Skip to main content
. 2020 Jul 22;9(8):1756. doi: 10.3390/cells9081756

Table 4.

Performance evaluation of six encoding methods with state-of-the-art model on training benchmark dataset for F. vesca and R. chinensis species.

Dataset Method MCC ACC Sn Sp AUC
Fragaria Vesca DNC 0.829 0.914 0.926 0.903 0.96
TNC 0.825 0.912 0.916 0.909 0.96
NCP 0.797 0.898 0.922 0.874 0.95
BE 0.760 0.879 0.905 0.854 094
NCPNF 0.782 0.891 0.907 0.874 0.95
MMI 0.659 0.829 0.864 0.794 0.90
i4mC-ROSE 0.545 0.767 0.635 0.899 0.88
Rosa Chinensis DNC 0.828 0.914 0.919 0.910 0.96
TNC 0.811 0.906 0.906 0.906 0.96
NCP 0.811 0.906 0.901 0.910 0.96
BE 0.805 0.903 0.891 0.914 0.95
NCPNF 0.794 0.897 0.892 0.901 0.95
MMI 0.691 0.846 0.833 0.858 0.92
i4mC-ROSE 0.563 0.784 0.668 0.900 0.89