Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Aug 28;76(Pt 9):1525–1527. doi: 10.1107/S2056989020011160

Crystal structure of bis­[(R,R)-1,2-(bi­naph­thyl­phospho­nito)ethane]­dichlorido­iron(II) di­chloro­methane disolvate

Benjamin E Rennie a, Alan J Lough a,*, Robert H Morris a
PMCID: PMC7472749  PMID: 32939312

In the title compound, the FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two (R,R)-1,2-bis­(bi­naphthyl­phospho­nito)ethane (BPE) ligands and two Cl ligands in a distorted cis-FeCl2P4 octa­hedral coordination geometry. Weak C—H⋯O and C—H⋯π inter­actions occur in the crystal.

Keywords: crystal structure, BINAP, BINOL, asymmetric catalysis

Abstract

In the title compound (systematic name: bis­{1,2-bis[12,14-dioxa-13-phospha­penta­cyclo­[13.8.0.02,11.03,8.018,23]tricosa-1(15),2(11),3(8),4,6,9,16,18(23),19,21-deca­en-13-yl]ethane}­dichlorido­iron(II) di­chloro­methane disolvate), [FeCl2(C42H28O4P2)2]·2CH2Cl2, the FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two (R,R)-1,2-bis­(bi­naphthyl­phospho­n­ito)ethane (BPE) ligands and two Cl ligands in a distorted cis-FeCl2P4 octa­hedral coordination geometry. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules into layers lying parallel to (001). A weak intra­molecular C—H⋯O hydrogen bond is also observed. The asymmetric unit contains one CH2Cl2 solvent mol­ecule, which is disordered over two sets of site with refined occupancies in the ratio 0.700 (6):0.300 (6).

Chemical context  

The ligand (R,R)- or (S,S)-1,2-bis­(bi­naphthyl­phospho­nito)ethane (C42H28O4P2; BPE) prepared from either (R)- or (S)-1,1′-bi(2-naphthol) (C20H14O2; BINOL) has been used extensively in asymmetric catalysis, as has the related ligand (R) or (S)-2,2′-bis­(di­phenyl­phosphino)-1,1′-binaphthyl (C44H32P2; BINAP). For example, the BINAP ligand has been coordinated to ruthenium and used for the asymmetric hydrogenation of ketones (Doucet et al., 1998), among many other examples. The BINAP ligand has also been coordinated to iron (Vogler, 2016) to make the complex [FeCl2(BINAP)2]. The BPE ligand and similar bidentate and monodentate phospho­nite ligands have been coordinated to rhodium and iridium and used for asymmetric alkene and quinoline hydrogenation reactions, respectively (Claver et al., 2000; Norman et al., 2008; Reetz & Li, 2006), and to ruthenium for asymmetric transfer hydrogenation (Guo et al., 2005a ,b ).graphic file with name e-76-01525-scheme1.jpg

As an extension of these studies, we now describe the synthesis and crystal structure of the iron(II) complex FeCl2(BPE)2, which crystallized as a di­chloro­methane solvate.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two BPE ligands and two Cl ligands in a distorted cis-FeCl2P4 octa­hedral coordination geometry. The largest distortion from ideal coordination geometry is the P2—Fe—P2i angle of 108.49 (7)° (see Table 1 for symmetry codes). The distortion is based on steric grounds involving the bulky bi­naphthyl­phospho­nito ligands. The Fe—P distances are the same within experimental error. The P atoms are bonded to two O atoms, one C atom and coordinated to the FeII ion in distorted tetra­hedral geometries. The dihedral angles between the naphthalene rings in the BPE ligands (C1–C10/C11–20 and C21–C30/C31–C40) are the same, with values of 54.5 (2)°. A weak intra­molecular C—H⋯O hydrogen bond is observed (Table 2). The asymmetric unit contains one CH2Cl2 solvent mol­ecule, which is disordered over two sets of sites with refined occupancies in the ratio 0.700 (6):0.300 (6).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with 30% probability ellipsoids. Unlabeled atoms are related by the symmetry operator (y, x, −z + 1) and for the sake of clarity the disordered solvent mol­ecule is not shown.

Table 1. Selected geometric parameters (Å, °).

Fe1—P2 2.1594 (11) Fe1—P1 2.1952 (10)
Fe1—P2i 2.1595 (11) Fe1—Cl1i 2.3422 (11)
Fe1—P1i 2.1952 (10) Fe1—Cl1 2.3423 (11)
       
P2—Fe1—P2i 108.49 (7) P1—Fe1—Cl1i 88.52 (4)
P2—Fe1—P1i 93.40 (4) P2—Fe1—Cl1 170.02 (5)
P2—Fe1—P1 85.30 (4) P1—Fe1—Cl1 93.07 (4)
P1i—Fe1—P1 177.78 (7) Cl1i—Fe1—Cl1 88.69 (6)
P2—Fe1—Cl1i 81.43 (4)    

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32A⋯O4i 0.95 2.42 3.280 (5) 150
C35—H35A⋯O1ii 0.95 2.38 3.293 (5) 162
C7—H7ACg2iii 0.95 2.57 3.516 (6) 178
C17—H17ACg3iii 0.95 2.59 3.396 (6) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into sheets parallel to (001) (Table 2 and Fig. 2). Within these layers weak C—H⋯π inter­actions also occur, and the centroid–centroid distance Cg2⋯Cg2(y, −1 + x, 1 − z) of 4.171 (5) Å (where Cg2 is the centroid of the C4–C9 benzene ring) may be a very weak π-stacking inter­action.

Figure 2.

Figure 2

Part of the crystal structure of the title compound showing the formation of [100] chains linked by weak C—H⋯O hydrogen bonds shown as blue lines. The disordered di­chloro­methane solvent mol­ecules are not shown.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016) showed surprisingly that the title complex is the first iron(II) dichloride crystal structure with bidentate phospho­rus donors with P—O-bonded substituents. There are 36 structures of related iron diphosphine complexes FeCl2(P2)2 (P2 = a diphosphine) with P—C bonds reported. The majority, 33 complexes, crystallize with the chloride ions trans to each other, while there are three examples where the chloride ions are cis, as in the title complex. The complex trans-FeCl2(1,2-bis­(di­phenyl­phosphino)ethyl­ene)2, for example, crystallizes with the chloride ions trans (Cecconi et al., 1981). An example with cis chloride ions is the complex cis-FeCl2(1,2-di­phospho­lano­ethane)2 (Field et al., 1998). In the trans complexes, the Fe—Cl distances range from 2.21 to 2.38 Å with 22 structures having a distance of 2.34–2.37 Å. This compares with the distances of 2.3422 (11) and 2.3423 (11) Å in the title complex.

Synthesis and crystallization  

The ligand was synthesized according to a literature procedure using (R)-BINOL (Steinmetz et al., 1999). The iron complex was synthesized as follows: in a nitro­gen-filled glovebox, FeCl2·1.5THF (6.0 mg, 0.030 mmol, 1 equivalent) was combined with (R,R)-BPE (50 mg, 0.08 mmol, 3 equivalents) in 10 ml THF and stirred in a 20 ml dram vial for 24 h. The THF was vacuumed off to yield a brown powder: 31P{1H} NMR (202 MHz, C6D6): 257.72 ppm, singlet.

To purify, the powder was dissolved in a minimum of DCM, precipitated out with addition of diethyl ether, and filtered over a glass frit. The precipitate collected on the frit was re-dissolved in DCM, and re-purified by the same procedure twice more. To obtain crystals, a concentrated DCM solution of the purified complex was left in a closed 20 ml dram vial in a nitro­gen-filled glovebox for approximately one week at least, depending on the exact concentration. The crystals were orange coloured. Attempts to convert this complex into a hydride complex were unsuccessful.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were included in calculated positions with C—H = 0.95 and 0.99 Å for aromatic and methyl­ene C atoms, respectively, and were included in a riding-model approximation with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [FeCl2(C42H28O4P2)2]·2CH2Cl2
M r 1613.77
Crystal system, space group Tetragonal, P43212
Temperature (K) 150
a, c (Å) 11.9850 (3), 52.4508 (14)
V3) 7534.0 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.84
Crystal size (mm) 0.09 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.649, 0.740
No. of measured, independent and observed [I > 2σ(I)] reflections 97444, 6829, 6096
R int 0.109
(sin θ/λ)max−1) 0.600
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.110, 1.04
No. of reflections 6829
No. of parameters 502
No. of restraints 51
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.65
Absolute structure Flack x determined using 2237 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.004 (4)

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), PLATON (Spek, 2020) and SHELXTL (Sheldrick, 2008).

The major component of the disordered CH2Cl2 solvent mol­ecule was refined without restraints while the minor component was restrained to have similar geometry and anisotropic displacement parameters to the major component using the SAME and SADI instructions in SHELXL (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011160/hb7939sup1.cif

e-76-01525-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011160/hb7939Isup2.hkl

e-76-01525-Isup2.hkl (543KB, hkl)

CCDC reference: 2023248

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[FeCl2(C42H28O4P2)2]·2CH2Cl2 Dx = 1.423 Mg m3
Mr = 1613.77 Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P43212 Cell parameters from 6128 reflections
a = 11.9850 (3) Å θ = 3.4–67.3°
c = 52.4508 (14) Å µ = 4.84 mm1
V = 7534.0 (4) Å3 T = 150 K
Z = 4 Shard, orange
F(000) = 3312 0.09 × 0.04 × 0.02 mm

Data collection

Bruker Kappa APEX DUO CCD diffractometer 6096 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer optics Rint = 0.109
φ and ω scans θmax = 67.8°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −14→14
Tmin = 0.649, Tmax = 0.740 k = −14→14
97444 measured reflections l = −62→60
6829 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0538P)2 + 2.6304P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max = 0.002
S = 1.04 Δρmax = 0.39 e Å3
6829 reflections Δρmin = −0.65 e Å3
502 parameters Absolute structure: Flack x determined using 2237 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
51 restraints Absolute structure parameter: 0.004 (4)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.48561 (5) 0.48561 (5) 0.500000 0.0307 (2)
Cl1 0.56836 (9) 0.60053 (9) 0.53078 (2) 0.0399 (2)
P1 0.61181 (9) 0.35440 (9) 0.50461 (2) 0.0337 (2)
P2 0.43146 (9) 0.39087 (9) 0.46724 (2) 0.0323 (2)
O1 0.7416 (2) 0.3808 (3) 0.49888 (5) 0.0372 (6)
O2 0.6217 (2) 0.2921 (2) 0.53178 (5) 0.0353 (6)
O3 0.4019 (2) 0.4596 (2) 0.44174 (5) 0.0339 (6)
O4 0.3269 (2) 0.3037 (2) 0.46814 (5) 0.0344 (6)
C1 0.7004 (4) 0.2060 (4) 0.53373 (7) 0.0361 (9)
C2 0.6581 (4) 0.0978 (4) 0.53413 (8) 0.0418 (10)
H2A 0.579905 0.085380 0.533196 0.050*
C3 0.7300 (4) 0.0097 (4) 0.53589 (10) 0.0496 (11)
H3A 0.701999 −0.064416 0.536442 0.060*
C4 0.8463 (4) 0.0293 (4) 0.53688 (11) 0.0537 (12)
C5 0.9218 (6) −0.0627 (6) 0.53717 (18) 0.089 (2)
H5A 0.893658 −0.136769 0.536834 0.107*
C6 1.0334 (6) −0.0449 (6) 0.5379 (2) 0.113 (3)
H6A 1.083186 −0.106547 0.538366 0.136*
C7 1.0754 (5) 0.0636 (6) 0.53811 (19) 0.092 (3)
H7A 1.153776 0.074929 0.539014 0.111*
C8 1.0064 (4) 0.1537 (5) 0.53701 (12) 0.0591 (14)
H8A 1.037188 0.226617 0.536235 0.071*
C9 0.8892 (4) 0.1397 (4) 0.53701 (9) 0.0456 (11)
C10 0.8124 (4) 0.2319 (4) 0.53615 (8) 0.0373 (9)
C11 0.8094 (3) 0.4228 (4) 0.51800 (8) 0.0379 (9)
C12 0.8427 (4) 0.5346 (4) 0.51600 (9) 0.0465 (11)
H12A 0.813430 0.580538 0.502853 0.056*
C13 0.9167 (4) 0.5764 (4) 0.53291 (10) 0.0492 (11)
H13A 0.942837 0.650745 0.530978 0.059*
C14 0.9554 (4) 0.5108 (4) 0.55342 (9) 0.0474 (11)
C15 1.0300 (4) 0.5549 (5) 0.57174 (10) 0.0575 (14)
H15A 1.055261 0.629720 0.570101 0.069*
C16 1.0661 (4) 0.4915 (6) 0.59175 (10) 0.0643 (16)
H16A 1.117585 0.521650 0.603679 0.077*
C17 1.0269 (4) 0.3816 (6) 0.59468 (9) 0.0601 (15)
H17A 1.050230 0.338638 0.608946 0.072*
C18 0.9563 (4) 0.3363 (5) 0.57739 (9) 0.0508 (12)
H18A 0.930467 0.262106 0.579789 0.061*
C19 0.9200 (4) 0.3976 (4) 0.55571 (8) 0.0426 (10)
C20 0.8477 (4) 0.3513 (4) 0.53680 (8) 0.0371 (9)
C21 0.3784 (3) 0.3994 (3) 0.41950 (7) 0.0335 (8)
C22 0.4624 (4) 0.3994 (4) 0.40081 (7) 0.0362 (9)
H22A 0.531106 0.436819 0.403744 0.043*
C23 0.4439 (4) 0.3446 (4) 0.37837 (7) 0.0389 (10)
H23A 0.499050 0.346153 0.365362 0.047*
C24 0.3424 (4) 0.2853 (4) 0.37431 (7) 0.0363 (9)
C25 0.3247 (4) 0.2241 (4) 0.35164 (8) 0.0417 (10)
H25A 0.380036 0.224733 0.338670 0.050*
C26 0.2295 (5) 0.1645 (4) 0.34819 (8) 0.0500 (12)
H26A 0.217885 0.125179 0.332686 0.060*
C27 0.1484 (4) 0.1608 (4) 0.36740 (9) 0.0481 (11)
H27A 0.083146 0.116987 0.365020 0.058*
C28 0.1619 (4) 0.2196 (4) 0.38956 (8) 0.0427 (10)
H28A 0.106033 0.216276 0.402372 0.051*
C29 0.2589 (4) 0.2855 (4) 0.39357 (7) 0.0355 (9)
C30 0.2764 (4) 0.3487 (4) 0.41655 (7) 0.0333 (9)
C31 0.2185 (4) 0.3375 (4) 0.46197 (7) 0.0339 (9)
C32 0.1400 (4) 0.3397 (4) 0.48183 (7) 0.0373 (9)
H32A 0.162733 0.324610 0.498837 0.045*
C33 0.0315 (4) 0.3634 (4) 0.47672 (8) 0.0393 (9)
H33A −0.022239 0.360296 0.490023 0.047*
C34 −0.0025 (4) 0.3928 (4) 0.45168 (8) 0.0388 (9)
C35 −0.1140 (4) 0.4256 (4) 0.44645 (9) 0.0450 (11)
H35A −0.167964 0.422774 0.459712 0.054*
C36 −0.1453 (4) 0.4611 (5) 0.42290 (9) 0.0551 (13)
H36A −0.220192 0.482903 0.419637 0.066*
C37 −0.0645 (4) 0.4647 (5) 0.40342 (9) 0.0516 (12)
H37A −0.085610 0.489889 0.386940 0.062*
C38 0.0438 (4) 0.4330 (4) 0.40761 (8) 0.0427 (10)
H38A 0.096525 0.437562 0.394122 0.051*
C39 0.0780 (4) 0.3936 (4) 0.43172 (8) 0.0361 (9)
C40 0.1903 (3) 0.3591 (3) 0.43689 (7) 0.0323 (8)
C41 0.5918 (4) 0.2427 (4) 0.48152 (8) 0.0401 (10)
H41A 0.664247 0.207405 0.477382 0.048*
H41B 0.541652 0.184854 0.488634 0.048*
C42 0.5401 (4) 0.2936 (4) 0.45746 (7) 0.0373 (9)
H42A 0.507843 0.234114 0.446639 0.045*
H42B 0.597990 0.333187 0.447484 0.045*
Cl2 −0.2595 (4) 0.2896 (5) 0.33679 (12) 0.169 (2) 0.700 (6)
Cl3 −0.1596 (4) 0.1350 (3) 0.36972 (10) 0.1311 (17) 0.700 (6)
C1S −0.1387 (12) 0.2258 (12) 0.3414 (3) 0.097 (4) 0.700 (6)
H1SA −0.078690 0.280818 0.344595 0.116* 0.700 (6)
H1SB −0.118299 0.180567 0.326295 0.116* 0.700 (6)
Cl4 −0.1512 (15) 0.0882 (16) 0.4023 (3) 0.218 (7) 0.300 (6)
Cl5 −0.1366 (19) 0.188 (2) 0.3518 (3) 0.222 (7) 0.300 (6)
C2S −0.182 (3) 0.200 (2) 0.3855 (4) 0.125 (7) 0.300 (6)
H2SB −0.144838 0.265583 0.393264 0.150* 0.300 (6)
H2SA −0.263197 0.212535 0.386018 0.150* 0.300 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0364 (3) 0.0364 (3) 0.0193 (4) 0.0046 (3) −0.0013 (2) 0.0013 (2)
Cl1 0.0458 (5) 0.0441 (5) 0.0298 (5) 0.0011 (4) −0.0063 (4) −0.0011 (4)
P1 0.0381 (5) 0.0413 (5) 0.0218 (5) 0.0066 (4) −0.0013 (4) 0.0015 (4)
P2 0.0380 (5) 0.0394 (5) 0.0197 (4) 0.0048 (4) −0.0016 (4) 0.0007 (4)
O1 0.0394 (15) 0.0482 (16) 0.0240 (12) 0.0076 (12) 0.0029 (12) 0.0035 (13)
O2 0.0358 (15) 0.0446 (16) 0.0255 (13) 0.0077 (13) 0.0001 (11) 0.0056 (12)
O3 0.0424 (15) 0.0400 (15) 0.0192 (12) 0.0026 (12) −0.0036 (11) 0.0007 (10)
O4 0.0382 (15) 0.0406 (15) 0.0244 (12) 0.0027 (12) −0.0025 (11) 0.0038 (11)
C1 0.037 (2) 0.046 (2) 0.0252 (18) 0.0081 (19) 0.0008 (16) 0.0047 (17)
C2 0.042 (2) 0.049 (3) 0.034 (2) 0.000 (2) −0.0020 (19) 0.0056 (19)
C3 0.052 (3) 0.042 (3) 0.054 (3) 0.003 (2) 0.002 (2) 0.013 (2)
C4 0.048 (3) 0.047 (3) 0.066 (3) 0.014 (2) 0.010 (2) 0.015 (2)
C5 0.064 (4) 0.050 (3) 0.153 (7) 0.020 (3) 0.022 (4) 0.029 (4)
C6 0.053 (4) 0.065 (4) 0.221 (10) 0.025 (3) 0.039 (5) 0.048 (5)
C7 0.042 (3) 0.066 (4) 0.169 (8) 0.016 (3) 0.021 (4) 0.039 (4)
C8 0.039 (3) 0.057 (3) 0.081 (4) 0.005 (2) 0.010 (2) 0.020 (3)
C9 0.038 (2) 0.052 (3) 0.047 (2) 0.006 (2) 0.0070 (19) 0.015 (2)
C10 0.038 (2) 0.045 (2) 0.0290 (19) 0.0054 (18) 0.0019 (16) 0.0065 (17)
C11 0.033 (2) 0.049 (3) 0.031 (2) 0.0058 (19) 0.0021 (17) 0.0019 (18)
C12 0.046 (2) 0.046 (3) 0.047 (3) 0.007 (2) 0.004 (2) 0.008 (2)
C13 0.045 (3) 0.045 (3) 0.058 (3) 0.003 (2) 0.001 (2) −0.006 (2)
C14 0.040 (2) 0.055 (3) 0.047 (3) 0.005 (2) 0.004 (2) −0.006 (2)
C15 0.043 (3) 0.073 (4) 0.057 (3) 0.000 (3) −0.001 (2) −0.022 (3)
C16 0.040 (2) 0.109 (5) 0.044 (3) 0.003 (3) −0.005 (2) −0.018 (3)
C17 0.039 (3) 0.104 (5) 0.037 (2) 0.012 (3) −0.002 (2) 0.001 (3)
C18 0.040 (2) 0.078 (4) 0.034 (2) 0.005 (2) −0.0028 (19) 0.005 (2)
C19 0.033 (2) 0.060 (3) 0.036 (2) 0.003 (2) 0.0031 (17) −0.001 (2)
C20 0.033 (2) 0.048 (2) 0.030 (2) 0.0043 (19) 0.0025 (16) 0.0026 (18)
C21 0.042 (2) 0.038 (2) 0.0201 (17) 0.0032 (17) −0.0021 (15) −0.0026 (15)
C22 0.039 (2) 0.044 (2) 0.0254 (18) −0.0003 (18) −0.0006 (16) 0.0036 (16)
C23 0.046 (2) 0.050 (2) 0.0207 (18) 0.006 (2) 0.0026 (16) 0.0035 (17)
C24 0.046 (2) 0.041 (2) 0.0213 (18) 0.0038 (19) 0.0014 (16) 0.0027 (16)
C25 0.057 (3) 0.045 (2) 0.0236 (19) 0.002 (2) 0.0025 (18) −0.0011 (17)
C26 0.073 (3) 0.051 (3) 0.026 (2) −0.001 (2) −0.007 (2) −0.0067 (19)
C27 0.056 (3) 0.051 (3) 0.037 (2) −0.010 (2) −0.009 (2) −0.003 (2)
C28 0.046 (2) 0.053 (3) 0.029 (2) −0.003 (2) 0.0014 (18) −0.0013 (18)
C29 0.043 (2) 0.040 (2) 0.0235 (18) 0.0018 (18) −0.0021 (16) 0.0001 (16)
C30 0.041 (2) 0.037 (2) 0.0221 (17) 0.0039 (18) −0.0010 (16) 0.0013 (16)
C31 0.038 (2) 0.037 (2) 0.0266 (19) 0.0005 (17) −0.0017 (16) 0.0000 (16)
C32 0.042 (2) 0.046 (2) 0.0237 (18) 0.0016 (19) −0.0004 (16) 0.0028 (17)
C33 0.043 (2) 0.046 (2) 0.029 (2) 0.002 (2) 0.0062 (17) 0.0038 (17)
C34 0.041 (2) 0.043 (2) 0.033 (2) 0.0012 (19) 0.0018 (18) 0.0005 (17)
C35 0.037 (2) 0.058 (3) 0.040 (2) 0.004 (2) 0.0042 (19) 0.004 (2)
C36 0.041 (2) 0.080 (4) 0.044 (3) 0.012 (3) 0.000 (2) 0.013 (3)
C37 0.045 (2) 0.076 (4) 0.033 (2) 0.008 (3) −0.0032 (19) 0.014 (2)
C38 0.043 (2) 0.058 (3) 0.028 (2) 0.003 (2) −0.0006 (17) 0.0039 (19)
C39 0.041 (2) 0.041 (2) 0.0261 (19) −0.0013 (19) 0.0011 (16) −0.0008 (17)
C40 0.036 (2) 0.035 (2) 0.0253 (18) 0.0004 (17) −0.0027 (16) −0.0011 (15)
C41 0.049 (3) 0.042 (2) 0.029 (2) 0.009 (2) 0.0003 (18) 0.0005 (17)
C42 0.043 (2) 0.045 (2) 0.0238 (18) 0.0063 (19) −0.0004 (16) −0.0047 (17)
Cl2 0.100 (3) 0.182 (5) 0.225 (5) 0.005 (3) −0.006 (3) 0.093 (4)
Cl3 0.100 (2) 0.102 (3) 0.191 (5) −0.0034 (19) −0.034 (3) 0.026 (3)
C1S 0.098 (7) 0.088 (7) 0.105 (8) −0.010 (6) −0.023 (6) 0.051 (6)
Cl4 0.190 (11) 0.248 (14) 0.216 (13) −0.008 (12) 0.029 (11) 0.023 (11)
Cl5 0.201 (12) 0.225 (14) 0.241 (15) 0.000 (12) −0.008 (13) −0.052 (12)
C2S 0.135 (14) 0.110 (14) 0.130 (14) −0.003 (13) 0.025 (13) −0.071 (12)

Geometric parameters (Å, º)

Fe1—P2 2.1594 (11) C19—C20 1.429 (6)
Fe1—P2i 2.1595 (11) C21—C30 1.375 (6)
Fe1—P1i 2.1952 (10) C21—C22 1.405 (6)
Fe1—P1 2.1952 (10) C22—C23 1.366 (6)
Fe1—Cl1i 2.3422 (11) C22—H22A 0.9500
Fe1—Cl1 2.3423 (11) C23—C24 1.426 (7)
P1—O2 1.613 (3) C23—H23A 0.9500
P1—O1 1.616 (3) C24—C25 1.413 (6)
P1—C41 1.821 (4) C24—C29 1.422 (6)
P2—O3 1.611 (3) C25—C26 1.359 (7)
P2—O4 1.632 (3) C25—H25A 0.9500
P2—C42 1.821 (4) C26—C27 1.401 (8)
O1—C11 1.386 (5) C26—H26A 0.9500
O2—C1 1.401 (5) C27—C28 1.369 (6)
O3—C21 1.400 (5) C27—H27A 0.9500
O4—C31 1.398 (5) C28—C29 1.420 (6)
C1—C10 1.384 (6) C28—H28A 0.9500
C1—C2 1.393 (7) C29—C30 1.439 (6)
C2—C3 1.366 (7) C30—C40 1.489 (6)
C2—H2A 0.9500 C31—C40 1.383 (6)
C3—C4 1.415 (7) C31—C32 1.404 (6)
C3—H3A 0.9500 C32—C33 1.358 (7)
C4—C9 1.419 (8) C32—H32A 0.9500
C4—C5 1.426 (8) C33—C34 1.419 (6)
C5—C6 1.355 (10) C33—H33A 0.9500
C5—H5A 0.9500 C34—C35 1.420 (7)
C6—C7 1.395 (11) C34—C39 1.423 (6)
C6—H6A 0.9500 C35—C36 1.359 (7)
C7—C8 1.361 (8) C35—H35A 0.9500
C7—H7A 0.9500 C36—C37 1.409 (7)
C8—C9 1.415 (7) C36—H36A 0.9500
C8—H8A 0.9500 C37—C38 1.370 (7)
C9—C10 1.439 (6) C37—H37A 0.9500
C10—C20 1.493 (7) C38—C39 1.411 (6)
C11—C20 1.385 (6) C38—H38A 0.9500
C11—C12 1.401 (7) C39—C40 1.434 (6)
C12—C13 1.350 (7) C41—C42 1.532 (6)
C12—H12A 0.9500 C41—H41A 0.9900
C13—C14 1.411 (7) C41—H41B 0.9900
C13—H13A 0.9500 C42—H42A 0.9900
C14—C15 1.415 (7) C42—H42B 0.9900
C14—C19 1.426 (8) Cl2—C1S 1.656 (15)
C15—C16 1.366 (9) Cl3—C1S 1.859 (11)
C15—H15A 0.9500 C1S—H1SA 0.9900
C16—C17 1.408 (10) C1S—H1SB 0.9900
C16—H16A 0.9500 Cl4—C2S 1.644 (18)
C17—C18 1.354 (8) Cl5—C2S 1.852 (15)
C17—H17A 0.9500 C2S—H2SB 0.9900
C18—C19 1.422 (7) C2S—H2SA 0.9900
C18—H18A 0.9500
P2—Fe1—P2i 108.49 (7) C11—C20—C19 117.0 (4)
P2—Fe1—P1i 93.40 (4) C11—C20—C10 118.9 (4)
P2i—Fe1—P1i 85.30 (4) C19—C20—C10 124.0 (4)
P2—Fe1—P1 85.30 (4) C30—C21—O3 120.0 (3)
P2i—Fe1—P1 93.40 (4) C30—C21—C22 124.0 (4)
P1i—Fe1—P1 177.78 (7) O3—C21—C22 115.9 (4)
P2—Fe1—Cl1i 81.43 (4) C23—C22—C21 119.0 (4)
P2i—Fe1—Cl1i 170.01 (5) C23—C22—H22A 120.5
P1i—Fe1—Cl1i 93.07 (4) C21—C22—H22A 120.5
P1—Fe1—Cl1i 88.52 (4) C22—C23—C24 120.5 (4)
P2—Fe1—Cl1 170.02 (5) C22—C23—H23A 119.8
P2i—Fe1—Cl1 81.43 (4) C24—C23—H23A 119.8
P1i—Fe1—Cl1 88.51 (4) C25—C24—C29 119.6 (4)
P1—Fe1—Cl1 93.07 (4) C25—C24—C23 120.8 (4)
Cl1i—Fe1—Cl1 88.69 (6) C29—C24—C23 119.6 (4)
O2—P1—O1 100.60 (15) C26—C25—C24 120.7 (4)
O2—P1—C41 104.87 (18) C26—C25—H25A 119.6
O1—P1—C41 98.46 (19) C24—C25—H25A 119.6
O2—P1—Fe1 118.67 (11) C25—C26—C27 120.2 (4)
O1—P1—Fe1 120.18 (12) C25—C26—H26A 119.9
C41—P1—Fe1 111.26 (15) C27—C26—H26A 119.9
O3—P2—O4 100.52 (14) C28—C27—C26 120.8 (4)
O3—P2—C42 104.53 (17) C28—C27—H27A 119.6
O4—P2—C42 98.48 (18) C26—C27—H27A 119.6
O3—P2—Fe1 117.25 (11) C27—C28—C29 120.6 (4)
O4—P2—Fe1 122.98 (11) C27—C28—H28A 119.7
C42—P2—Fe1 110.23 (14) C29—C28—H28A 119.7
C11—O1—P1 120.1 (2) C28—C29—C24 118.0 (4)
C1—O2—P1 117.1 (2) C28—C29—C30 122.4 (4)
C21—O3—P2 118.2 (2) C24—C29—C30 119.6 (4)
C31—O4—P2 121.4 (3) C21—C30—C29 117.2 (4)
C10—C1—C2 124.1 (4) C21—C30—C40 119.9 (4)
C10—C1—O2 119.6 (4) C29—C30—C40 122.9 (4)
C2—C1—O2 116.2 (4) C40—C31—O4 120.1 (4)
C3—C2—C1 119.4 (4) C40—C31—C32 122.6 (4)
C3—C2—H2A 120.3 O4—C31—C32 117.2 (3)
C1—C2—H2A 120.3 C33—C32—C31 120.0 (4)
C2—C3—C4 119.7 (5) C33—C32—H32A 120.0
C2—C3—H3A 120.1 C31—C32—H32A 120.0
C4—C3—H3A 120.1 C32—C33—C34 120.6 (4)
C3—C4—C9 120.8 (4) C32—C33—H33A 119.7
C3—C4—C5 119.8 (5) C34—C33—H33A 119.7
C9—C4—C5 119.4 (5) C33—C34—C35 121.1 (4)
C6—C5—C4 120.3 (7) C33—C34—C39 119.2 (4)
C6—C5—H5A 119.8 C35—C34—C39 119.6 (4)
C4—C5—H5A 119.8 C36—C35—C34 121.5 (4)
C5—C6—C7 120.2 (6) C36—C35—H35A 119.3
C5—C6—H6A 119.9 C34—C35—H35A 119.3
C7—C6—H6A 119.9 C35—C36—C37 118.6 (5)
C8—C7—C6 121.3 (6) C35—C36—H36A 120.7
C8—C7—H7A 119.3 C37—C36—H36A 120.7
C6—C7—H7A 119.3 C38—C37—C36 121.8 (4)
C7—C8—C9 120.6 (5) C38—C37—H37A 119.1
C7—C8—H8A 119.7 C36—C37—H37A 119.1
C9—C8—H8A 119.7 C37—C38—C39 120.8 (4)
C8—C9—C4 118.0 (4) C37—C38—H38A 119.6
C8—C9—C10 122.9 (5) C39—C38—H38A 119.6
C4—C9—C10 119.0 (4) C38—C39—C34 117.7 (4)
C1—C10—C9 116.8 (4) C38—C39—C40 122.6 (4)
C1—C10—C20 119.4 (4) C34—C39—C40 119.7 (4)
C9—C10—C20 123.7 (4) C31—C40—C39 117.6 (4)
C20—C11—O1 119.0 (4) C31—C40—C30 119.8 (4)
C20—C11—C12 123.4 (4) C39—C40—C30 122.6 (3)
O1—C11—C12 117.4 (4) C42—C41—P1 107.9 (3)
C13—C12—C11 119.5 (5) C42—C41—H41A 110.1
C13—C12—H12A 120.2 P1—C41—H41A 110.1
C11—C12—H12A 120.2 C42—C41—H41B 110.1
C12—C13—C14 120.6 (5) P1—C41—H41B 110.1
C12—C13—H13A 119.7 H41A—C41—H41B 108.4
C14—C13—H13A 119.7 C41—C42—P2 108.2 (3)
C13—C14—C15 121.1 (5) C41—C42—H42A 110.1
C13—C14—C19 119.7 (4) P2—C42—H42A 110.1
C15—C14—C19 119.1 (5) C41—C42—H42B 110.1
C16—C15—C14 120.9 (6) P2—C42—H42B 110.1
C16—C15—H15A 119.5 H42A—C42—H42B 108.4
C14—C15—H15A 119.5 Cl2—C1S—Cl3 105.6 (8)
C15—C16—C17 119.9 (5) Cl2—C1S—H1SA 110.6
C15—C16—H16A 120.0 Cl3—C1S—H1SA 110.6
C17—C16—H16A 120.0 Cl2—C1S—H1SB 110.6
C18—C17—C16 120.7 (5) Cl3—C1S—H1SB 110.6
C18—C17—H17A 119.7 H1SA—C1S—H1SB 108.7
C16—C17—H17A 119.7 Cl4—C2S—Cl5 112.5 (14)
C17—C18—C19 121.3 (6) Cl4—C2S—H2SB 109.1
C17—C18—H18A 119.3 Cl5—C2S—H2SB 109.1
C19—C18—H18A 119.3 Cl4—C2S—H2SA 109.1
C18—C19—C14 117.9 (5) Cl5—C2S—H2SA 109.1
C18—C19—C20 122.7 (5) H2SB—C2S—H2SA 107.8
C14—C19—C20 119.4 (4)
O2—P1—O1—C11 −44.5 (3) C1—C10—C20—C19 130.0 (4)
C41—P1—O1—C11 −151.5 (3) C9—C10—C20—C19 −52.3 (6)
Fe1—P1—O1—C11 87.8 (3) P2—O3—C21—C30 76.9 (4)
O1—P1—O2—C1 −49.0 (3) P2—O3—C21—C22 −105.7 (4)
C41—P1—O2—C1 52.8 (3) C30—C21—C22—C23 −1.0 (7)
Fe1—P1—O2—C1 177.7 (3) O3—C21—C22—C23 −178.3 (4)
O4—P2—O3—C21 −50.9 (3) C21—C22—C23—C24 −2.1 (6)
C42—P2—O3—C21 50.8 (3) C22—C23—C24—C25 −177.0 (4)
Fe1—P2—O3—C21 173.2 (2) C22—C23—C24—C29 1.5 (6)
O3—P2—O4—C31 −40.3 (3) C29—C24—C25—C26 −0.8 (7)
C42—P2—O4—C31 −146.9 (3) C23—C24—C25—C26 177.7 (4)
Fe1—P2—O4—C31 92.2 (3) C24—C25—C26—C27 −1.5 (8)
P1—O2—C1—C10 76.8 (4) C25—C26—C27—C28 2.0 (8)
P1—O2—C1—C2 −105.8 (4) C26—C27—C28—C29 −0.1 (8)
C10—C1—C2—C3 −3.0 (7) C27—C28—C29—C24 −2.1 (7)
O2—C1—C2—C3 179.7 (4) C27—C28—C29—C30 179.9 (4)
C1—C2—C3—C4 −1.0 (7) C25—C24—C29—C28 2.6 (6)
C2—C3—C4—C9 2.3 (8) C23—C24—C29—C28 −176.0 (4)
C2—C3—C4—C5 −176.3 (6) C25—C24—C29—C30 −179.3 (4)
C3—C4—C5—C6 179.5 (8) C23—C24—C29—C30 2.1 (6)
C9—C4—C5—C6 0.9 (12) O3—C21—C30—C29 −178.2 (4)
C4—C5—C6—C7 −0.8 (16) C22—C21—C30—C29 4.6 (6)
C5—C6—C7—C8 −1.3 (16) O3—C21—C30—C40 0.7 (6)
C6—C7—C8—C9 3.4 (13) C22—C21—C30—C40 −176.4 (4)
C7—C8—C9—C4 −3.2 (9) C28—C29—C30—C21 173.0 (4)
C7—C8—C9—C10 179.3 (6) C24—C29—C30—C21 −5.0 (6)
C3—C4—C9—C8 −177.6 (5) C28—C29—C30—C40 −5.9 (7)
C5—C4—C9—C8 1.0 (8) C24—C29—C30—C40 176.1 (4)
C3—C4—C9—C10 0.0 (7) P2—O4—C31—C40 72.6 (5)
C5—C4—C9—C10 178.7 (6) P2—O4—C31—C32 −112.1 (4)
C2—C1—C10—C9 5.3 (6) C40—C31—C32—C33 0.2 (7)
O2—C1—C10—C9 −177.5 (4) O4—C31—C32—C33 −174.9 (4)
C2—C1—C10—C20 −176.8 (4) C31—C32—C33—C34 −3.9 (7)
O2—C1—C10—C20 0.4 (6) C32—C33—C34—C35 −175.4 (5)
C8—C9—C10—C1 173.8 (5) C32—C33—C34—C39 2.1 (7)
C4—C9—C10—C1 −3.6 (6) C33—C34—C35—C36 175.5 (5)
C8—C9—C10—C20 −4.0 (7) C39—C34—C35—C36 −1.9 (8)
C4—C9—C10—C20 178.5 (4) C34—C35—C36—C37 0.1 (9)
P1—O1—C11—C20 76.4 (4) C35—C36—C37—C38 0.4 (9)
P1—O1—C11—C12 −108.5 (4) C36—C37—C38—C39 1.0 (9)
C20—C11—C12—C13 0.7 (7) C37—C38—C39—C34 −2.8 (7)
O1—C11—C12—C13 −174.1 (4) C37—C38—C39—C40 179.8 (5)
C11—C12—C13—C14 −3.9 (7) C33—C34—C39—C38 −174.3 (4)
C12—C13—C14—C15 −177.8 (5) C35—C34—C39—C38 3.2 (7)
C12—C13—C14—C19 2.7 (7) C33—C34—C39—C40 3.3 (7)
C13—C14—C15—C16 179.1 (5) C35—C34—C39—C40 −179.2 (4)
C19—C14—C15—C16 −1.4 (7) O4—C31—C40—C39 −179.9 (4)
C14—C15—C16—C17 −1.6 (8) C32—C31—C40—C39 5.1 (6)
C15—C16—C17—C18 2.1 (8) O4—C31—C40—C30 −1.4 (6)
C16—C17—C18—C19 0.4 (8) C32—C31—C40—C30 −176.4 (4)
C17—C18—C19—C14 −3.3 (7) C38—C39—C40—C31 170.8 (4)
C17—C18—C19—C20 178.4 (5) C34—C39—C40—C31 −6.7 (6)
C13—C14—C19—C18 −176.7 (4) C38—C39—C40—C30 −7.8 (7)
C15—C14—C19—C18 3.8 (6) C34—C39—C40—C30 174.8 (4)
C13—C14—C19—C20 1.6 (7) C21—C30—C40—C31 −49.4 (6)
C15—C14—C19—C20 −177.9 (4) C29—C30—C40—C31 129.5 (4)
O1—C11—C20—C19 178.3 (4) C21—C30—C40—C39 129.1 (4)
C12—C11—C20—C19 3.5 (6) C29—C30—C40—C39 −51.9 (6)
O1—C11—C20—C10 −1.3 (6) O2—P1—C41—C42 159.7 (3)
C12—C11—C20—C10 −176.1 (4) O1—P1—C41—C42 −96.9 (3)
C18—C19—C20—C11 173.7 (4) Fe1—P1—C41—C42 30.2 (3)
C14—C19—C20—C11 −4.5 (6) P1—C41—C42—P2 −43.1 (4)
C18—C19—C20—C10 −6.7 (7) O3—P2—C42—C41 167.6 (3)
C14—C19—C20—C10 175.1 (4) O4—P2—C42—C41 −89.1 (3)
C1—C10—C20—C11 −50.5 (6) Fe1—P2—C42—C41 40.8 (3)
C9—C10—C20—C11 127.3 (4)

Symmetry code: (i) y, x, −z+1.

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C32—H32A···O4i 0.95 2.42 3.280 (5) 150
C35—H35A···O1ii 0.95 2.38 3.293 (5) 162
C7—H7A···Cg2iii 0.95 2.57 3.516 (6) 178
C17—H17A···Cg3iii 0.95 2.59 3.396 (6) 143

Symmetry codes: (i) y, x, −z+1; (ii) x−1, y, z; (iii) y+1, x, −z+1.

Funding Statement

This work was funded by Natural Sciences and Engineering Research Council of Canada grant Discovery to Robert H. Morris.

References

  1. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, USA.
  2. Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A. & Sacconi, L. (1981). Inorg. Chem. 20, 3423–3430.
  3. Claver, C., Fernandez, E., Gillon, A., Heslop, K., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961–962.
  4. Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707. [DOI] [PubMed]
  5. Field, L. D., Thomas, I. P., Hambley, T. W. & Turner, P. (1998). Inorg. Chem. 37, 612–618.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Guo, R., Chen, X., Elpelt, C., Song, D. & Morris, R. H. (2005a). Org. Lett. 7, 1757–1759. [DOI] [PubMed]
  8. Guo, R., Elpelt, C., Chen, X., Song, D. & Morris, R. H. (2005b). Chem. Commun. pp. 3050–3052. [DOI] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Norman, D. W., Carraz, C. A., Hyett, D. J., Pringle, P. G., Sweeney, J. B., Orpen, A. G., Phetmung, H. & Wingad, R. L. (2008). J. Am. Chem. Soc. 130, 6840–6847. [DOI] [PubMed]
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Reetz, M. T. & Li, X. (2006). Chem. Commun. pp. 2159–2160. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Steinmetz, B., Hagel, M. & Schenk, W. A. (1999). Z. Naturforsch. Teil B, 54, 1265–1271.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Vogler, A. (2016). Inorg. Chem. Commun. 67, 32–34.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011160/hb7939sup1.cif

e-76-01525-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011160/hb7939Isup2.hkl

e-76-01525-Isup2.hkl (543KB, hkl)

CCDC reference: 2023248

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES