR [66]
MPyP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(MPyP/TA-CFA)
30 N:N
3:1
12 431 84 35 3 1.88 29.5 V-0 [66]
MPyP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(MPyP/TA-CFA)
30 N:N
1:1
15 469 85 35 3 2.14 31.2 V-0 [66]
MPyP/Triazine based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine
(MPyP/TA-CFA)
30 N:N
3:1
12 525 92 35 3 1.41 26.8 NR [66]
48 988 88.3 35 3 17 NR [39]
Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine/APP (TA-CFA/APP)
30 N:P
1:1
32 82.4 77.9 35 3 9.06 29 V-0 [39]
Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine/APP (TA-CFA/APP) 30 N:nN
2:1
52 247 78.4 35 3 4.88 23 V-1 [39]
66 633 44.2 35 3 17 NR [23]
Triazine-based CA: synthesized by reaction of 2-carboxyethyl (phenyl) phosphinic acid and tris (2-hydrooxyethyl) isocyanurate/APP (TA-CA/APP) 20 N:P
1:1
38 83 41 35 3 4.73 30 V-0 [23]
48 1351 107 35 3.2 18.5 NR [27]
Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo [2,2,2]octane-4-methanol and piperazine/APP (TA-CA/APP) 20 N:nN
2:1
36 456 96 35 3.2 2.47 25.5 V-2 [27]
47 860.6 110.3 35 3 18 NR [179]
Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]octane-4-methanol and diethylenetriamine/APP (TA-CA/APP) 30 N:nN
2:1
32 166.8 108.2 35 3 3.58 28 V-0 [179]
Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-l-phosphabicyclo[2,2,2]octane-4-methanol and diethylenetriamine/APP (TA-CA/APP) 30 N:P
1:1
31 136.5 81 35 3 5.66 32 V-0 [179]
48 988 88.3 35 3.2 17 NR [31]
Triazin-based IFR: synthesized by reaction of cyanuric chloride and N-amino ethylpiperazine/APP (TA-IFR/APP) 25 N:P
1:1
44 123 73.3 35 3.2 8.86 27.5 V-0 [31]
Triazin-based IFR: synthesized by reaction of cyanuric chloride and N-amino ethylpiperazine/APP (TA-IFR/APP) 25 N:nN
2:1
44 241 77.2 35 3.2 4.29 24.5 V-1 [31]
62 1221 265 35 6 19 NR [182]
Triazine-based IFR and APP (TAandAPP-IFR) 10 N:P
44 313 235 35 6 3.12 26 NR [182]
Triazine-based IFR and APP (TAandAPP-IFR) 15 N:P
45 148 191 35 6 8.30 29 NR [182]
Triazine-based IFR and APP (TAandAPP-IFR) 20 N:P
43 115 153 35 6 12.75 31 V-0 [182]
45 1269 146.35 50 3 17.5 NR [70]
Piperazine-based IFR: Piperazine spirocyclic phosphoramidate/APP (PI-IFR/APP) 30 N:nN
2:1
20 189.2 74.85 50 3 5.82 33.1 V-1 [70]
42 1025 137.7 35 4 [74]
Nitrogen-based FR: compound containing nitrogen (27.5 wt.%) and Phosphorus (15.6 wt.%)/Fumed silica (NP-FR/SiO2) 25 N:nN
49:1
25 124 35.1 35 4 19.30 38 V-0 [74]
Nitrogen-based FR: compound containing nitrogen (27.5 wt.%) and Phosphorus
(15.6 wt.%)/Fumed silica (NP-FR/SiO2)
25 N:nN
7.3:1
17 341 87.9 35 4 1.90 27 NR [74]
30 1093 108.2 50 3 18 NR [75]
Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexe/Polyamide-6 (N-IFR/PA6) 25 N:nN
4:1
17 295.2 80.5 50 3 2.81 27.3 V-1 [75]
25 874.1 89.3 50 3 18 NR [76]
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/Hollow glass microsphere (N-IFR/HGM) 25 N:nN
49:1
16 93.8 74.4 50 3 7.15 34.5 V-0 [76]
Nitrogen (23%) and Phosphorus (21%)-based intumescent flame retardant/Hollow glass microsphere (N-IFR/HGM) 25 N:nN
24:1
17 78.8 68 50 3 9.90 36.5 V-0 [76]
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/HGM (N-IFR/HGM) 25 N:nN
11.5:1
12 61.6 74.2 50 3 8.19 35.5 V-0 [76]
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/HGM (N-IFR/HGM) 25 N:nN
5.25:1
13 81.6 72.5 50 3 6.86 34.5 V-0 [76]
76 455 102 35 3 17 NR [183]
ATH/APP 30 M:P
1:1
40 210 75 35 3 1.55 24 V-1 [183]
4,4′-diphenylmethane diisocyanateandmelamine co-microencapsulated ATH and APP
(mc-(ATHandAPP))
30 M:P
1:1
75 120 53 35 3 7.20 25.5 V-0 [183]
32 1470 175 50 4 18 [81]
ATH/Glass Bubble (ATH/GB) 60 M:M
11:1
31 212 53 50 4 22.17 25 [81]
ATH/GB 60 M:M
5:1
36 190 49 50 4 31.08 23.4 [81]
ATH/GB/Octacedylamine modified ZrP (ATH/GB/m-ZrP) 60 M:M:M
4.7:1:0.3
24 136 90 50 4 15.76 24 [81]
ATH/GB/Octacedylamine modified ZrP (ATH/GB/m-ZrP) 60 M:M:M
4.4:1:0.6
24 152 91 50 4 13.94 23.2 [81]
ATH/GB/Octacedylamine modified ZrP (ATH/GB/m-ZrP) 60 M:M:M
4.1:1:0.9
21 189 98 50 4 9.11 22.8 [81]
37 1425 121.4 50 3 17.3 NR [80]
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT) 50 M:M
49:1
48 482 95.1 50 3 4.89 25.5 NR [80]
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT) 50 M:M
15.6:1
49 412 90.9 50 3 6.11 27.4 V-1 [80]
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT) 50 M:M
9:1
53 329 89 50 3 8.46 29 V-0 [80]
26 1967 112 50 3 [82]
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT) 23 M:M
6.6:1
21 677 84 50 3 3.12 [82]
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT) 30 M:M
2:1
20 592 77 50 3 3.71 [82]
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT) 37 M:M
1.17:1
18 536 74 50 3 3.84 [82]
24 687 119 25 3 17.8 [146]
MDH/APP/PER/MEL 44.2 M:nM:nM:nM
1.3:1:0.6:0.56
43 121 58.2 25 3 20.79 28 [146]
MDH/APP/PER/MEL 50 M:nM:nM:nM
2.1:1:0.6:0.56
43 121 54.5 25 3 22.21 28.8 [146]
MDH/APP/PER/MEL 54.4 M:nM:nM:nM
3:1:0.6:0.56
44 104 53.6 25 3 26.88 30.2 [146]
166 412 105 50 3 17.8 [146]
MDH/APP/PER/MEL 44.2 M:nM:nM:nM
1.3:1:0.6:0.56
217 68.8 39.3 50 3 20.91 28 [146]
MDH/APP/PER/MEL 50 M:nM:nM:nM
2.1:1:0.6:0.56
220 57.3 36.4 50 3 27.48 28.8 [146]
MDH/APP/PER/MEL 54.4 M:nM:nM:nM
3:1:0.6:0.56
232 54.3 31.2 50 3 35.68 30.2 [146]
26 1967 112 50 3 [82]
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT) 37 M:M
1.17:1
24 476 70 50 3 6.10 [82]
30 1684 89 50 3 [82]
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT) 40 M:M
3:1
24 471 80 50 3 3.18 [82]
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT) 50 M:M
4:1
23 385 69 50 3 4.32 [82]
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT) 60 M:M
5:1
22 304 59 50 3 6.12 [82]
38 1425 121.4 50 3 17.5 NR [85]
MDH/Cetyltrimeyhyl ammonium bromide modified Fe MMT (MDH/m-MMT) 40 M:M
39:1
52 422 98.1 50 3 5.71 24.9 NR [85]
MDH/Cetyltrimeyhyl ammonium bromide modified Fe MMT (MDH/m-MMT) 40 M:M
12.3:1
56 378 97.5 50 3 6.91 26.5 NR [85]
MDH/Cetyltrimeyhyl ammonium bromide modified Fe MMT (MDH/m-MMT) 40 M:M
7:1
63 329 87.9 50 3 9.91 28.1 V-1 [85]
71 2283 218 35 1 [84]
MDH/4,4′-bis (acrylamido) diphenylsulfone crosslinked N-(4-methyl phenyl) acrylamide monomer (MDH/Cobalt chelate) 50 M:M
9:1
72 619 306 35 1 2.66 [84]
MDH/Cobalt chelate 50 M:M
4:1
63 618 277 35 1 2.57 [84]
MDH/Cobalt chelate 50 M:M
2.3:1
53 776 236 35 1 2.02 [84]
MDH/Cobalt chelate 50 M:M
1.5:1
56 780 222 35 1 2.26 [84]
37 584 75.6 50 3 [87]
Cetyltrimethylammonium bromide modified MMT/SEP (m-MMT/SEP) 5 M:M
1:1
62 417 63.7 50 3 2.78 [87]
MDH/Organically treated SEP
(MDH/m-SEP)
15 M:M
2:1
29 325 62.1 50 3 1.71 [87]
MDH/Organically treated SEP
(MDH/m-SEP)
20 M:M
3:1
26 205 53.5 50 3 2.82 [87]
MDH/cetyltrimethylammonium bromide modified MMT/SEP (MDH/m-MMT/SEP) 15 M:M:M
4:1:1
54 246 56.3 50 3 4.65 [87]
MDH/cetyltrimethylammonium bromide modified MMT/SEP (MDH/m-MMT/SEP) 20 M:M:M
4:1:1
50 209 50.1 50 3 5.69 [87]
14 1104 106 35 0.4 [24]
MMT/APP 10 M:nM
1.5:1
28 764 64 35 0.4 4.78 [24]
MMT/APP 10 M:nM
4:1
29 751 62 35 0.4 5.20 [24]
Modified MMT/APP (m-MMT/APP) 10 M:nM
1.5:1
30 599 57 35 0.4 7.34 [24]
Modified MMT/APP (m-MMT/APP) 10 M:nM
4:1
31 575 56 35 0.4 8.04 [24]
25 981 147 50 17.6 NR [30]
Polysiloxane based FR/APP (Si-FR/APP) 25 M:P
1:1
14 277 97 50 3.00 28.9 V-0 [30]
38 1284 241 50 6 [108]
Ni2O3/AC 15 M:C
1:1
18 385 132 50 6 2.88 [108]
47 1933 176 50 5 [189]
SEP/MWCNT 12 M:nM
5:1
32 355 241 50 5 2.70 [189]
62 1378 332 35 [190]
Silicon/Stannous chloride (Si/SnCl2) 5 M:M
1.5:1
91 860.1 193.7 35 4.03 [190]
88 565.9 71.9 35 3 [105]
C20A/TiO2 5.5 M:M
10:1
83 458.9 78.1 35 3 1.07 20 [105]
Ethylene glycol methacrylate phosphate modified C20A/TiO2 (m-C20A/TiO2) 5.5 M:M
10:1
78 498.2 75.2 35 3 0.96 19 [105]
Ethylene glycol methacrylate phosphate modified C20A/TiO2 (m-C20A/TiO2) 10.5 M:M
20:1
61 424.7 74.8 35 3 0.88 20 [105]
38 1284 214 50 6 18.2 [133]
CF/MWCNT 10 C:C
1:1
25 364 194 50 6 2.55 25.8 [133]
30 1261 208 50 6 18 [131]
CB/MWCNT 4 C:C
3:1
26 402 187 50 6 3.02 23.8 [131]
CB/MWCNT 6 C:C
5:1
27 353 185 50 6 3.61 26.5 [131]
CB/MWCNT 8 C:C
1.6:1
25 314 180 50 6 3.86 27.6 [131]
35 1212 198 50 6 18.2 [134]
CB/CF 8 C:C
1.66:1
27 361 166 50 6 3.08 25.7 [134]
38 1284 241 50 6 [108]
AC/Ni2O3 15 C:M
1:1
18 385 132 50 6 2.88 [108]
166 412 105 25 3 [145]
PER/MEL/APP 25.3 C:nC:nC
1.07:1:0.53
170 140 61.1 25 3 5.17 [145]
24 687 119 50 3 [145]
PER/MEL/APP 25.3 C:nC:nC
1.07:1:0.53
32 198 79 50 3 6.96 [145]
46 1541 90 35 3 [135]
Cyclodextrin nanosponge/Triethylphosphate (CD/TEP) 10 Bio:nBio
2.3:1
30 1529 93 35 3 0.63 [135]
CD/TEP 15 Bio:nBio
2:1
26 839 90 35 3 1.03 [135]
CD/APP 15 Bio:P
1:1
24 910 89 35 3 0.89 [135]
49 1350 87.3 35 3 17.5 [136]
Phosphorus and Nitrogen elements modified lignin/Nickel acetate (m-lig/Ni(Ac)2) 20 Bio:nBio
9:1
31 330 69.5 35 3 3.25 26 [136]
Phosphorus and Nitrogen elements modified lignin/Cobalt acetate (m-lig/Co(Ac)2) 20 Bio:nBio
9:1
37 362 72.8 35 3 3.37 24.5 [136]
Phosphorus and Nitrogen elements modified lignin/Zinc acetate (m-lig/Zn(Ac)2) 20 Bio:nBio
9:1
38 368 73.5 35 3 3.37 23 [136]

Figure 15 displays the performance of different combinatorial additive systems used for PP. It can be clearly observed from the left-hand side figure that cases with FRI values above 10 (Excellent zone) are more frequent compared to all previous cases in which only one additive was used. More interestingly, the combination of additives appeared a useful strategy where very high FRI values (event more than 50) took place at intermediate loadings (25–30 wt.%). For achieving a high FRI value, the combination of several types of flame retardants is needed, for example, phosphorus, intumescent, and mineral flame retardants [150] or phosphorus, nitrogen, and mineral flame retardants [164].

Figure 15.

Figure 15

FRI values as a function of combinatorial FR additives and their content in PP in long-shot (left-hand figure) and close-up (right-hand figure) views. Symbols are indicative of different types of combinatorial flame retardant used. Here: APP-13.2/PER-6.8 [68], APP-16.7/PER-8.3 [143], Inline graphic APP-18.7/PER-6.3 [67], Inline graphic APP-22.5/PER-7.5, mc-(APP-22.5&PER-7.5) [144], Inline graphic APP-10.5/PER-9.8/MEL-9.1, APP-15.3/PER-9.3/MEL-8.8, APP-19.1/PER-8.9/MEL-8.2 [145], Inline graphic APP-10.5/PER-9.8/MEL-9.1, APP-15.3/PER-9.3/MEL-8.8, APP-19.1/PER-8.9/MEL-8.2 [145], Inline graphic APP-15.3/PER-9.3/MEL-8.6, APP-14.3/PER-8.7/MEL-8.1/MDH-6.2 [146], Inline graphic APP-15.3/PER-9.3/MEL-8.6, APP-14.3/PER-8.7/MEL-8.1/MDH-6.2 [146], Inline graphic APP-12/PER-4/MEL-4/C20A-1, APP-12/PER-4/MEL-4/C20A-3, APP&MMT-12/PER-4/MEL-4/C20A-1, APP&MMT-12/PER-4/MEL-4/C20A-3 [104] Inline graphic m-APP-16.6/DPER-4.2/MEL-4.2, m-APP-16/DPER-4/MEL-4/SEP-1 [147], Inline graphic APP-13.5/PER-4.5, APP-12.75/PER-4.25/MF-1, APP-12.75/PER-4.25/MFA-1 [148], Inline graphic APP-22.5/PER-7.5 [149], Inline graphic APP-12.7/PER-5.3, APP-12/PER-5/TA-FR-1 [150], Inline graphic APP-16.67/PER-8.33, APP-16.33/PER-8.17/NOR116-0.5 [72], Inline graphic APP-13.5/PER-4.5, APP-12.75/PER-4.25/G-bases-1, APP-12.75/PER-4.25/U-bases-1 [151], Inline graphic APP-17.2/DPER-7.8, m-APP-17.2/DPER-7.8, APP-16.2/DPER-7.8/ATH-1 [152], Inline graphic APP-21.4/PER-7.1, APP-20.3/PER-6.8/Kaol-1.4 [70], Inline graphic APP-21.75/PER-7.25, APP-19.5/PER-6.5/MMT-3, APP-19.5/PER-6.5/m-MMT-3 [153], Inline graphic APP-21.75/PER-7.25, APP-19.5/PER-6.5/MMT-3, APP-19.5/PER-6.5/m-MMT-3, APP-19.5/PER-6.5/m-MMT-3 [154], Inline graphic APP-18.75/PER-6.25, APP-18/PER-6/LDH-1, APP-18/PER-6/m-LDH-1 [155], Inline graphic APP-18.75/PER-6.25, APP-18/PER-6/m-SiR-1, APP-18/PER-6/m-SiR-1, APP-16.5/PER-5.5/m-SiR-3 [156], Inline graphic m-APP-16.7/DPER-8.3, m-APP-16.7/DPER-8.3/Z-1, m-APP-16.7/DPER-8.3/Z-1/MWCNT-0.1 [157], Inline graphic APP-18.75/PER-6.25, APP-18.75/PER-6.25/ALL-2 [158], Inline graphic APP-16.7/PER-8.3, APP-15/PER-7.5/MAO-2.5, APP-15/PER-7.5/Zn-MAO-2.5 [159], Inline graphic APP-16.7/PER-8.3, APP-16/PER-8/m-SEP-1, APP-15.3/PER-7.7/m-SEP-2, APP-14.7/PER-7.3/m-SEP-3, APP-14/PER-7/m-SEP-4, APP-13.3/PER-6.7/m-SEP-5 [160], Inline graphic APP-15/PER-5, APP-14.25/PER-4.75/OP-POSS-1, APP-14.25/PER-4.75/A-POSS-1, APP-14.25/PER-4.75/OA-POSS-1, APP-14.25/PER-4.75/TS-POSS-1 [161], Inline graphic APP-20/PER-10¸ APP-19/PER-9.5/T-RS-5, APP-19/PER-9.5/CV-5, APP-19/PER-9.5/CR-5 [162], Inline graphic APP-15/PER-5, APP-14.25/PER-4.75/ZnB-1, APP-14.25/PER-4.75/BPO4-1, APP-14.25/PER-4.75/Bsi-1, APP-14.25/PER-4.75/LaB-1 [163], Inline graphic APP-18.75/PER-6.25, APP-17.25/PER-5.75/NiFeO-2, APP-17.25/PER-5.75/CoFeO-2 [107], Inline graphic APP-16.67/PER-8.33, APP-15.33/PER-7.67/Ni12P5-2, APP-15.33/PER-7.67/Co2P-2, APP-15.33/PER-7.67/Cu3P-2 [164], Inline graphic APP-18.75/PER-6.25, APP-18/PER-6/ZHS-1 [165], Inline graphic APP-18.75/PER-6.25, APP-18.75/PER-6.25/MnAc-1, APP-18.75/PER-6.25/MnAc-2, APP-18.75/PER-6.25/MnAc-3, APP-18.75/PER-6.25/MnAc-4 [166], Inline graphic APP-21/DPER-7/m-SA-7 [167], Inline graphic APP-15.4/PEPA-7.6, APP-15.4/PEPA-7.6/NOR116-2, APP-15.4/PEPA-7.6/ZrP-2, APP-15.4/PEPA-7.6/m-ZrP-2 [168], Inline graphic MCAPP-16.7/PEPA-8.3, MCAPP-15.7/PEPA-7.8/Kaol-1.5, MCAPP-15.7/PEPA-7.8/m-Kaol-1.5 [169], Inline graphic MCAPP-16.7/PEPA-8.3, MCAPP-15.7/PEPA-7.8/Kaol-1.5, MCAPP-15.7/PEPA-7.8/m-Kaol-1.5 [170], Inline graphic MCAPP-16.7/PEPA-8.3, MCAPP-15.7/PEPA-7.8/Kaol-1.5, MCAPP-15.7/PEPA-7.8/Kaol nanoroll-1.5 [171], Inline graphic MCAPP-16.7/PEPA-8.3, MCAPP-15.7/PEPA-7.8/Kaol-1.5, MCAPP-15.7/PEPA-7.8/m-Kaol-1.5 [89], Inline graphic mc-APP-16.7/PEPA-8.3, mc-APP-15.7/PEPA-7.8/Kaol-1.5, mc-APP-15.7/PEPA-7.8/HNT-1.5, mc-APP-15.7/PEPA-7.8/Kaol-1.35/HNT-0.15 [172], Inline graphic mc-APP-16.7/PEPA-8.3, mc-APP-15.7/PEPA-7.8/Kaol-1.5, mc-APP-15.7/PEPA-7.8/HSA-A-1.5, mc-APP-15.7/PEPA-7.8/HSA-P-1.5, mc-APP-15.7/PEPA-7.8/HSA-A-La-1.5, mc-APP-15.7/PEPA-7.8/HSA-P-La-1.5 [173], Inline graphic APP-12.5/P-CA-12.5 [49], Inline graphic APP-28/PhZ-FR-2, APP-26/PhZ-FR-4, APP-24/PhZ-FR-6, APP-22/PhZ-FR-8 [38], Inline graphic mc-APP-22.5/THEIC-7.5 [41], Inline graphic APP-16.67/PPU-CA-8.33, APP-12.5/PPU-CA-12.5 [50], Inline graphic APP-17.6/TA-CFA-4.4, m-APP-17.6/TA-CFA-4.4 [95], Inline graphic APP-16.7/TA-CFA-8.3 [32], Inline graphic APP-20/TA-CFA-5, m-APP-20/TA-CFA-5 [37], Inline graphic APP-20/TA-CFA-10, APP-22.5/TA-CFA-7.5, APP-24/TA-CFA-6 [40], Inline graphic APP-15/TA-CFA-15, APP-20/TA-CFA-10, APP-22.5/TA-CFA-7.5, APP-24/TA-CFA-6 [39], Inline graphic APP-15/TA-CFA-5, APP-14.63/TA-CFA-4.87/m-MMT-0.5, APP-14.25/TA-CFA-4.75/m-MMT-1, APP-13.87/TA-CFA-4.63/m-MMT-1.5, APP-13.5/TA-CFA-4.5/m-MMT-2, APP-12.75/TA-CFA-4.25/m-MMT-3 [174], Inline graphic APP-18.24/TA-CFA-4.56/SiO2-1.2, APP-15.66/TA-CFA-3.91/AHP-3.4/SiO2-1.03 [61], Inline graphic APP-18.24/TA-CFA-4.56/SiO2-1.2, APP-18.24/TA-CFA-4.56/SiO2-1.2 [175], Inline graphic APP-20/TA-CFA-5, APP-19.6/TA-CFA-4.9/rGNO-0.5, APP-19.2/TA-CFA-4.8/rGNO-1, APP-18.4/TA-CFA-4.6/rGNO-2 [176], Inline graphic m-APP-20/TA-CFA-5, m-APP-19.6/TA-CFA-4.9/rGNO-0.5, m-APP-19.2/TA-CFA-4.8/rGNO-1, m-APP-18.4/TA-CFA-4.6/rGNO-2, m-APP-17.6/TA-CFA-4.9/m-APP@rGNO-2.5, m-APP-15.2/m-APP@rGNO-5/TA-CFA-4.8, m-APP-10.4/m-APP@rGNO-10/TA-CFA-4.6 [177], Inline graphic APP-10/TA-CA-10 [23], Inline graphic APP-13.33/TA-CA-6.67, APP-15/TA-CA-5 [27], Inline graphic APP-16.7/TA-CA-8.3 [67], Inline graphic APP-18.75/TA-CA-6.25, mc-APP-18.75/TA-CA-6.25 [36], Inline graphic APP-13.33/TA-CA-6.67 [149], Inline graphic APP-20/TA-CA-10, APP-20/Homo-TA-CA-10 [178], APP-15/TA-CA-15, APP-24/TA-CA-6 [179], APP-16.7/TA-CA-8.3, APP-16.5/TA-CA-8.2/NOR116-0.3 [73], APP-14.7/TA-CA-5.3, APP-14/TA-CA-5/m-MMT-1, APP-12.5/TA-CA-4.5/m-MMT-3 [180], APP-16.72/TA-CFA-4.18/SiO2-1.1, APP-16.72/TA-CFA-4.18/SiO2-1.1 [181], APP-16.7/TA-CA-ZnO-8.3 [29], Inline graphic APP&TA-IFR-10, APP&TA-IFR-15, APP&TA-IFR-20 [182], Inline graphic APP-12.5/TA-IFR-12.5, APP-16.67/TA-IFR-8.33, APP-18.75/TA-IFR-6.25 [31], Inline graphic APP-20/PI-TA-CA-5, APP-20/PI-TA-CA-5 [33], Inline graphic APP-22.5/PI-IFR-7.5, APP-16.4/PI-IFR-8.2/TA-CFA-5.4 [70], Inline graphic APP-15/ATH-15, mc-(APP-15&ATH-15) [183], Inline graphic APP-8/MMT-2, APP-6/MMT-4, APP-8/m-MMT-2, APP-6/m-MMT-4 [24], Inline graphic APP-15/Nf-5, APP-15/m-BT-5 [103], Inline graphic APP-15/Nf-5, APP-15/m-BT-5 [103], Inline graphic APP-15/C15A-5, OP-15/C15A-5 [60], Inline graphic APP-12/C20A-5/PER-4/MEL-4, APP&MMT-12/C20A-5/PER-4/MEL-4, APP&MMT-6/C20A-5/PER-2/MEL-2, APP&MMT-9/C20A-5/PER-3/MEL-3 [104], Inline graphic APP-19/m-LDH-1, APP-18/m-LDH-2, APP-17/m-LDH-3 [26], Inline graphic APP-IFR-18/LDH-2, APP-IFR-16/LDH-4, APP-IFR-18/LDH-2, APP-IFR-16/LDH-4 [51], Inline graphic APP-12.5/Si-FR-12.5, APP-15/Si-FR-10, APP-13.8/Si-FR-9.2, APP-16.67/Si-FR-8.33, APP-18.75/Si-FR-6.25 [30], Inline graphic APP-12/SEP-0.5, APP-12/m-SEP-0.5 [25], Inline graphic APP-22.8/SiO2-1.2 [175], Inline graphic APP-22/CB-3, APP-20/CB-5, APP-18/CB-7 [34], Inline graphic APP-7.5/CD-7.5 [135], Inline graphic P-CA-24/MEL-6 [184], Inline graphic P-FR-15/MPyP-15 [57], Inline graphic P-FR-20/GNO-2 [58], Inline graphic P-IFR-19/Znacac-1, P-IFR-19/Cracac-1 [53], Inline graphic PN-IFR-29.5/m-MMT-0.5, PN-IFR-29/m-MMT-1, PN-IFR-28.5/m-MMT-1.5, PN-IFR-28/m-MMT-2, PN-IFR-27.5/m-MMT-2.5, PN-IFR-27/m-MMT-3, PN-IFR-26/m-MMT-4, PN-IFR-25/m-MMT-5 [56], Inline graphic P-IFR-25.5/m-MMT-2.5, P-IFR-25.5/m-LDH-2.5, P-IFR-25.5/A-POSS-2.5, P-IFR-25.5/MWCNT-2.5 [55], Inline graphic P-IFR-26.5/MWCNT-1.5, P-IFR-25.5/MWCNT-2.5, P-IFR-24.5/MWCNT-3.5 [54], Inline graphic PA-16/EDA-9 [139], Inline graphic PPU-CA-12.5/APP-12.5, PPU-CA-16.67/APP-8.33, PPU-CA-18.75/APP-6.25, PPU-CA-20/APP-5 [50], Inline graphic MP-15/PER-10, MP-15/PER-9/Kaol-1, MP-15/PER-8/Kaol-2 [64], Inline graphic MP-12.3/PER-7.7, MP-15.4/PER-9.6, MP-11.7/PER-7.3/m-MMT-1, MP-14.7/PER-9.3/m-MMT-1 [185], Inline graphic MMP-16.64/PER-9.36, MMP-16/PER-9/La2O3-1, MMP-15.36/PER-8.64/La2O3-2, MMP-14.72/PER-8.28/La2O3-3 [186], Inline graphic MPP-22.5/DPER-7.5, MPP-15/EG-10/DPER-5 [187], Inline graphic MATMP-16.7/PER-8.3 [143], Inline graphic MPyP-18.75/PER-6.25, MPyP-17.25/PER-5.75/m-CD-2 [188], Inline graphic MPyP-15/P-FR-15 [57], Inline graphic MPyP-22.5/TA-CFA-7.5, MPyP-15/TA-CFA-15, TA-CFA-22.5/MPyP-7.5 [66], Inline graphic TA-CFA-15/APP-15, TA-CFA-20/APP-10 [39], Inline graphic TA-CA-10/APP-10 [23], Inline graphic TA-CA-13.33/APP-6.67 [27], Inline graphic TA-CA-20/APP-10, TA-CA-15/APP-15 [179], Inline graphic TA-IFR-12.5/APP-12.5, TA-IFR-16.67/APP-8.33 [31], Inline graphic TA&APP-IFR-10, TA&APP-IFR-15, TA&APP-IFR-20 [182], Inline graphic PI-IFR-20/APP-10 [70], Inline graphic N-FR-24.5/SiO2-0.5, N-FR-22/SiO2-3 [74], Inline graphic N-IFR-20/PA6-5 [75], Inline graphic N-IFR-24.5/HGM-0.5, N-IFR-24/HGM-1, N-IFR-23/HGM-2, N-IFR-22/HGM-3 [76], Inline graphic ATH-15/APP-15, mc-(ATH-15&APP-15) [183], Inline graphic ATH-55/GB-5, ATH-50/GB-10, ATH-47/GB-10/m-ZrP-3, ATH-44/GB-10/m-ZrP-6, ATH-41/GB-10/m-ZrP-9 [81], Inline graphic ATH-49/m-MMT-1, ATH-47/m-MMT-3, ATH-45/m-MMT-5 [80], Inline graphic ATH-20/m-MMT-3, ATH-20/m-MMT-10, ATH-20/m-MMT-17 [82], Inline graphic MDH-16.6/APP-12.7/PER-7.7/MEL-7.2, MDH-25/APP-11.5/PER-7/MEL-6.5, MDH-31.8/APP-10.4/PER-6.3/MEL-5.9 [146], Inline graphic MDH-16.6/APP-12.7/PER-7.7/MEL-7.2, MDH-25/APP-11.5/PER-7/MEL-6.5, MDH-31.8/APP-10.4/PER-6.3/MEL-5.9 [146], Inline graphic MDH-20/m-MMT-17 [82], Inline graphic MDH-30/m-MMT-10, MDH-40/m-MMT-10, MDH-50/m-MMT-10 [82], Inline graphic MDH-39/m-MMT-1, MDH-37/m-MMT-3, MDH-35/m-MMT-5 [85], Inline graphic MDH-45/Cobalt chelate-5, MDH-40/Cobalt chelate-10, MDH-35/Cobalt chelate-15, MDH-30/Cobalt chelate-20 [84], Inline graphic m-MMT-2.5/SEP-2.5, MDH-10/m-SEP-5, MDH-15/m-SEP-5, MDH-10/m-MMT-2.5/SEP-2.5, MDH-15/m-MMT-2.5/SEP-2.5 [87], Inline graphic MMT-6/APP-4, MMT-8/APP-2, m-MMT-6/APP-4, m-MMT-8/APP-2 [24], Inline graphic Si-FR-12.5/APP-12.5 [30], Inline graphic Ni2O3-7.5/AC-7.5 [108], Inline graphic SEP-10/MWCNT-2 [189], Inline graphic C30B-3/ACPB-3, C30B-3/BUPB-3, C30B-3/MEPB-3, C30B-3/PBPA-3 [191], Inline graphic Si-3/SnCl2-2 [190], Inline graphic C20A-5/TiO2-0.5, m-C20A-5/TiO2-0.5, m-C20A-10/TiO2-0.5 [105], Inline graphic CF-5/MWCNT-5 [133], Inline graphic CB-3/MWCNT-1, CB-5/MWCNT-1, CB-5/MWCNT-3 [131], Inline graphic CB-5/CF-3 [134], Inline graphic AC-7.5/Ni2O3-7.5 [108], Inline graphic PER-10.4/MEL-9.7/APP-5.2 [145], Inline graphic PER-10.4/MEL-9.7/APP-5.2 [145], Inline graphic CD-7/TEP-3, CD-10/TEP-5, CD-7.5/APP-7.5 [135], Inline graphic m-lig-18/Ni(Ac)2-2, m-lig-18/Co- (Ac)2-2, m-lig-18/Zn(Ac)2-2 [136].

Figure 16 shows that V-0 level in UL-94 is automatically obtained in the case of combined flame retardant systems used in PP regardless of the FRI value. However, no correlation exists between the FRI and LOI (Figure 17). The complexity of polymer–filler interaction can be considered as the main reason for diversity of properties.

Figure 16.

Figure 16

FRI values versus UL-94 test results. Symbols are indicative of combination of flame retardant (FR) additives used in PP. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 17.

Figure 17

FRI values of PP as a function of LOI test results in long-shot (left-hand figure) and close-up (right-hand figure). Symbols are indicative of different types of blend flame retardants used. The left-side plot reveals that FRI values above 10 (Excellent zone) took place in several cases, which is in contradiction with all previous cases in which only one additive was used.

8. Conclusions and Future Perspective

This work opens new avenues to the experts working on “flame retardant polyolefins”, the title of a Special Issue entitled “Flame Retardant Polyolefins” in Polymers journal for which this work is designed and carried out. In this work, more than 150 research papers from the literature dealing with the flame retardancy of PP were analyzed, classified, and discussed in terms of flame retardancy performance. From the selected papers were extracted cone calorimetry data to calculate Flame Retardancy Index (FRI) as a measure or label of flame retardant performance. To have a comprehensive overview of flame retardant PP materials, works on PP flame retardancy were categorized in terms of additives used in classes including: phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid combinatorial flame retardants composed of two or more additives. The analysis of efficiency of flame retardancy was performed in terms of the FRI variation as a function of wt.% of additives used. The analysis quite obviously unveiled the superiority of the combination of additives over the use of each one separately. In addition, the UL-94 and LOI values available in each class of additives were plotted in terms of the FRI so as to find possible correlation between analyses made in the literature. This work provided a pool of data on flame-retardant PP materials for future research on PP materials. It was elucidated that FRI can satisfactorily make possible classification of PP materials in terms of flame retardancy performance. The present work provides those research works that claim achieving synergistic effect of two or more flame retardants with a clear measure of flame retardant performance as Poor, Good, and Excellent labels assigned to PP materials, based on cone calorimetry data. Moreover, future works on LOI and UL-94 tests can be added to the data used here so as to draw a more detailed picture of flame retardancy behavior of PP materials. The approach can be used to make judgement about other flame retardant polyolefins. Moreover, we believe that the mechanical properties of FR polymers should also be considered in the future, but it is pertinent to the completeness of data in the literature. The importance of mechanical properties springs from the fact that highly loaded systems are prone to mechanical failure as a consequence of stress concentration. All in all, the type and the percentage of FRs in polymers affect both the mechanical and flame retardant properties of polymers; therefore, optimization of both properties is of importance.

Acknowledgments

The authors would like to acknowledge Reza Sheibani, the Head of Research & Development Center, Marun Petrochemical Company, Mahshahr, Iran, for providing E.M. with an opportunity to visit petrochemical plant, discussing practical processing criticisms in developing flame-retardant PP, and giving advice on concerns of engineers working on petrochemical plants who intend to make PP flame retardant.

Author Contributions

Conceptualization, H.V. and M.R.S.; methodology, H.V.; validation, H.V. and M.R.S.; formal analysis, F.S., V.A. and E.M.; investigation, F.D., G.N., V.A. and R.S.; data curation, H.V.; writing—original draft preparation, F.S. and E.M.; writing—review and editing, H.V. and M.R.S.; visualization, H.V. and M.R.S.; supervision, H.V. and M.R.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.-M., Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009;63:100–125. doi: 10.1016/j.mser.2008.09.002. [DOI] [Google Scholar]
  • 2.Vahabi H., Jouyandeh M., Cochez M., Khalili R., Vagner C., Ferriol M., Movahedifar E., Ramezanzadeh B., Rostami M., Ranjbar Z. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog. Org. Coat. 2018;123:160–167. doi: 10.1016/j.porgcoat.2018.07.014. [DOI] [Google Scholar]
  • 3.Rad E.R., Vahabi H., de Anda A.R., Saeb M.R., Thomas S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019;135:608–612. doi: 10.1016/j.porgcoat.2019.05.046. [DOI] [Google Scholar]
  • 4.Tripathi D. Practical Guide to Polypropylene. iSmithers Rapra Publishing; Shawbury Shewsbury Shropshire, UK: 2002. [Google Scholar]
  • 5.Motahari S., Motlagh G.H., Moharramzadeh A. Thermal and flammability properties of polypropylene/silica aerogel composites. J. Macromol. Sci. Part B. 2015;54:1081–1091. doi: 10.1080/00222348.2015.1078619. [DOI] [Google Scholar]
  • 6.Morgan A.B., Liu W. Flammability of thermoplastic carbon nanofiber nanocomposites. Fire Mater. 2011;35:43–60. doi: 10.1002/fam.1034. [DOI] [Google Scholar]
  • 7.Maddah H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016;6:1–11. [Google Scholar]
  • 8.Shubhra Q.T., Alam A., Quaiyyum M. Mechanical properties of polypropylene composites: A review. J. Thermoplast Compos. Mater. 2013;26:362–391. doi: 10.1177/0892705711428659. [DOI] [Google Scholar]
  • 9.Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. J. Appl. Polym. Sci. 2020;137:48545. doi: 10.1002/app.48545. [DOI] [Google Scholar]
  • 10.Dabrowska I., Fambri L., Pegoretti A., Slouf M., Vackova T., Kolarik J. Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica. Express Polym. Lett. 2015;9:277–290. doi: 10.3144/expresspolymlett.2015.25. [DOI] [Google Scholar]
  • 11.Allahvaisi S. Polypropylene in the Industry of Food Packaging. IN TECH; Janeza, Croatia: 2012. [Google Scholar]
  • 12.Yusuf M. A Review on Flame Retardant Textile Finishing: Current and Future Trends. Curr. Smart Mater. 2018;3:99–108. doi: 10.2174/2405465803666180703110858. [DOI] [Google Scholar]
  • 13.Gulrez S.K., Ali Mohsin M., Shaikh H., Anis A., Pulose A.M., Yadav M.K., Qua E.H.P., Al-Zahrani S. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014;35:900–914. doi: 10.1002/pc.22734. [DOI] [Google Scholar]
  • 14.Patil A., Patel A., Purohit R. An overview of polymeric materials for automotive applications. Mater. Today Proc. 2017;4:3807–3815. doi: 10.1016/j.matpr.2017.02.278. [DOI] [Google Scholar]
  • 15.Vahabi H., Paran S.M.R., Shabanian M., Dumazert L., Sonnier R., Movahedifar E., Zarrintaj P., Saeb M.R. Triple-faced polypropylene: Fire retardant, thermally stable, and antioxidative. J. Vinyl Addit. Technol. 2019;25:366–376. doi: 10.1002/vnl.21705. [DOI] [Google Scholar]
  • 16.Vahabi H., Dumazert L., Khalili R., Saeb M.R., Cuesta J.-M.L. Flame retardant PP/PA6 blends: A recipe for recycled wastes. Flame Retard. Therm. Stab. Mater. 2019;2:1–8. doi: 10.1515/flret-2019-0001. [DOI] [Google Scholar]
  • 17.Hajibeygi M., Mousavi M., Shabanian M., Vahabi H. The effect of phosphorus based melamine-terephthaldehyde resin and Mg-Al layered double hydroxide on the thermal stability, flame retardancy and mechanical properties of polypropylene MgO composites. Mater. Today Commun. 2020;23:100880. doi: 10.1016/j.mtcomm.2019.100880. [DOI] [Google Scholar]
  • 18.Pani B., Sidhaarath S., Dhirendra S. Studies on the effects of various flame retardants on polypropylene. Am. J. Polym. Sci. 2013;3:63–69. [Google Scholar]
  • 19.Vahabi H., Kandola B.K., Saeb M.R. Flame retardancy index for thermoplastic composites. Polymers. 2019;11:407. doi: 10.3390/polym11030407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Movahedifar E., Vahabi H., Saeb M.R., Thomas S. Flame retardant epoxy composites on the road of innovation: An analysis with flame retardancy index for future development. Molecules. 2019;24:3964. doi: 10.3390/molecules24213964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhang S., Horrocks A.R. A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003;28:1517–1538. doi: 10.1016/j.progpolymsci.2003.09.001. [DOI] [Google Scholar]
  • 22.Li Q., Jiang P., Su Z., Wei P., Wang G., Tang X. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. J. Appl. Polym. Sci. 2005;96:854–860. doi: 10.1002/app.21522. [DOI] [Google Scholar]
  • 23.Duan L., Yang H., Song L., Hou Y., Wang W., Gui Z., Hu Y. Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polym. Degrad. Stab. 2016;134:179–185. doi: 10.1016/j.polymdegradstab.2016.10.004. [DOI] [Google Scholar]
  • 24.Hanna A., Nour M., Souaya E., Abdelmoaty A. Studies on the flammability of polypropylene/ammonium polyphosphate and montmorillonite by using the cone calorimeter test. Open Chem. 2018;16:108–115. doi: 10.1515/chem-2018-0013. [DOI] [Google Scholar]
  • 25.Pappalardo S., Russo P., Acierno D., Rabe S., Schartel B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur. Polym. J. 2016;76:196–207. doi: 10.1016/j.eurpolymj.2016.01.041. [DOI] [Google Scholar]
  • 26.Kalali E.N., Montes A., Wang X., Zhang L., Shabestari M.E., Li Z., Wang D.Y. Effect of phytic acid–modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. Fire Mater. 2018;42:213–220. doi: 10.1002/fam.2482. [DOI] [Google Scholar]
  • 27.Wang W., Wen P., Zhan J., Hong N., Cai W., Gui Z., Hu Y. Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 2017;144:454–463. doi: 10.1016/j.polymdegradstab.2017.09.011. [DOI] [Google Scholar]
  • 28.Jung D., Bhattacharyya D. Keratinous fiber based intumescent flame retardant with controllable functional compound loading. ACS Sustain. Chem. Eng. 2018;6:13177–13184. doi: 10.1021/acssuschemeng.8b02756. [DOI] [Google Scholar]
  • 29.Xu B., Wu X., Ma W., Qian L., Xin F., Qiu Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J. Anal. Appl. Pyrolysis. 2018;134:231–242. doi: 10.1016/j.jaap.2018.06.013. [DOI] [Google Scholar]
  • 30.Zhao Z., Jin Q., Zhang N., Guo X., Yan H. Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene. Polym. Degrad. Stab. 2018;150:73–85. doi: 10.1016/j.polymdegradstab.2018.02.007. [DOI] [Google Scholar]
  • 31.Wen P., Feng X., Kan Y., Hu Y., Yuen R.K. Synthesis of a novel triazine-based polymeric flame retardant and its application in polypropylene. Polym. Degrad. Stab. 2016;134:202–210. doi: 10.1016/j.polymdegradstab.2016.10.003. [DOI] [Google Scholar]
  • 32.Xu Z.-Z., Huang J.-Q., Chen M.-J., Tan Y., Wang Y.-Z. Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym. Degrad. Stab. 2013;98:2011–2020. doi: 10.1016/j.polymdegradstab.2013.07.010. [DOI] [Google Scholar]
  • 33.Tang W., Qian L., Chen Y., Qiu Y., Xu B. Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polym. Degrad. Stab. 2019;169:108982. doi: 10.1016/j.polymdegradstab.2019.108982. [DOI] [Google Scholar]
  • 34.Yang H., Guan Y., Ye L., Wang S., Li S., Wen X., Chen X., Mijowska E., Tang T. Synergistic effect of nanoscale carbon black and ammonium polyphosphate on improving thermal stability and flame retardancy of polypropylene: A reactive network for strengthening carbon layer. Compos. Part B Eng. 2019;174:107038. doi: 10.1016/j.compositesb.2019.107038. [DOI] [Google Scholar]
  • 35.Shao Z.-B., Deng C., Tan Y., Chen M.-J., Chen L., Wang Y.-Z. An efficient mono-component polymeric intumescent flame retardant for polypropylene: Preparation and application. ACS Appl. Mater. Interfaces. 2014;6:7363–7370. doi: 10.1021/am500789q. [DOI] [PubMed] [Google Scholar]
  • 36.Deng C.-L., Du S.-L., Zhao J., Shen Z.-Q., Deng C., Wang Y.-Z. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym. Degrad. Stab. 2014;108:97–107. doi: 10.1016/j.polymdegradstab.2014.06.008. [DOI] [Google Scholar]
  • 37.Sun Y., Yuan B., Shang S., Zhang H., Shi Y., Yu B., Qi C., Dong H., Chen X., Yang X. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos. Part B Eng. 2020;181:107588. doi: 10.1016/j.compositesb.2019.107588. [DOI] [Google Scholar]
  • 38.Qin Z., Li D., Lan Y., Li Q., Yang R. Ammonium polyphosphate and silicon-containing cyclotriphosphazene: Synergistic effect in flame-retarded polypropylene. Ind. Eng. Chem. Res. 2015;54:10707–10713. doi: 10.1021/acs.iecr.5b02343. [DOI] [Google Scholar]
  • 39.Wen P., Wang X., Wang B., Yuan B., Zhou K., Song L., Hu Y., Yuen R.K. One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene. Polym. Degrad. Stab. 2014;110:165–174. doi: 10.1016/j.polymdegradstab.2014.08.019. [DOI] [Google Scholar]
  • 40.Wen P., Wang X., Xing W., Feng X., Yu B., Shi Y., Tang G., Song L., Hu Y., Yuen R.K. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. Ind. Eng. Chem. Res. 2013;52:17015–17022. doi: 10.1021/ie401955n. [DOI] [Google Scholar]
  • 41.Jiang Z., Liu G. Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris (2-hydroxyethyl) isocyanurate resin and its flame retardancy in polypropylene. Rsc Adv. 2015;5:88445–88455. doi: 10.1039/C5RA14586D. [DOI] [Google Scholar]
  • 42.Yu S., Xiao S., Zhao Z., Huo X., Wei J. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene. Chin. J. Chem. Eng. 2019;27:1735–1743. doi: 10.1016/j.cjche.2019.04.023. [DOI] [Google Scholar]
  • 43.Deng C.L., Deng C., Zhao J., Fang W.H., Lin L., Wang Y.Z. Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin. Polym. Adv. Technol. 2014;25:861–871. doi: 10.1002/pat.3319. [DOI] [Google Scholar]
  • 44.Zheng Z., Qiang L., Yang T., Wang B., Cui X., Wang H. Preparation of microencapsulated ammonium polyphosphate with carbon source-and blowing agent-containing shell and its flame retardance in polypropylene. J. Polym. Res. 2014;21:443. doi: 10.1007/s10965-014-0443-2. [DOI] [Google Scholar]
  • 45.Chen M., Xu Y., Chen X., Ma Y., He W., Yu J., Zhang Z. Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate. High Perform. Polym. 2014;26:445–454. doi: 10.1177/0954008313517910. [DOI] [Google Scholar]
  • 46.Shao Z.-B., Deng C., Tan Y., Chen M.-J., Chen L., Wang Y.-Z. Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polym. Degrad. Stab. 2014;106:88–96. doi: 10.1016/j.polymdegradstab.2013.10.005. [DOI] [Google Scholar]
  • 47.Shao Z.-B., Deng C., Tan Y., Yu L., Chen M.-J., Chen L., Wang Y.-Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A. 2014;2:13955–13965. doi: 10.1039/C4TA02778G. [DOI] [Google Scholar]
  • 48.Deng C.-l., Deng C., Zhao J., Li R.-m., Fang W.-h., Wang Y.-z. Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. Chin. J. Polym. Sci. 2015;33:203–214. doi: 10.1007/s10118-015-1575-5. [DOI] [Google Scholar]
  • 49.Tian N., Wen X., Jiang Z., Gong J., Wang Y., Xue J., Tang T. Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene. Ind. Eng. Chem. Res. 2013;52:10905–10915. doi: 10.1021/ie401058u. [DOI] [Google Scholar]
  • 50.Zhang T., Tao Y., Zhou F., Sheng H., Qiu S., Ma C., Hu Y. Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene. Polym. Degrad. Stab. 2019;165:207–219. doi: 10.1016/j.polymdegradstab.2019.05.003. [DOI] [Google Scholar]
  • 51.Wang X., Spörer Y., Leuteritz A., Kuehnert I., Wagenknecht U., Heinrich G., Wang D.-Y. Comparative study of the synergistic effect of binary and ternary LDH with intumescent flame retardant on the properties of polypropylene composites. RSC Adv. 2015;5:78979–78985. doi: 10.1039/C5RA15565G. [DOI] [Google Scholar]
  • 52.Zhang C., Guo X., Ma S., Zheng Y., Xu J., Ma H. Synthesis of a novel branched cyclophosphazene-PEPA flame retardant and its application on polypropylene. J. Therm. Anal. Calorim. 2019;137:33–42. doi: 10.1007/s10973-018-7943-y. [DOI] [Google Scholar]
  • 53.Song P., Fang Z., Tong L., Jin Y., Lu F. Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene. J. Anal. Appl. Pyrolysis. 2008;82:286–291. doi: 10.1016/j.jaap.2008.04.008. [DOI] [Google Scholar]
  • 54.Du B., Fang Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym. Degrad. Stab. 2011;96:1725–1731. doi: 10.1016/j.polymdegradstab.2011.08.002. [DOI] [Google Scholar]
  • 55.Du B., Ma H., Fang Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 2011;22:1139–1146. doi: 10.1002/pat.1914. [DOI] [Google Scholar]
  • 56.Chen Y.J., Wang C., Yang C.Z. Synergism between Intumescent Flame Retardant and Organo-Montmorillonite in Polypropylene Nanocomposites. Trans Tech Publications; Bäch, Switzerland: 2013. pp. 502–507. Advanced Materials Research. [DOI] [Google Scholar]
  • 57.He Q., Lu H., Song L., Hu Y., Chen L. Flammability and thermal properties of a novel intumescent flame retardant polypropylene. J. Fire Sci. 2009;27:303–321. [Google Scholar]
  • 58.Yu B., Wang X., Qian X., Xing W., Yang H., Ma L., Lin Y., Jiang S., Song L., Hu Y. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Adv. 2014;4:31782–31794. doi: 10.1039/C3RA45945D. [DOI] [Google Scholar]
  • 59.Salaün F., Creach G., Rault F., Giraud S. Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate. Polym. Degrad. Stab. 2013;98:2663–2671. doi: 10.1016/j.polymdegradstab.2013.09.030. [DOI] [Google Scholar]
  • 60.Dahiya J.B., Kumar N., Bockhorn H. Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. Fire Mater. 2014;38:1–12. doi: 10.1002/fam.2151. [DOI] [Google Scholar]
  • 61.Xu M.-j., Wang J., Ding Y.-h., Li B. Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system. Chin. J. Polym. Sci. 2015;33:318–328. doi: 10.1007/s10118-015-1588-0. [DOI] [Google Scholar]
  • 62.Li H., Ning N., Zhang L., Wang Y., Liang W., Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym. Degrad. Stab. 2014;105:86–95. doi: 10.1016/j.polymdegradstab.2014.03.032. [DOI] [Google Scholar]
  • 63.Zhou S., Song L., Wang Z., Hu Y., Xing W. Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polym. Degrad. Stab. 2008;93:1799–1806. doi: 10.1016/j.polymdegradstab.2008.07.012. [DOI] [Google Scholar]
  • 64.Abdelkhalik A., Makhlouf G., Hassan M.A. Manufacturing, thermal stability, and flammability properties of polypropylene containing new single molecule intumescent flame retardant. Polym. Adv. Technol. 2019;30:1403–1414. doi: 10.1002/pat.4573. [DOI] [Google Scholar]
  • 65.Wang X., Li Y., Liao W., Gu J., Li D. A new intumescent flame-retardant: Preparation, surface modification, and its application in polypropylene. Polym. Adv. Technol. 2008;19:1055–1061. doi: 10.1002/pat.1077. [DOI] [Google Scholar]
  • 66.Chen X., Jiao C. Flame retardancy and thermal Degradation of intumescent flame retardant polypropylene material. Polym. Adv. Technol. 2011;22:817–821. doi: 10.1002/pat.1583. [DOI] [Google Scholar]
  • 67.Chen H., Wang J., Ni A., Ding A., Han X., Sun Z. The effects of a macromolecular charring agent with gas phase and condense phase synergistic flame retardant capability on the properties of PP/IFR composites. Materials. 2018;11:111. doi: 10.3390/ma11010111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Gao S., Zhao X., Liu G. Synthesis of an integrated intumescent flame retardant and its flame retardancy properties for polypropylene. Polym. Degrad. Stab. 2017;138:106–114. doi: 10.1016/j.polymdegradstab.2016.05.007. [DOI] [Google Scholar]
  • 69.Shao Z.-B., Zhang M.-X., Han Y., Yang X.-D., Jin J., Jian R.-K. A highly efficient gas-dominated and water-resistant flame retardant for non-charring polypropylene. RSC Adv. 2017;7:51919–51927. doi: 10.1039/C7RA09868E. [DOI] [Google Scholar]
  • 70.Li B., Zhan Z., Zhang H., Sun C. Flame retardancy and thermal performance of polypropylene treated with the intumescent flame retardant, piperazine spirocyclic phosphoramidate. J. Vinyl Addit. Technol. 2014;20:10–15. doi: 10.1002/vnl.21337. [DOI] [Google Scholar]
  • 71.Yang R., Ma B., Zhang X., Li J. Fire retardance and smoke suppression of polypropylene with a macromolecular intumescent flame retardant containing caged bicyclic phosphate and piperazine. J. Appl. Polym. Sci. 2019;136:47593. doi: 10.1002/app.47593. [DOI] [Google Scholar]
  • 72.Xie H., Lai X., Zhou R., Li H., Zhang Y., Zeng X., Guo J. Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2015;118:167–177. doi: 10.1016/j.polymdegradstab.2015.04.022. [DOI] [Google Scholar]
  • 73.Lai X., Qiu J., Li H., Zhou R., Xie H., Zeng X. Thermal degradation and combustion behavior of novel intumescent flame retardant polypropylene with N-alkoxy hindered amine. J. Anal. Appl. Pyrolysis. 2016;120:361–370. doi: 10.1016/j.jaap.2016.06.004. [DOI] [Google Scholar]
  • 74.Ye L., Wu Q., Qu B. Synergistic effects of fumed silica on intumescent flame-retardant polypropylene. J. Appl. Polym. Sci. 2010;115:3508–3515. doi: 10.1002/app.30585. [DOI] [Google Scholar]
  • 75.Zhang L., Yi D., Hao J. Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexes as an all-in-one flame retardant for polypropylene. Polym. Adv. Technol. 2019;31:260–272. doi: 10.1002/pat.4766. [DOI] [Google Scholar]
  • 76.Kang B.-h., Yang X.-y., Lu X. Effect of hollow glass microsphere on the flame retardancy and combustion behavior of intumescent flame retardant polypropylene composites. Polym. Bull. 2019;77:1–18. doi: 10.1007/s00289-019-02953-2. [DOI] [Google Scholar]
  • 77.Vahabi H., Raveshtian A., Fasihi M., Sonnier R., Saeb M.R., Dumazert L., Kandola B.K. Competitiveness and synergy between three flame retardants in poly (ethylene-co-vinyl acetate) Polym. Degrad. Stab. 2017;143:164–175. doi: 10.1016/j.polymdegradstab.2017.07.005. [DOI] [Google Scholar]
  • 78.Vahabi H., Shabanian M., Aryanasab F., Laoutid F., Benali S., Saeb M.R., Seidi F., Kandola B.K. Three in one: β-cyclodextrin, nanohydroxyapatite, and a nitrogen-rich polymer integrated into a new flame retardant for poly (lactic acid) Fire Mater. 2018;42:593–602. doi: 10.1002/fam.2513. [DOI] [Google Scholar]
  • 79.Vahabi H., Sonnier R., Taguet A., Otazaghine B., Saeb M.R., Beyer G. Clay Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2020. Halloysite nanotubes (HNTs)/polymer nanocomposites: Thermal degradation and flame retardancy; pp. 67–93. [DOI] [Google Scholar]
  • 80.Liu L., Zhang H., Sun L., Kong Q., Zhang J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. J. Therm. Anal. Calorim. 2016;124:807–814. doi: 10.1007/s10973-015-5213-9. [DOI] [Google Scholar]
  • 81.Pérez N., Qi X.-L., Nie S., Acuña P., Chen M.-J., Wang D.-Y. Flame retardant polypropylene composites with low densities. Materials. 2019;12:152. doi: 10.3390/ma12010152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Zhang J., Wilkie C.A. Fire Retardancy of Polypropylene-Metal Hydroxide Nanocomposites. ACS Publications; Washington, DC, USA: 2006. [Google Scholar]
  • 83.Molesky F., Falk D.P. Comparison of Smoke Measurements of the Cone Calorimeter and ASTM E-662 Smoke Chamber in Flame Retardant Polypropylene. J. Fire Sci. 1991;9:60–68. doi: 10.1177/073490419100900103. [DOI] [Google Scholar]
  • 84.Shehata A. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide. Polym. Degrad. Stab. 2004;85:577–582. doi: 10.1016/j.polymdegradstab.2004.01.019. [DOI] [Google Scholar]
  • 85.Kong Q., Wu H., Zhang H., Zhang X., Zhao W., Zhang J. Effect of Fe-montmorillonite on flammability behavior in polypropylene/magnesium hydroxide composites. J. Nanosci. Nanotechnol. 2016;16:8287–8293. doi: 10.1166/jnn.2016.11615. [DOI] [Google Scholar]
  • 86.Oyama H.T., Sekikawa M., Ikezawa Y. Influence of the polymer/inorganic filler interface on the mechanical, thermal, and flame retardant properties of polypropylene/magnesium hydroxide composites. J. Macromol. Sci. Part B. 2011;50:463–483. doi: 10.1080/00222341003780996. [DOI] [Google Scholar]
  • 87.Marosfoi B., Garas S., Bodzay B., Zubonyai F., Marosi G. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix. Polym. Adv. Technol. 2008;19:693–700. doi: 10.1002/pat.1153. [DOI] [Google Scholar]
  • 88.Tang W., Li H., Zhang S., Sun J., Gu X. The intercalation of ammonium sulfamate into kaolinite and its effect on the fire performance of polypropylene. J. Thermoplast. Compos. Mater. 2018;31:1352–1370. doi: 10.1177/0892705717738291. [DOI] [Google Scholar]
  • 89.Tang W., Zhang S., Sun J., Gu X. Flame retardancy and thermal stability of polypropylene composite containing ammonium sulfamate intercalated kaolinite. Ind. Eng. Chem. Res. 2016;55:7669–7678. doi: 10.1021/acs.iecr.6b01722. [DOI] [Google Scholar]
  • 90.Batistella M., Otazaghine B., Sonnier R., Petter C., Lopez-Cuesta J.-M. Fire retardancy of polypropylene/kaolinite composites. Polym. Degrad. Stab. 2016;129:260–267. doi: 10.1016/j.polymdegradstab.2016.05.003. [DOI] [Google Scholar]
  • 91.Zoromba M.S., Nour M.A., Eltamimy H.E., El-Maksoud S.A.A. Effect of modified layered double hydroxide on the flammability and mechanical properties of polypropylene. Sci. Eng. Compos. Mater. 2018;25:101–108. doi: 10.1515/secm-2016-0050. [DOI] [Google Scholar]
  • 92.Manzi-Nshuti C., Songtipya P., Manias E., del Mar Jimenez-Gasco M., Hossenlopp J.M., Wilkie C.A. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of the polymeric compatibilizer and of composition on the thermal and fire properties of PP/LDH nanocomposites. Polym. Degrad. Stab. 2009;94:2042–2054. doi: 10.1016/j.polymdegradstab.2009.07.013. [DOI] [Google Scholar]
  • 93.Wu T., Kong Q., Zhang H., Zhang J. Thermal stability and flame retardancy of polypropylene/NiAl layered double hydroxide nanocomposites. J. Nanosci. Nanotechnol. 2018;18:1051–1056. doi: 10.1166/jnn.2018.14107. [DOI] [PubMed] [Google Scholar]
  • 94.Nyambo C., Wang D., Wilkie C.A. Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 2009;20:332–340. doi: 10.1002/pat.1272. [DOI] [Google Scholar]
  • 95.Zhang S., Liu X., Gu X., Jiang P., Sun J. Flammability and thermal behavior of polypropylene composites containing dihydrogen phosphate anion-intercalated layered double hydroxides. Polym. Compos. 2015;36:2230–2237. doi: 10.1002/pc.23135. [DOI] [Google Scholar]
  • 96.Qin H., Zhang S., Zhao C., Hu G., Yang M. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer. 2005;46:8386–8395. doi: 10.1016/j.polymer.2005.07.019. [DOI] [Google Scholar]
  • 97.Zhu F., Liu D., Cai G., Tan X., Wang J., Lu H., Wilkie C.A. Thermal stability and flammability performance of polypropylene composites with silica pillared montmorillonites. Polym. Adv. Technol. 2014;25:211–216. doi: 10.1002/pat.3225. [DOI] [Google Scholar]
  • 98.Zhang J., Wilkie C.A. Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer. 2006;47:5736–5743. doi: 10.1016/j.polymer.2006.06.018. [DOI] [Google Scholar]
  • 99.Qin H., Zhang S., Zhao C., Feng M., Yang M., Shu Z., Yang S. Thermal stability and flammability of polypropylene/montmorillonite composites. Polym. Degrad. Stab. 2004;85:807–813. doi: 10.1016/j.polymdegradstab.2004.03.014. [DOI] [Google Scholar]
  • 100.Zhang J., Jiang D.D., Wilkie C.A. Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. Polym. Degrad. Stab. 2006;91:298–304. doi: 10.1016/j.polymdegradstab.2005.05.006. [DOI] [Google Scholar]
  • 101.Su S., Jiang D.D., Wilkie C.A. Poly (methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym. Degrad. Stab. 2004;83:321–331. doi: 10.1016/S0141-3910(03)00277-5. [DOI] [Google Scholar]
  • 102.Zheng X., Jiang D.D., Wang D., Wilkie C.A. Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay. Polym. Degrad. Stab. 2006;91:289–297. doi: 10.1016/j.polymdegradstab.2005.05.007. [DOI] [Google Scholar]
  • 103.Szustakiewicz K., Kiersnowski A., Gazińska M., Bujnowicz K., Pigłowski J. Flammability, structure and mechanical properties of PP/OMMT nanocomposites. Polym. Degrad. Stab. 2011;96:291–294. doi: 10.1016/j.polymdegradstab.2010.11.001. [DOI] [Google Scholar]
  • 104.Yi D., Yang R., Wilkie C.A. Full scale nanocomposites: Clay in fire retardant and polymer. Polym. Degrad. Stab. 2014;105:31–41. doi: 10.1016/j.polymdegradstab.2014.03.042. [DOI] [Google Scholar]
  • 105.Alsharif M.A., Zadhoush A., Mortazavi S.M. Thermal Degradation and Flammability Properties of Polypropylene Nanocomposite Using Organoclay-graft-poly (Ethylene Glycol Methacrylate Phosphate) Adv. Polym. Technol. 2014;33 doi: 10.1002/adv.21386. [DOI] [Google Scholar]
  • 106.Yuan B., Chen G., Zou Y., Shang S., Sun Y., Yu B., He S., Chen X. Alumina nanoflake-coated graphene nanohybrid as a novel flame retardant filler for polypropylene. Polym. Adv. Technol. 2019;30:2153–2158. doi: 10.1002/pat.4689. [DOI] [Google Scholar]
  • 107.Dong M., Gu X., Zhang S. Effects of compound oxides on the fire performance of polypropylene composite. Ind. Eng. Chem. Res. 2014;53:8062–8068. doi: 10.1021/ie500178u. [DOI] [Google Scholar]
  • 108.Gong J., Tian N., Liu J., Yao K., Jiang Z., Chen X., Wen X., Mijowska E., Tang T. Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 2014;99:18–26. doi: 10.1016/j.polymdegradstab.2013.12.016. [DOI] [Google Scholar]
  • 109.Song R., Fu Y., Li B. Transferring noncharring polyolefins to charring polymers with the presence of Mo/Mg/Ni/O catalysts and the application in flame retardancy. J. Appl. Polym. Sci. 2013;129:138–144. doi: 10.1002/app.38717. [DOI] [Google Scholar]
  • 110.Dang L., Nai X., Dong Y., Li W. Functional group effect on flame retardancy, thermal, and mechanical properties of organophosphorus-based magnesium oxysulfate whiskers as a flame retardant in polypropylene. RSC Adv. 2017;7:21655–21665. doi: 10.1039/C7RA02863F. [DOI] [Google Scholar]
  • 111.Rault F., Pleyber E., Campagne C., Rochery M., Giraud S., Bourbigot S., Devaux E. Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. Polym. Degrad. Stab. 2009;94:955–964. doi: 10.1016/j.polymdegradstab.2009.03.012. [DOI] [Google Scholar]
  • 112.Chen X., Yun Y., Fan A., Yuan B., Shang S., He S. The assembly nanohybrid of graphene with lamellar zirconium phenylphosphonate for improving flame retardancy and mechanical properties of polypropylene. Polym. Compos. 2019;40(Suppl. S2):E1757–E1765. doi: 10.1002/pc.25149. [DOI] [Google Scholar]
  • 113.Niemczyk A., Dziubek K., Sacher-Majewska B., Czaja K., Czech-Polak J., Oliwa R., Lenża J., Szołyga M. Thermal stability and flame retardancy of polypropylene composites containing siloxane-silsesquioxane resins. Polymers. 2018;10:1019. doi: 10.3390/polym10091019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Fina A., Tabuani D., Camino G. Polypropylene–polysilsesquioxane blends. Eur. Polym. J. 2010;46:14–23. doi: 10.1016/j.eurpolymj.2009.07.019. [DOI] [Google Scholar]
  • 115.Fina A., Abbenhuis H.C., Tabuani D., Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polym. Degrad. Stab. 2006;91:2275–2281. doi: 10.1016/j.polymdegradstab.2006.04.014. [DOI] [Google Scholar]
  • 116.Lecouvet B., Sclavons M., Bourbigot S., Devaux J., Bailly C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: Structure and properties. Polymer. 2011;52:4284–4295. doi: 10.1016/j.polymer.2011.07.021. [DOI] [Google Scholar]
  • 117.Shang S., Ma X., Yuan B., Chen G., Sun Y., Huang C., He S., Dai H., Chen X. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Compos. Part B Eng. 2019;177:107371. doi: 10.1016/j.compositesb.2019.107371. [DOI] [Google Scholar]
  • 118.Nonahal M., Rastin H., Saeb M.R., Sari M.G., Moghadam M.H., Zarrintaj P., Ramezanzadeh B. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. Prog. Org. Coat. 2018;114:233–243. doi: 10.1016/j.porgcoat.2017.10.023. [DOI] [Google Scholar]
  • 119.Yarahmadi E., Didehban K., Sari M.G., Saeb M.R., Shabanian M., Aryanasab F., Zarrintaj P., Paran S.M.R., Mozafari M., Rallini M. Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Prog. Org. Coat. 2018;119:194–202. doi: 10.1016/j.porgcoat.2018.03.001. [DOI] [Google Scholar]
  • 120.Choolaei M., Goodarzi V., Khonakdar H.A., Jafari S.H., Seyfi J., Saeb M.R., Häußler L., Boldt R. Influence of graphene oxide on crystallization behavior and chain folding surface free energy of poly (vinylidenefluoride-co-hexafluoropropylene) Macromol. Chem. Phys. 2017;218:1700103. doi: 10.1002/macp.201700103. [DOI] [Google Scholar]
  • 121.Saeb M.R., Najafi F., Bakhshandeh E., Khonakdar H.A., Mostafaiyan M., Simon F., Scheffler C., Mäder E. Highly curable epoxy/MWCNTs nanocomposites: An effective approach to functionalization of carbon nanotubes. Chem. Eng. J. 2015;259:117–125. doi: 10.1016/j.cej.2014.07.116. [DOI] [Google Scholar]
  • 122.Yuan B., Wang B., Hu Y., Mu X., Hong N., Liew K.M., Hu Y. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene. Compos. Part A Appl. Sci. Manuf. 2016;84:76–86. doi: 10.1016/j.compositesa.2016.01.003. [DOI] [Google Scholar]
  • 123.Yuan B., Hu Y., Chen X., Shi Y., Niu Y., Zhang Y., He S., Dai H. Dual modification of graphene by polymeric flame retardant and Ni (OH) 2 nanosheets for improving flame retardancy of polypropylene. Compos. Part A Appl. Sci. Manuf. 2017;100:106–117. doi: 10.1016/j.compositesa.2017.04.012. [DOI] [Google Scholar]
  • 124.Yuan B., Sheng H., Mu X., Song L., Tai Q., Shi Y., Liew K.M., Hu Y. Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J. Mater. Sci. 2015;50:5389–5401. doi: 10.1007/s10853-015-9083-0. [DOI] [Google Scholar]
  • 125.Hong N., Pan Y., Zhan J., Wang B., Zhou K., Song L., Hu Y. Fabrication of graphene/Ni–Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene. Rsc Adv. 2013;3:16440–16448. doi: 10.1039/c3ra42095g. [DOI] [Google Scholar]
  • 126.Yuan B., Song L., Liew K.M., Hu Y. Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. Rsc Adv. 2015;5:41307–41316. doi: 10.1039/C5RA04699H. [DOI] [Google Scholar]
  • 127.Bensabath T., Sarazin J., Jimenez M., Samyn F., Bourbigot S. Intumescent polypropylene: Interactions between physical and chemical expansion. Fire Mater. 2019 doi: 10.1002/fam.2790. [DOI] [Google Scholar]
  • 128.Xu L., Guo Z., Zhang Y., Fang Z. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J. Mater. Chem. 2008;18:5083–5091. [Google Scholar]
  • 129.Song P., Zhao L., Cao Z., Fang Z. Polypropylene nanocomposites based on C 60-decorated carbon nanotubes: Thermal properties, flammability, and mechanical properties. J. Mater. Chem. 2011;21:7782–7788. doi: 10.1039/c1jm10395d. [DOI] [Google Scholar]
  • 130.Yang H., Ye L., Gong J., Li M., Jiang Z., Wen X., Chen H., Tian N., Tang T. Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Mater. Chem. Front. 2017;1:716–726. doi: 10.1039/C6QM00172F. [DOI] [Google Scholar]
  • 131.Wen X., Tian N., Gong J., Chen Q., Qi Y., Liu Z., Liu J., Jiang Z., Chen X., Tang T. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym. Adv. Technol. 2013;24:971–977. doi: 10.1002/pat.3172. [DOI] [Google Scholar]
  • 132.Fina A., Bocchini S., Camino G. Catalytic fire retardant nanocomposites. Polym. Degrad. Stab. 2008;93:1647–1655. doi: 10.1016/j.polymdegradstab.2008.05.027. [DOI] [Google Scholar]
  • 133.Gong J., Niu R., Wen X., Yang H., Liu J., Chen X., Sun Z.-Y., Mijowska E., Tang T. Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: A combination of a physical network and chemical crosslinking. RSC Adv. 2014;5:5484–5493. doi: 10.1039/C4RA11591K. [DOI] [Google Scholar]
  • 134.Yang H., Gong J., Wen X., Xue J., Chen Q., Jiang Z., Tian N., Tang T. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos. Sci. Technol. 2015;113:31–37. doi: 10.1016/j.compscitech.2015.03.013. [DOI] [Google Scholar]
  • 135.Alongi J., Poskovic M., Visakh P., Frache A., Malucelli G. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydr. Polym. 2012;88:1387–1394. doi: 10.1016/j.carbpol.2012.02.038. [DOI] [Google Scholar]
  • 136.Yu Y., Song P.a., Jin C., Fu S., Zhao L., Wu Q., Ye J. Catalytic effects of nickel (cobalt or zinc) acetates on thermal and flammability properties of polypropylene-modified lignin composites. Ind. Eng. Chem. Res. 2012;51:12367–12374. doi: 10.1021/ie301953x. [DOI] [Google Scholar]
  • 137.Gao Y.-Y., Deng C., Du Y.-Y., Huang S.-C., Wang Y.-Z. A novel bio-based flame retardant for polypropylene from phytic acid. Polym. Degrad. Stab. 2019;161:298–308. doi: 10.1016/j.polymdegradstab.2019.02.005. [DOI] [Google Scholar]
  • 138.Das O., Bhattacharyya D., Hui D., Lau K.-T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B Eng. 2016;106:120–128. doi: 10.1016/j.compositesb.2016.09.020. [DOI] [Google Scholar]
  • 139.Jung D., Persi I., Bhattacharyya D. Synergistic Effects of Feather Fibers and Phosphorus Compound on Chemically Modified Chicken Feather/Polypropylene Composites. ACS Sustain. Chem. Eng. 2019;7:19072–19080. doi: 10.1021/acssuschemeng.9b04894. [DOI] [Google Scholar]
  • 140.Tang Y., Hu Y., Wang S., Gui Z., Chen Z., Fan W. Intumescent flame retardant–montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym. Int. 2003;52:1396–1400. doi: 10.1002/pi.1270. [DOI] [Google Scholar]
  • 141.Vahabi H., Ferry L., Longuet C., Otazaghine B., Negrell-Guirao C., David G., Lopez-Cuesta J.-M. Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Mater. Chem. Phys. 2012;136:762–770. doi: 10.1016/j.matchemphys.2012.07.053. [DOI] [Google Scholar]
  • 142.Vahabi H., Laoutid F., Movahedifar E., Khalili R., Rahmati N., Vagner C., Cochez M., Brison L., Ducos F., Ganjali M.R. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index. Polym. Adv. Technol. 2019;30:2056–2066. doi: 10.1002/pat.4638. [DOI] [Google Scholar]
  • 143.Gao S., Liu G. Synthesis of amino trimethylene phosphonic acid melamine salt and its application in flame-retarded polypropylene. J. Appl. Polym. Sci. 2018;135:46274. doi: 10.1002/app.46274. [DOI] [Google Scholar]
  • 144.Chen X., Jiao C. Study on flame retardance of co-microencapsulated ammonium polyphosphate and pentaerythritol in polypropylene. J. Fire Sci. 2010;28:509–521. doi: 10.1177/0734904110363795. [DOI] [Google Scholar]
  • 145.Chiu S.-H., Wang W.-K. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer. 1998;39:1951–1955. doi: 10.1016/S0032-3861(97)00492-8. [DOI] [Google Scholar]
  • 146.Chiu S.H., Wang W.K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. J. Appl. Polym. Sci. 1998;67:989–995. doi: 10.1002/(SICI)1097-4628(19980207)67:6<989::AID-APP4>3.0.CO;2-I. [DOI] [Google Scholar]
  • 147.Huang N., Chen Z., Wang J., Wei P. Synergistic effects of sepiolite on intumescent flame retardant polypropylene. Express Polym. Lett. 2010;4:743–752. doi: 10.3144/expresspolymlett.2010.90. [DOI] [Google Scholar]
  • 148.Wang Z., Liu Y., Li J. Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. J. Anal. Appl. Pyrolysis. 2016;121:394–402. doi: 10.1016/j.jaap.2016.09.003. [DOI] [Google Scholar]
  • 149.Su X., Yi Y., Tao J., Qi H., Li D. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2014;105:12–20. doi: 10.1016/j.polymdegradstab.2014.03.041. [DOI] [Google Scholar]
  • 150.Wang X., Wang Z., Li J. Effects of a semi-bio-based triazine derivative on intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2019;30:1259–1268. doi: 10.1002/pat.4559. [DOI] [Google Scholar]
  • 151.Wang Z., Liu Y., Li J. Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain. Chem. Eng. 2017;5:2375–2383. doi: 10.1021/acssuschemeng.6b02712. [DOI] [Google Scholar]
  • 152.Qin Z., Li D., Yang R. Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene. Polym. Degrad. Stab. 2016;126:117–124. doi: 10.1016/j.polymdegradstab.2016.01.022. [DOI] [Google Scholar]
  • 153.Zhu H.F., Li J., Xu L., Tao K., Xue L.X., Fan X.Y. Synergistic Effect between Montmorillonite Intercalated by Melamine and Intumescent Flame Retardant (IFR) on Polypropylene. Trans Tech Publications; Zurich, Switzerland: 2011. pp. 315–318. Advanced Materials Research. [DOI] [Google Scholar]
  • 154.Zhu H., Li J., Zhu Y., Chen S. Roles of organic intercalation agent with flame retardant groups in montmorillonite (MMT) in properties of polypropylene composites. Polym. Adv. Technol. 2014;25:872–880. doi: 10.1002/pat.3320. [DOI] [Google Scholar]
  • 155.Wang P.-J., Hu X.-P., Liao D.-J., Wen Y., Hull T.R., Miao F., Zhang Q.-T. Dual fire retardant action: The combined gas and condensed phase effects of azo-modified NiZnAl layered double hydroxide on intumescent polypropylene. Ind. Eng. Chem. Res. 2017;56:920–932. doi: 10.1021/acs.iecr.6b03953. [DOI] [Google Scholar]
  • 156.Zhang Y., He S., Wu J., Ma J., Shao S., He L., Li X., Fang Z., Cao H., Xi Z. Application of waste silicon rubber composite treated by N2 plasma in the flame-retardant polypropylene. J. Appl. Polym. Sci. 2019;136:48187. doi: 10.1002/app.48187. [DOI] [Google Scholar]
  • 157.Zhao Q., Hu Y., Wang X. Mechanical performance and flame retardancy of polypropylene composites containing zeolite and multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.42875. [DOI] [Google Scholar]
  • 158.Su X., Li D., Tao J., Dai Q. Synergistic effect of allophane with intumescent flame retardants on thermal behavior and fire retardancy of polypropylene. Polym. Bull. 2015;72:2089–2104. doi: 10.1007/s00289-015-1391-7. [DOI] [Google Scholar]
  • 159.Zhang S., Tang W., Li L., Li H., Sun J., Gu X., Chen S., Peng X., Bourbigot S. Fabrication of fly ash-based mesoporous aluminosilicate oxides loaded with zinc and its synergistic fire resistancy in polypropylene. J. Vinyl Addit. Technol. 2020;26:135–143. doi: 10.1002/vnl.21726. [DOI] [Google Scholar]
  • 160.de Juan S., Zhang J., Acuña P., Nie S., Liu Z., Zhang W., Luisa Puertas M., Esteban-Cubillo A., Santarén J., Wang D.Y. An efficient approach to improving fire retardancy and smoke suppression for intumescent flame-retardant polypropylene composites via incorporating organo-modified sepiolite. Fire Mater. 2019;43:961–970. doi: 10.1002/fam.2757. [DOI] [Google Scholar]
  • 161.Turgut G., Dogan M., Tayfun U., Ozkoc G. The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship. Polym. Degrad. Stab. 2018;149:96–111. doi: 10.1016/j.polymdegradstab.2018.01.025. [DOI] [Google Scholar]
  • 162.Almirón J., Roudet F., Duquesne S. Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. J. Fire Sci. 2019;37:434–451. doi: 10.1177/0734904119867912. [DOI] [Google Scholar]
  • 163.Doğan M., Yılmaz A., Bayramlı E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites. Polym. Degrad. Stab. 2010;95:2584–2588. doi: 10.1016/j.polymdegradstab.2010.07.033. [DOI] [Google Scholar]
  • 164.Zhou K., Jiang S., Wang B., Shi Y., Liu J., Hong N., Hu Y., Gui Z. Combined effect of transition metal phosphide (MxPy, M= Ni, Co, and Cu) and intumescent flame retardant system on polypropylene. Polym. Adv. Technol. 2014;25:701–710. doi: 10.1002/pat.3273. [DOI] [Google Scholar]
  • 165.Su X., Yi Y., Tao J., Qi H. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2012;97:2128–2135. doi: 10.1016/j.polymdegradstab.2012.08.017. [DOI] [Google Scholar]
  • 166.Zhang Y., Li X., Fang Z., Hull T.R., Kelarakis A., Stec A.A. Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polym. Degrad. Stab. 2017;136:139–145. doi: 10.1016/j.polymdegradstab.2016.12.018. [DOI] [Google Scholar]
  • 167.Pallmann J., Ren Y.L., Mahltig B., Huo T.G. Phosphorylated sodium alginate/APP/DPER intumescent flame retardant used for polypropylene. J. Appl. Polym. Sci. 2019;136:47794. doi: 10.1002/app.47794. [DOI] [Google Scholar]
  • 168.Li J., Lai X., Li H., Zeng X., Liu Y., Zeng Y., Jiang C. Functionalized ZrP nanosheet with free-radical quenching capability and its synergism in intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2019;31:602–615. doi: 10.1002/pat.4801. [DOI] [Google Scholar]
  • 169.Tang W., Zhang S., Sun J., Li H., Liu X., Gu X. Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite. Thermochim. Acta. 2017;648:1–12. doi: 10.1016/j.tca.2016.12.007. [DOI] [Google Scholar]
  • 170.Tang W., Song L., Zhang S., Li H., Sun J., Gu X. Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite. J. Mater. Sci. 2017;52:208–217. doi: 10.1007/s10853-016-0323-8. [DOI] [Google Scholar]
  • 171.Tang W., Zhang S., Gu X., Sun J., Jin X., Li H. Effects of kaolinite nanoroll on the flammability of polypropylene nanocomposites. Appl. Clay Sci. 2016;132:579–588. doi: 10.1016/j.clay.2016.08.008. [DOI] [Google Scholar]
  • 172.Sun W., Tang W., Gu X., Zhang S., Sun J., Li H., Liu X. Synergistic effect of kaolinite/halloysite on the flammability and thermostability of polypropylene. J. Appl. Polym. Sci. 2018;135:46507. doi: 10.1002/app.46507. [DOI] [Google Scholar]
  • 173.Zhang S., Tang W., Guo J., Jin X., Li H., Gu X., Sun J. Improvement of flame retardancy and thermal stability of polypropylene by P-type hydrated silica aluminate containing lanthanum. Polym. Degrad. Stab. 2018;154:276–284. doi: 10.1016/j.polymdegradstab.2018.06.014. [DOI] [Google Scholar]
  • 174.Wen P., Wang D., Liu J., Zhan J., Hu Y., Yuen R.K. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene. Polym. Adv. Technol. 2017;28:679–685. doi: 10.1002/pat.3967. [DOI] [Google Scholar]
  • 175.Yang K., Xu M.-J., Li B. Synthesis of N-ethyl triazine–piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2013;98:1397–1406. doi: 10.1016/j.polymdegradstab.2013.03.023. [DOI] [Google Scholar]
  • 176.Yuan B., Fan A., Yang M., Chen X., Hu Y., Bao C., Jiang S., Niu Y., Zhang Y., He S. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 2017;143:42–56. doi: 10.1016/j.polymdegradstab.2017.06.015. [DOI] [Google Scholar]
  • 177.Yuan B., Sun Y., Chen X., Shi Y., Dai H., He S. Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2018;109:345–354. doi: 10.1016/j.compositesa.2018.03.022. [DOI] [Google Scholar]
  • 178.Gao S., Zhao X., Liu G. Synthesis of tris (2-hydroxyethyl) isocyanurate homopolymer and its application in intumescent flame retarded polypropylene. J. Appl. Polym. Sci. 2017;134 doi: 10.1002/app.44663. [DOI] [Google Scholar]
  • 179.Yang R., Ma B., Zhao H., Li J. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Ind. Eng. Chem. Res. 2016;55:5298–5305. doi: 10.1021/acs.iecr.6b00204. [DOI] [Google Scholar]
  • 180.Liu Y., Wang J.S., Deng C.L., Wang D.Y., Song Y.P., Wang Y.Z. The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems. Polym. Adv. Technol. 2010;21:789–796. doi: 10.1002/pat.1502. [DOI] [Google Scholar]
  • 181.Wang Y., Xu M.-J., Li B. Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites. Polym. Degrad. Stab. 2016;131:20–29. doi: 10.1016/j.polymdegradstab.2016.07.003. [DOI] [Google Scholar]
  • 182.Enescu D., Frache A., Lavaselli M., Monticelli O., Marino F. Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 2013;98:297–305. doi: 10.1016/j.polymdegradstab.2012.09.012. [DOI] [Google Scholar]
  • 183.Zheng Z., Sun H., Li W., Zhong S., Yan J., Cui X., Wang H. Co-microencapsulation of ammonium polyphosphate and aluminum hydroxide in halogen-free and intumescent flame retarding polypropylene. Polym. Compos. 2014;35:715–729. doi: 10.1002/pc.22715. [DOI] [Google Scholar]
  • 184.Tian N., Wen X., Gong J., Ma L., Xue J., Tang T. Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene. Polym. Adv. Technol. 2013;24:653–659. doi: 10.1002/pat.3129. [DOI] [Google Scholar]
  • 185.Wang J.-S., Wang G.-H., Liu Y., Jiao Y.-H., Liu D. Thermal stability, combustion behavior, and toxic gases in fire effluents of an intumescent flame-retarded polypropylene system. Ind. Eng. Chem. Res. 2014;53:6978–6984. doi: 10.1021/ie500262w. [DOI] [Google Scholar]
  • 186.Wu J., Hu Y., Song L., Kang W. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations. J. Fire Sci. 2008;26:399–414. [Google Scholar]
  • 187.Zheng Z., Liu Y., Zhang L., Wang H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J. Mater. Sci. 2016;51:5857–5871. doi: 10.1007/s10853-016-9887-6. [DOI] [Google Scholar]
  • 188.Lai X., Zeng X., Li H., Yin C., Zhang H., Liao F. Synergistic effect of phosphorus-containing nanosponges on intumescent flame-retardant polypropylene. J. Appl. Polym. Sci. 2012;125:1758–1765. doi: 10.1002/app.35646. [DOI] [Google Scholar]
  • 189.Hapuarachchi T.D., Peijs T., Bilotti E. Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polym. Adv. Technol. 2013;24:331–338. doi: 10.1002/pat.3087. [DOI] [Google Scholar]
  • 190.Zaikov G.E., Lomakin S.M. Polymer flame retardancy: A new approach. J. Appl. Polym. Sci. 1998;68:715–725. doi: 10.1002/(SICI)1097-4628(19980502)68:5<715::AID-APP4>3.0.CO;2-R. [DOI] [Google Scholar]
  • 191.Wang D., Echols K., Wilkie C.A. Cone calorimetric and thermogravimetric analysis evaluation of halogen-containing polymer nanocomposites. Fire Mater. Int. J. 2005;29:283–294. doi: 10.1002/fam.885. [DOI] [Google Scholar]

Articles from Polymers are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES