Skip to main content
Heliyon logoLink to Heliyon
. 2020 Aug 27;6(8):e04623. doi: 10.1016/j.heliyon.2020.e04623

An overview on human serum lectins

S Beulaja Manikandan a,, R Manikandan b, M Arumugam b, P Mullainadhan b
PMCID: PMC7475231  PMID: 32923708

Abstract

An extensive literature survey done on the various naturally occurring lectins in human serum upon its salient features such as methods of detection, level and sites of synthesis, binding specificity, cation dependency, modes of isolation, molecular and functional characterization way back from 1930s to till date was presented in a tabulated section. In addition, the generation of lectin and other immune molecules in vertebrates upon treatment with exogenous elicitors has also been framed in a tabular form. Furthermore, ANEW lectin induced in human serum for the very first time by an exogenous elicitor was detected, isolated and characterized by us whose features are also tabulated explicitly.

Keywords: Biochemistry, Lectin, Human serum, Detection, Isolation, Function, Molecular characteristics


Biochemistry; Lectin; Human serum; Detection; Isolation; Function; Molecular characteristics

1. Introduction

1.1. Definition

Lectins or agglutinins are proteins/glycoproteins of non-immune origin with a unique ability to specifically and reversibly bind to carbohydrate structures present on cell surfaces, extracellular matrices or secreted glycoproteins (Goldstein et al., 1980; Barondes, 1988; Weis, 1997; Sharon, 2007). Each lectin molecule may possess mono-, di-, or multi-valent carbohydrate binding sites, whereas the lectin with agglutinating property, called agglutinin, necessarily contains more than two such sites per molecule.

1.2. Important discoveries

Lectin molecules was first discovered by Stillmark in 1888 (as cited in Goldstein and Hayes, 1978) in the castor-bean (Ricinus communis) extracts, which was named as ricin. Subsequently, Camus (1899) first reported the presence of agglutinins in the albumen gland from garden snail, Helix pomatia. Noguchi (1903) described the presence of natural agglutinins in sera of lobster (Homarus americanus) and horse-shoe crab (Limulus polyphemus) and these findings represent the first report on the occurrence of lectins in animals.

1.3. Distribution

Lectin molecules are seen in a wide range of living organisms such as microbes (Sasmal et al., 1992), plants (Goldstein and Hayes, 1978), animals and humans (Olden and Parent, 1987; Mullainadhan and Renwrantz, 1989; Turner, 1996; Kilpatrick, 2002). In humans, the lectin molecules were first detected in blood plasma/serum, and over 20 distinct types of lectins including selectins and galactins were subsequently reported to occur in a variety of cells, tissues, or organs (Baenziger and Maynard, 1980; Ikeda. et al., 1987a, Ikeda et al., 1987b; Stamenkovic and Seed, 1990; Zanetta et al., 1992; Kanses, 1996; Yaron et al., 1997; Kilpatrick, 2000).

1.4. Classification of human serum lectins

Six distinct naturally occurring lectins have been detected in the serum or plasma obtained from human blood, namely, C-reactive protein (Tillett and Francis, 1930) serum amyloid protein (Cathcart et al., 1967), H-ficolin (Inaba and Okochi, 1978), mannan-binding lectin (Kawasaki et al., 1983), tetranectin (Clemmensen et al., 1986) and L-ficolin (Matsushita et al., 1996). On the basis of its structural and biochemical characteristics, the six humoral lectins have been classified into four families, namely, pentraxins (C-reactive protein and serum amyloid protein), collectin (mannan-binding lectin), ficolins (H-ficolin and L-ficolin) and tetranectin.

1.5. Binding specificity

Lectins primarily recognize and bind to specific carbohydrate structures present on the surface of target cells and molecules (Sharon, 2007). They exhibit great diversity in sugar binding specificity. Thus, the lectins are known to specifically recognize the whole sugar, a specific part of a sugar, a sequence of sugars, or their glycosidic linkages (Ravindranath et al., 1985; Murali et al., 1999). Besides, a few studies have demonstrated that the lectins especially from diverse animal sources can additionally recognize certain non-carbohydrate ligands including peptide motif and even simple chemicals containing appropriate determinant structures (Gabius, 1994; Kawagishi et al., 1994; Gokudan et al., 1999; Maheswari et al., 2002). Such lectins are likely to accomplish their reactivity through a common binding site (Maheswari et al., 2002) or two separate structural domains (Gabius, 1994).

1.6. Structure of humoral lectins in human serum

Molecular nature of all the six naturally occurring lectins isolated from human plasma/serum have been studied by estimating the native molecular weight using various methods including analytical ultracentrifugation, gel filtration, sucrose gradient centrifugation and polyacrylamide gradient gel electrophoresis. Accordingly, the native molecular weight estimates for various lectins are: 118–140 kDa for C-reactive protein (Gotschlich and Edelman, 1965; Siegel et al., 1974), 240–300 kDa for serum amyloid protein (Hamazaki, 1986; Binette et al., 1974), 520–688 kDa for H-ficolin (Yae et al., 1991), 200–700 kDa for mannan-binding lectin (Taylor and Summerfield, 1987; Thiel et al., 1992), 68 or 90 kDa for tetranectin (Clemmensen et al., 1986; Thougaard et al., 2001) and 320 or 650 kDa for L-ficolin (Matsushita et al., 1996; Krarup et al., 2004). The analysis of subunit characteristics mostly by SDS-PAGE under reducing conditions revealed that various isolated lectin molecules are composed of identical subunits, but the number of subunits in different lectins varied between 3 and 22 (Thougaard et al., 2001; Super et al., 1989) and each subunit with molecular mass ranging from 20 to 40 kDa (Gotschlich and Edelman, 1965; Le et al., 1997).

1.7. Salient functional features

The actual physiological and immunological functions of many lectins remain to be precisely determined. However, in invertebrates physiological functions have been demonstrated for lectins such as feeding, larval settlement, embryonic development and metamorphosis. Further, their participation in various immuno-defense processes, namely, wound repair, clearance and opsono-phagocytosis of foreign targets are also well established (Coombe et al., 1984; Mullainadhan and Renwrantz, 1986; Olafsen, 1988; Smith and Chisholm, 1991; Cooper et al., 1992; Beck et al., 1994; Arason, 1996). Lectins in mammalian systems have also been suggested to play diverse roles in physiology, development and pathological states (Varki, 1993). In humans, the lectins detected within various cells, tissues or organs have been reported to mediate diverse physiological functions such as removal of aged cells or modified plasma glycoproteins, cell adhesion and signal transduction. Furthermore, they are involved in various immunological processes, namely, receptors for pathogens, opsono-phagocytosis and developmental regulation of different immune cells (Baenziger and Maynard, 1980; Lennartz et al., 1987; Catalina et al., 1999; Ackerman et al., 1993; Wang et al., 1998). Humoral lectins detected in human blood has been mainly focussed towards elucidation of their role in immune processes, because they are considered as key players of innate immunity and emerging as important components in the molecular mechanisms of inflammation and initiation of internal host defence responses (Wang et al., 1998; Catalina et al., 1999; Sharon and Lis, 2004).

1.8. Survey of literature on humoral lectins in human plasma/serum

Six distinct naturally occurring lectins have been detected in the serum or plasma obtained from human blood. As presented in Table 1, these humoral lectins include C-reactive protein, serum amyloid protein, H-ficolin, mannan-binding lectin, tetranectin, and L-ficolin. Among these molecules, C-reactive protein was first discovered in 1930 by Tillet & Francis, which is commonly known as an acute phase protein. However, this protein was later found to bind additionally specific carbohydrates (Gotschlich and Liu, 1967; Soelter and Uhlenbruck, 1986), and it is also, therefore, considered as a lectin (Kilpatrick, 2002). The chronological discovery of other five humoral lectins is as follows: serum amyloid protein (Cathcart et al., 1967), H-ficolin (Inaba and Okochi, 1978), mannan-binding lectin (Kawasaki et al., 1983), tetranectin (Clemmensen et al., 1986), and L-ficolin (Matsushita et al., 1996). Based on the structural and biochemical characteristics, the six humoral lectins have been classified into four families, namely, pentraxins (C-reactive protein and serum amyloid protein), collectin (mannan-binding lectin), ficolins (H- and L-ficolins) and tetranectin (Table 1).

Table 1.

A summary of literature pertaining to methods employed to detect various lectins naturally occurring in human blood (plasma/serum).

S. No. Name of Lectin (Family) Methods of Detection References
1. C - reactive protein Precipitation
(Pentraxin)
  • Visual

Tillett and Francis (1930)
  • Radial immunodiffusion

Kushner and Somerville (1970)
  • Capillary precipitin test

  • Immunoelectrophoresis

  • Double immunodiffusion

Kaplan and Volanakis (1974)
  • Nephelometry

Di Camelli et al. (1980)
  • Crossed immunoelectrophoresis

de Beer et al. (1982)
  • Spot immunoprecipitate assay

Wadsworth et al. (1985)
Agglutination
  • Heat - killed pneumococci

Tillett and Francis (1930)
  • Pneumococcal capsular polysaccharide - coated sheep RBC

Gal and Miltényi (1955)
  • Lipid emulsion

Rowe et al. (1986)
  • Very low density lipoproteins

  • Antibody-coated latex particles

Das et al. (2004)
Pneumococcal capsular swelling reaction Hedlund (1947)
Radioimmunoassay Shine et al. (1981)
Immunoradiometric assay Shapiro and Shenkin (1989)
Enzyme-linked immunosorbent assay Nunomura et al. (1990)
2. Serum amyloid protein Precipitation
(Pentraxin)
  • Double immunodiffusion

Cathcart et al. (1967)
  • Immunoelectrophoresis

  • Double immunodiffusion

Pepys et al., 1977a, Pepys et al., 1977b
  • Immunoelectrophoresis

  • Crossed immunoelectrophoresis

  • Rocket immunoelectrophoresis

Sørensen et al. (1995)
Agglutination
  • Complement - coated sheep RBC

Hutchcraft et al. (1981)
  • Rat & horse RBC

Hamazaki (1988)
3. H – Ficolin Precipitation
(Ficolin)
  • Double immunodiffusion

Inaba and Okochi (1978)
  • Double immunodiffusion

Yae et al. (1991)
  • Immunoelectrophoresis

  • Enzyme immunoassay (ELISA)

Agglutination
  • •Bacterial lipopolysaccharide-coated human RBC

Sugimoto et al. (1998)
Time resolved fluorimetry Krarup et al. (2004)
4. Mannan - binding lectin Radiolabelled ligand binding assay Kawasaki et al. (1983)
(Collectin)
Enzyme - linked immunosorbent assay Summerfield and Taylor (1986)
Enzyme - linked lectin immunosorbent assay Thiel et al. (1992)
5. Tetranectin Precipitation Clemmensen et al. (1986)
  • Rocket immunoelectrophoresis

  • Crossed immunoelectrophoresis

Enzyme immunoassay (ELISA) Thougaard et al. (2001)
6. L – Ficolin N - acetylglucosamine elution from affinity matrix Matsushita et al. (1996)
(Ficolin)
Enzyme - linked immunosorbent assay Le et al. (1998)
Time resolved fluorimetry Krarup et al. (2004)

1.9. Methods employed for detection of humoral lectins

As presented in Table 1, various methods were employed to detect the presence of lectins in human serum or plasma. These include mainly precipitation, agglutination, antibody-based immunoassays and fluorimetry. Hemagglutination assay is relatively a simpler method for detection of lectins or agglutinins (Sharon and Lis, 1989). But it appears that none of the humoral lectins were detectable by this assay using native vertebrate RBC. However, C-reactive protein, serum amyloid protein and H-ficolin have been detected by their ability to agglutinate, respectively, pneumococcal capsular polysaccharide-coated sheep RBC (Gal and Miltényi, 1955), complement-coated sheep RBC (Hutchcraft et al., 1981) and bacterial lipopolysaccharide-coated human RBC (Sugimoto et al., 1998). Exceptionally, Hamazaki (1988) has reported the ability of serum amyloid protein isolated from human serum to cause agglutination of horse and rat RBC.

1.10. Levels and site of synthesis of humoral lectins

The levels and site of synthesis of various lectins naturally occurring in plasma or serum of normal human blood have been presented in Table 2. Among various lectins, serum amyloid protein is most abundantly present in systemic blood circulation (20–40 μg/ml), whereas mannan-binding lectin appears to occur at the lowest concentration (0.01–6.40 μg/ml). Liver has been invariably identified as the site of synthesis for all the humoral lectins so far described. However, additional sites such as lungs for H-ficolin, and lungs as well as other multiple tissues and organs for tetranectin have been documented.

Table 2.

A profile of levels and site of synthesis of various lectins naturally occurring in human plasma/serum.

S. No. Name of Lectin Concentration (μg/ml) References Site of Synthesis References
1. C - reactive protein 0.5–2 Pepys and Baltz (1983) Liver Hurlimann et al. (1965)
Das et al. (2004)
2. Serum amyloid protein 20–40 Pepys and Baltz (1983) Liver Pepys and Baltz (1983)
3. H – Ficolin 7–23 Yae et al. (1991) Liver & lungs Akaiwa et al. (1999)
4. Mannan - binding lectin 0.01–6.40 Terai et al. (1993) Liver Summerfield and Taylor (1986)
Kilpatrick, 1997a, Kilpatrick, 1997b Kurata et al. (1994)
5. Tetranectin 8–17 Thougaard et al. (2001) Lungs, spleen, heart, Berglund and Petersen (1992)
skeletal muscle, liver &
brain
6. L – Ficolin 1.1–12.8 Kilpatrick et al. (1987) Liver Matsushita et al. (1996)

1.11. Ligand-binding specificity

The ability of humoral lectins to recognize and bind specifically to various ligands has been examined using a variety of assays (Table 3). These include mainly the inhibition of lectin-mediated precipitation or agglutination reactions, complement fixation, solid phase binding assays, radiolabelled lectin binding assays, and antibody-based immunoassays such as ELISA and crossed-immunoelectrophoresis. Accordingly, phosphoryl choline, heparin, N-acetylgalactosamine, mannan, plasminogen and N-acetylglucosamine can be considered to be the best ligands, respectively, for C-reactive protein, serum amyloid protein, H-ficolin, mannan-binding lectin, tetranectin and L-ficolin (Kaplan and Volanakis, 1974; Thompson and Enfield, 1978; Summerfield and Taylor, 1986; Danielsen et al., 1997; Le et al., 1997; Sugimoto et al., 1998; Westergaard et al., 2003).

Table 3.

Binding specificity and divalent cation dependency of various lectins detected in human blood (plasma/serum) and other sources.

S. No. Binding Specificity
Divalent Cation Dependency
References
Ligands recognized Best Ligand (s) Cations tested Dependency
1. C-reactive protein (Source: serum/plasma, pleural, peritoneal or ascitic fluids)
Precipitation assay
1. Pneumococcal CPS Pneumococcal CPS Not tested Not relevant Tillett and Francis (1930)
2. Pneumococcal CPS Pneumococcal CPS Ca2+ Ca2+ Abernathy and Avery (1941)
3. Pneumococcal CPS, polymer of Pneumococcal CPS, polymer of Not tested Not relevant Gotschlich and Liu (1967)
N - acetylgalactosamine - phosphate N - acetylgalactosamine – phosphate
4. Poly - L - lysine, poly - L - arginine, Protamine sulphate Ca2+ Not dependent Di Camelli et al. (1980)
protamine sulphate, poly - L - ornithine
5. Galactan Galactan Ca2+ Ca2+ Soelter and Uhlenbruck (1986)
Inhibition of CRP - CPS precipitation assay
6. Phosphate monoesters:
α - Glycerophosphate 5′- Uridine monophosphate Ca2+ Ca2+ Gotschlich and Edelman (1967)
5′- Adenine monophosphate
5′- Uridine monophosphate
5′- Cytidine monophosphate
7. Phosphorylcholine Phosphorylcholine Not tested Not relevant Kaplan and Volanakis (1974)
L - α - Glycerophosphorylcholine
DL - α - Glycerophosphate
5' - Cytidine monophosphate
Inhibition of CRP - CPS/poly - L - lysine precipitation assay
8. Polybrene, phosphorylcholine, Polybrene Not tested Not relevant Siegel et al. (1975)
tetra - L – lysine
Inhibiton of CRP - CPS mediated complement fixation
9. Glucosamine - 6 - phosphate N - acetylgalactosamine – phosphate Not tested Not relevant Gotschlich and Liu (1967)
Mannose - 6 - phosphate
Galactosamine - 6 - phosphate
N - acetylglucosamine - phosphate
N - acetylgalactosamine - phosphate
10. Phosphorylcholine Phosphorylcholine Not tested Not relevant Kaplan and Volanakis (1974)
DL - α - Glycerophosphate
5′- Cytidine monophosphate
Inhibition of CRP - lecithin/sphingomyelin mediated complement fixation
11. Phosphorylcholine Phosphorylcholine Not tested Not relevant Kaplan and Volanakis (1974)
L - α - Glycerophosphorylcholine
DL - α - Glycerophosphate
5' - Cytidine monophosphate
Complement activation
12. Protamine sulphate Protamine sulphate Ca2+ Ca2+ Siegel et al. (1974)
13. Protamine, poly - L - lysine, Protamine, poly - L - lysine, Not tested Not relevant Siegel et al. (1975)
histone, myelin basic protein, histone, myelin basic protein
leukocyte cationic protein,
poly - L – arginine
Solid - phase ligand binding assay
14. Low density lipoprotein Low density lipoprotein Ca2+ Ca2+ de Beer et al. (1982)
Very low density lipoprotein
Enzyme - linked immunosorbent assay
15. Fibronectin Fibronectin Ca2+ Ca2+ Salonen et al. (1984)
16. Phosphorylcholine β - D - Gal - (1–3) - D - GalNAc
A variety of di- and tri- saccharides β - D - Gal - (1–4) β - D - Gal - Not tested Not relevant Köttgen et al. (1992)
with terminal galactose: (1–4) - D - GlcNAc
α - D - Gal - (1–4) - D - Gal
β - D - Gal - (1–6) - D - Gal
β - D - Gal - β - D - Thio - Gal
β - D - Gal - (1–3) - D - GalNAc
β - D - Gal - (1–6) - D - GalNAc
β - D - Gal - (1–4) - D - GlcNAc
β - D - Gal - (1–6) - D - GlcNAc
β - D - GlcNAc - (1–6) - D - GlcNAc
β - D - Gal - (1–4) β - D - Gal - (1–4) - D - GlcNAc
17. Phosphorylcholine Phosphorylcholine Ca2+ Ca2+ Culley et al. (2000)
Galactose - 6 - phosphate Galactose - 6 - phosphate
Galactose -1 - phosphate
Glucose - 6 - phosphate
Glucose - 1 - phosphate
Mannose - 6 - phosphate
Mannose -1 - phosphate
Fructose - 6 - phosphate
Fructose - 1 - phosphate
18. Protein A from Streptococcus aureus Protein A Ca2+ Not dependent Das et al. (2004)
Radiolabelled fluid phase binding assay
19. Lipophosphoglycan Lipophosphoglycan Ca2+ Ca2+ Culley et al. (1996)
Radiolabelled lectin binding assay
20. Native and modified low density Phosphorylcholine Ca2+ Ca2+ Taskinen et al. (2002)
lipoprotein, cholesterol, Cholesterol

Phosphorylcholine




2. Serum amyloid protein (Source: plasma/serum or ascitic fluid)
Solid phase direct binding assay
1. Agarose, agar, sulphated polyacrylamide Agarose Ca2+ Ca2+ Pepys et al., 1977a, Pepys et al., 1977b
2. Heparin, agarose Heparin Ca2+ Ca2+ Thompson and Enfield (1978)
3. Cyclic and non - cyclic 4, 6 pyruvate Cyclic 4, 6 pyruvate acetal of Ca2+ Ca2+ Hind et al. (1984)
acetal of galactose Galactose
Solid phase ligand binding assay
4. Fibronectin, C4 - binding protein Not reported Ca2+ Ca2+ de Beer et al. (1981)
5. DNA, chromatin DNA Ca2+ Ca2+ Pepys and Butler (1987)
6. C4 - binding protein C4 - binding protein Ca2+ Ca2+ Frutos et al. (1995)
7. Laminin Laminin Ca2+, Mg2+, Mn2+, Zn2+ Ca2+ Zahedi (1997)
Agglutination of complement - coated sheep RBC
8. Complement component - C3b C3b Ca2+ Ca2+ Hutchcraft et al. (1981)
Radiolabelled fluid phase binding assay
9. Zymosan Zymosan Ca2+, Cu2+, Mg2+, Mn2+, Ni2+, Zn2+,Cd2+, Ba2+, Co2+ Ca2+, Cu2+, Cd2+, Potempa et al. (1985)
Zn2+
Inhibition of radiolabelled lectin binding assay
10. Galactose Galactose Ca2+, Mg2+ Ca2+ Hamazaki (1986)
Inhibition of rabbit RBC agglutination
11. Simple substances:
Non - acetylated and N – acetylated 2 - O - α - D- glucopyranosyl- O - β - D - galactopyranosyl hydroxylysine Stachyose N - acetylated - 2 - O - α - D -- glucopyranosyl - O - β - D -galactopyranosylhydroxylysine Not tested Not relevant
Glycoconjugates:
Orosomucoid, desialylated orosomucoid, human glycophorin Desialylated bovine erythrocyte glycoprotein Not tested Not relevant
Desialylated glycophorin
Bovine erythrocyte glycoprotein
Desialylated bovine erythrocyte
Glycoprotein
Radiolabelled ligand binding and inhibition assays
12. Glycosaminoglycans:
Heparan, dermatan sulphate, Heparin Ca2+, Ba2+, Cd2+, Cu2+, Ca2+, Cd2+ Hamazaki (1987)
Heparin, chondroitin - 4 - sulphate, Mg2+, Mn2+, Sr2+, Zn2+
Chondroitin - 6 - sulphate
Hyaluronic acid
Inhibition of radiolabelled lectin binding assay Hamazaki (1988)
13. Glycosaminoglycans:
Chondroitin - 4 - sulphate Hyaluronic acid Not tested Not relevant
Dermatan sulphate
Chondroitin - 6 - sulphate
Heparan sulphate
Hyaluronic acid
Keratan sulphate
Chondroitin
Inhibition of rabbit RBC agglutination
14. Dermatan sulphate Hyaluronic acid Not tested Not relevant
Heparan sulphate
Hyaluronic acid
Enzyme - linked fluorescent immunoassay
15. Zymosan, ovalbumin, porcine thyroglobulin Zymosan Ca2+ Ca2+ Kubak et al. (1988)
C3bi, β - glucuronidase
Inhibition of SAP polymerisation
16. Heparin, heparan sulphate, Dextran sulphate Not tested Not relevant Hamazaki (1989)
Dermatan sulphate (MW 106 Da)
Chondroitin - 6 - sulphate
Chondroitin - 4 - sulphate
Dextran sulphate
Enzyme - linked immunosorbent assay
17. Heparin, heparan sulphate, Heparin Ca2+ Ca2+ Danielsen et al. (1997)
Dermatan sulphate

Chondroitin - 6 - sulphate




3. H-Ficolin (Source: serum/plasma)
1. Solid phase direct binding assay Sugimoto et al. (1998)
N - acetylgalactosamine N - acetylgalactosamine Not tested Not relevant
N - acetylglucosamine N - acetylglucosamine
2. Agglutination of LPS - sensitized human O RBC
LPS from Salmonella typhimurium LPS from Salmonella typhimurium Ca2+ Not dependent
Salmonella minnesota,
Escherichia coli
3. Inhibition of LPS-sensitized human O RBC agglutination
N - acetylgalactosamine
N - acetylglucosamine

D – fucose
D - fucose
Not tested
Not relevant
4. Mannan - binding lectin (Source: serum/plasma)
Inhibition of radiolabelled ligand binding assay
1. N - acetylmannosamine N - acetylmannosamine Ca2+ Ca2+ Kawasaki et al. (1983)
N - acetylglucosamine
Mannose, L - fucose, glucosamine,
Mannosamine
Electroblot analysis
2. D - glucose, D - galactose, Invertase, mannan Ca2+ Ca2+ Summerfield and Taylor (1986)
L - fucose, N - acetylglucosamine, Β - galactosidase,
α - methyl - D - mannoside ovalbumin, L - fucose,
Invertase, mannan, β - galactosidase, α - methyl - D - mannoside
ovalbumin, orosomucoid N - acetylglucosamine
Enzyme - linked immunosorbent assay Taylor and Summerfield (1987)
3. MBP1: N - acetylglucosamine N - acetylglucosamine Ca2+ Ca2+
N - acetylmannosamine, mannose, N - acetylmannosamine
fucose, glucose, mannan, mannose, fucose
invertase, orosomucoid
MBP2: mannose, fucose, mannan, invertase, orosomucoid, asialoorosomucoid Mannose, mannan, Ca2+ Ca2+
invertase, asialoorosomucoid
4. Phospholipids: Phosphatidylinositol Not tested Not relevant Kilpatrick (1998)
Phosphatidylserine
Phosphatidylinositol
Phosphatidylcholine
Complement activation
5. Zymosan Zymosan Ca2+ Ca2+ Lu et al. (1990)
Enzyme - linked lectin immunosorbent assay
6. Mannose, N - acetylglucosamine Mannose Ca2+ Ca2+ Thiel et al.,1992
galactose, glucose N - acetylglucosamine
Enzyme - linked lectin binding assay
7. Mannose, glucose, L-fucose, N - acetylglucosamine Ca2+ Ca2+ Haurum et al. (1993)
maltose, N -acetylmannosamine,
N-acetylglucosamine
Inhibition of phospholipid binding assay
8. Mannose, fucose, glucose, m - inositol, N - acetylglucosamine Not tested Not relevant Kilpatrick (1998)

galactose, N -acetylglucosamine
m - inositol,



5. Tetranectin (Source: serum/plasma)
Solid phase ligand binding assay
1. Plasminogen Not reported Ca2+ Ca2+ Clemmensen et al. (1986)
Heparin Ca2+ Not dependent
Crossed immunoelectrophoresis
2. Chondroitin sulphate A, B & C Not reported Not tested Not relevant Clemmensen (1989)
Heparan sulphate
Fucoidan
3. Lipoprotein (a) Lipoprotein (a) Not tested Not relevant Kluft et al. (1989a)
Clot lysate analysis
4. Fibrin Fibrin Ca2+ Ca2+ Kluft et al. (1989b)
Ligand blot analysis
5. Plasminogen Plasminogen Not tested Not relevant Westergaard et al. (2003)
Hepatocyte growth factor
Tissue type plasminogen
Urokinase type plasminogen

Prothrombin




6. L - Ficolin (Source: serum/plasma)
Dot - blot with radiolabelled lectin/solid phase direct binding assay
1. N - acetylglucosamine Not reported Ca2+ Ca2+ Matsushita et al. (1996)
Asialofetuin
Elution from affinity gel matrix
2. N - acetylglucosamine N - acetylglucosamine Ca2+ Not dependent Le et al. (1997)
3. N - acetylglucosamine Not reported Not tested Not relevant Le et al. (1998)
N - acetylgalactosamine
Glutathione
Solid phase binding assay
4. Lipoteichoic acid Lipoteichoic acid Not tested Not relevant Lynch et al. (2004)
5. N - acetylglucosamine N - acetylglucosamine Ca2+ Not dependent Krarup et al. (2004)
N - acetylmannosamine N - acetylmannosamine
N - acetylgalactosamine
N - acetylcysteine
N – acetylglycine
Acetylcholine
6. 1, 3 - β - D - glucan 1, 3 - β - D - glucan Not tested Not relevant Ma et al. (2004)

Abbreviations used: CPS = Capsular polysaccharide; CRP = C - reactive protein; LPS = Bacterial lipopolysaccharide; MBP = Mannan - binding protein; SAP = Serum amyloid protein.

1.12. Divalent cation dependency

Most lectins, in general, require divalent cations which apparently stabilize the tertiary conformation of lectin polymers as well as help to structure their reactive sites (Marchalonis and Edelman, 1968; Reeke et al., 1974). As presented in Table 3, all six humoral lectins were analysed for divalent cation dependency by using various assay conditions. But these studies were restricted only with calcium ions and the only exception being serum amyloid protein tested with different divalent cations (Potempa et al., 1985; Hamazaki, 1987; Zahedi, 1997). However, it is notable that all the humoral lectins, with an exception of H-ficolin (Sugimoto et al., 1998), require Ca2+ to bind various appropriate ligands. In the case of serum amyloid protein, Cu2+, Cd2+, or Zn2+ could substitute for Ca2+. However, a few conflicting reports indicate the divalent cation independent activity of C-reactive protein (Di Camelli et al., 1980; Das et al., 2004), tetranectin (Clemmensen et al., 1986) and L-ficolin (Le et al., 1997; Krarup et al., 2004). Indeed, all these humoral lectins naturally occurring in human blood have been isolated and purified to the desired level and then extensively studied for their physico-chemical and functional properties.

1.13. Methods adopted for isolation of humoral lectins

A perusal of literature presented in Table 4 reveals that several investigators have successfully attempted to isolate and purify each of the six lectins from human plasma or serum by employing various methods of their choice. Such chromatographic techniques include gel filtration, ion-exchange, hydrophobic interaction chromatography, and most frequently various types of affinity chromatography such as ligand-coupled, metal-affinity, immuno-affinity and lectin-affinity chromatography. It is notable from such studies presented in Table 4, that sequential multi-step procedures were employed for the isolation of these humoral lectins with the desired degree of purity. In general, affinity chromatography with versatile protocols has emerged as an ideal method for isolation of diverse kinds of biomolecules in native form and high degree of recovery from the starting crude samples (Heftmann, 2001). The humoral lectins in human plasma or serum adsorbed to the affinity gel matrix were recovered using various kinds of eluants (Table 4). These include simple carbohydrates as free ligands, divalent cation chelators (EDTA or sodium citrate), buffers at low or high pH and ionic strength.

Table 4.

A summary of literature pertaining to methods adopted for isolation of various lectins from human blood (plasma/serum).

S. No. Methods of isolation Matrix used Eluants used in adsorption chromatography References
1. C-reactive protein
1. Precipitation with ammonium sulphate (x2) Not relevant Not relevant MacLeod and Avery (1941)
Precipitation by dialysis against water Not relevant Not relevant
Precipitation with sodium sulphate (x2) Not relevant Not relevant
Precipitation by dialysis against water Not relevant Not relevant
2. Precipitation with barium sulphate Not relevant Not relevant Ganrot and Kindmark (1969)
Precipitation with ammonium sulphate Not relevant Not relevant
Gel adsorption Reinagar 10 mM EDTA
3. GF Sephadex G - 200 Not relevant Kushner and Somerville (1970)
4. Density gradient centrifugation Not relevant Not relevant
5. Precipitation with sodium sulphate Not relevant Not relevant Siegel et al. (1974)
GF Sephadex G - 200 Not relevant
6. Precipitation with ammonium sulphate (x2) Not relevant Not relevant Kaplan and Volanakis (1974)
Nunomura et al. (1990)
IEC DEAE - cellulose 1.5 M NaCl
IEC DEAE - cellulose NaCl & pH gradient
7. Precipitation with L - α – lecithin Not relevant Not relevant Hokama et al. (1974)
Precipitation by dialysis against calcium chloride Not relevant Not relevant
Precipitation with chloroform Not relevant Not relevant
GF Sephadex G - 200 Not relevant
IEC DEAE - cellulose NaCl gradient
8. IEC DEAE - cellulose (x2) EDTA & NaCl Johnson and Prellner (1977)
9. AC CPS – Sepharose 10 mM EDTA de Beer et al. (1982)
GF Ultrogel AcA44 Not relevant
IAC Anti NHS –Sepharose Effluent used
GF Sephacryl S – 300 Not relevant
10. AC Sepharose 4B 10 mM EDTA de Beer and Pepys (1982)
IAC Anti NHS – Sepharose Effluent used
AC Blue Sepharose Effluent used
GF Sephacryl S – 300 Not relevant
11. AC CH -Sepharose 4B 2 mM EGTA Hashimoto and Tatsumi (1989)
HIC Hydroxylapatite Phosphate buffer gradient
12. IAC Anti CRP - Sepharose 4B 1.5 M NaCl Nunomura et al. (1990)
IEC DEAE – Sephacel 500 mM NaCl
13. AC Sepharose 4B Effluent used Köttgen et al. (1992)
AC Phosphorylcholine - agarose 2 mM EDTA
AC Phosphorylcholine - agarose 1 mM phosphorylcholine
14. AC Phosphorylcholine - Sepharose 4B 2 mM EDTA Culley et al. (1996)
IEC DEAE – cellulose NaCl gradient
GF Sephacryl S – 300 Not relevant
15. AC Agarose beads Effluent used Das et al. (2004)
AC Phosphorylcholine - Sepharose 4B 10 mM EDTA

AC
Phosphorylcholine - Sepharose 4B
2 mM phosphorylcholine
2. Serum amyloid protein
1. Precipitation by dialysis against water Not relevant Not relevant Binette et al. (1974)
GF Biogel P – 300 Not relevant
Preparative electrophoresis Not relevant Not relevant
2. AC Sepharose 4B 50 mM sodium citrate Pepys et al., 1977a, Pepys et al., 1977b
GF Ultrogel AcA 34 Not relevant
3. Precipitation with barium chloride Not relevant Not relevant Thompson and Enfield (1978)
Precipitation with ammonium sulphate (x2) Not relevant Not relevant
GF Sephadex G – 25 Not relevant
IEC DEAE - Sephadex G – 25 1 mM benzamidine in sodium citrate buffer gradient
Precipitation with ammonium sulphate Not relevant Not relevant
AC Heparin-agarose 150 mM sodium citrate
4. AC Sepharose 4B 25 mM EDTA Painter et al. (1982)
IEC DEAE – cellulose 200 mM NaCl
5. AC CPS - Sepharose 4B 10 mM EDTA Hind et al. (1984)
GF Ultrogel AcA44 Not relevant
IAC Mixture of Anti NHS - Sepharose 4B Effluent used
& Anti SAP - Sepharose 4B
AC Blue Sepharose Effluent used
LAC Con A – Sepharose Effluent used
GF Sephacryl S – 300 Not relevant
6. AC Biogel A - 0.5 m 10 mM EDTA Potempa et al. (1985)
AC Protein A - Sepharose CL - 4B Effluent used
GF Ultrogel AcA34 Not relevant
GF Sephacryl S – 300 Not relevant
7. AC Gelatin-Sepharose 4B Effluent used Hamazaki (1986)
AC Lysine-Sepharose 4B Effluent used
AC Glc - Gal - Hyl - CH Sepharose 4B 5 mM EDTA
8 AC Sepharose 4B 5 mM EDTA Hamazaki (1987)
GF TSK - GEL HW - 65S Not relevant
9. AC Phosphocholine - Sepharose 4B Effluent used Colley et al. (1988)
AC Mannan - Sepharose CL - 4B 2 mM EDTA
10. Precipitation with calcium chloride (x2) Not relevant Not relevant Urbányi and Medzihradszky (1992)
AC Sepharose 6B 4 mM EDTA
IEC Sepabeads FP - DA05 NaCl gradient
11. AC Sepharose CL - 4B 10 mM EDTA Danielsen et al. (1997)
IEC Mono – Q NaCl gradient
12. Precipitation with ethanol Not relevant Not relevant Kilpatrick (1997b)
Precipitation with ammonium sulphate Not relevant Not relevant

AC
Emphaze - mannan (x2)
10 mM EDTA
3. H - Ficolin
1. Isoelectric precipitation Not relevant Not relevant Yae et al. (1991)
HIC Hydroxylapatite - Bio - Gel HTP Phosphate buffer gradient
Precipitation with ammonium sulphate Not relevant Not relevant
GF Sephadex G – 200 Not relevant
Preparative electrophoresis Not relevant Not relevant
LAC Lentil lectin – agarose 200 mM α-methyl-D- mannoside
IAC Anti IgG - Sepharose 4B Effluent used
2. IAC Anti Hakata antigen - Sepharose 4B Effluent used Sugimoto et al. (1998)
IAC Hitrap Protein G Effluent used
MAC Zinc column Glycine - HCl buffer gradient
LAC Lentil lectin – agarose 200 mM α -methyl - D - mannoside
3. Precipitation with ethanol Not relevant Not relevant Matsushita et al. (2002)
Precipitation with polyethylene glycol Not relevant Not relevant
AC GlcNAc – agarose Effluent used
IAC Anti H - Ficolin – Sepharose 100 mM glycine - HCl buffer
LAC Lentil - lectin – Sepharose 200 mM α - methyl - mannopyranoside
IAC Anti IgM – Sepharose Effluent used
AC Protein A – Sepharose Effluent used
IAC Anti MBL – Sepharose Effluent used

IAC
Anti L - Ficolin – Sepharose
Effluent used
4. Mannan - binding lectin
1. AC Mannan - Sepharose 4B (x3) 2mM EDTA Kawasaki et al. (1983)
GF Sepharose CL - 6B Not relevant
2. AC Sepharose 4B Effluent used Summerfield and Taylor (1986)
AC Mannan - Sepharose 4B 2 mM EDTA
3. AC Reacti – gel Effluent used
AC Mannan - Reacti – gel 2 mM EDTA
AC Mannan - oxirane acrylic beads 10 mM EDTA
4. AC Mannan - Biogel P – 150 10 mM EDTA Taylor and Summerfield (1987)
GF Sepharose CL - 6B Not relevant
5. AC Phosphocholine - Sepharose CL - 4B Effluent used Colley et al. (1988)
AC Mannan - Sepharose CL - 4B 2 mM EDTA
AC Mannan - Sepharose CL - 4B 50 mM mannose
6. GF Sephacryl - S300 Not relevant Super et al. (1989)
AC Mannan – Sepharose 5 mM EDTA
IAC Anti IgM – Sepharose Effluent used
IEC Mono – Q 1M NaCl
7. AC Mannan - Sepharose 5 mM EDTA
AC Mannan – Sepharose Mannose
GF Superose 6 Not relevant
IEC Mono – Q 1 M NaCl
IAC Anti IgM – Sepharose Effluent used
8. AC Mannan - Sepharose 4B 2 mM EDTA Kuhlman et al. (1989)
AC Mannan - Sepharose 4B 50 mM mannose
9. AC Mannan - Sepharose 4B 10 mM EDTA Lu et al. (1990)
AC Mannan - Sepharose 4B 50 mM mannose
GF Superose 6 (HR10/30) Not relevant
IEC Mono - Q (HR5/5) NaCl gradient
IAC Anti IgM - Sepharose Effluent used
10. AC Mannose - Sepharose 6B 10 mM EDTA Kyogashima et al. (1990)
AC Sepharose 6B 10 mM mannose
11. Precipitation with polyethylene glycol Not relevant Not relevant Matsushita and Fujita (1992)
AC Mannan - Sepharose 4B 300 mM mannose
IAC Anti IgM - Sepharose 4B Effluent used
IAC Anti MBP - Sepharose 4B (x2) 100 mM glycine - HCl buffer
12. AC Mannose - Sepharose 6B 10 mM EDTA Terai et al. (1993)
AC Sepharose 6B 50 mM mannose
GF Superose 6 Not relevant
IEC Mono – Q NaCl gradient
13. Precipitation with polyethylene glycol Not relevant Not relevant Tan et al. (1996)
AC Mannose - Sepharose 4B 10 mM EDTA
AC Maltose - Sepharose 4B 100 mM N - acetylglucosamine
IEC Mono - Q (HR5/5) NaCl gradient
AC Mannose-Sepharose 4B 10 mM EDTA
GF Superose 6 Not relevant
14. Precipitation with ethanol Not relevant Not relevant Kilpatrick (1997a)
Precipitation with ammonium sulphate Not relevant Not relevant
AC Emphaze – mannan 10 mM EDTA
AC Emphaze – mannan 100 mM mannose
15. AC Mannan - Sepharose 4B (x2) 20 mM EDTA Suankratay et al. (1998)
AC Protein A – Sepharose Effluent used
AC Anti IgM – Sepharose Effluent used
16. AC Mannan - Sepharose 4B (x2) 20 mM EDTA Saifuddin et al. (2000)
AC Protein G – Sepharose Effluent used
IAC Anti IgM – Sepharose Effluent used
17. Precipitation with polyethylene glycol Not relevant Not relevant Matsushita et al. (2000)
AC GlcNAc – agarose 300 mM mannose
IAC Anti MBL - Sepharose 4B 100 mM glycine - HCl buffer
18. Precipitation with polyethylene glycol Not relevant Not relevant Muto et al. (2001)
AC Mannan – agarose 10 mM EDTA
AC Mannan – agarose 50 mM mannose
GF Sephacryl S – 300 Not relevant
IAC Anti IgM – Sepharose Effluent used
AC Protein G – Sepharose Effluent used
19. Precipitation with ethanol Not relevant Not relevant Neth et al. (2002)
Precipitation with ammonium sulphate Not relevant Not relevant
AC Mannan – agarose 10 mM EDTA
AC Mannan – agarose 100 mM mannose
20. AC Mannose - Sepharose 4B 10 mM EDTA Butler et al. (2002)
↓ ↓
AC Maltose - Sepharose 4B 100 mM N - acetylglucosamine
GF Sephacryl S – 300 Not relevant
IAC Anti α2 - macroglobulin - Sepharose 4B Effluent used
21. Precipitation with ethanol Not relevant Not relevant Matsushita et al. (2002)
Precipitation with polyethylene glycol Not relevant Not relevant
AC GlcNAc – agarose 300 mM mannose
IAC Anti MBL - Sepharose 4B 100 mM glycine - HCl buffer
22. Precipitation with ethanol Not relevant Not relevant Valdimarsson et al. (2003)
AC Agarose 30 mM mannose
IEC Q-Sepharose NaCl
GF Superose 6 Not relevant
23. AC Sepharose CL - 4B 30 mM mannose Laursen, 2003
IEC Q – Sepharose NaCl
GF Superose 6 Not relevant
24. Precipitation with polyethylene glycol Not relevant Not relevant Ma et al. (2004)
AC Peptidoglycan - Sepharose 4B 300 mM mannose
AC Protein A - Sepharose CL - 4B Effluent used

IAC
Anti IgM - Sepharose 4B
Effluent used
5. Tetranectin
1. Precipitation with barium citrate Not relevant Not relevant Clemmensen et al. (1986)
AC Lysine - Sepharose 4B Effluent used
Precipitation with ammonium sulphate Not relevant Not relevant
AC Plasminogen - Sepharose 4B 1 mM tranexamic acid
IEC DEAE - Sepharose CL - 6B NaCl gradient
GF Ultrogel AcA34 Not relevant
2. Cryoprecipitate depletion Not relevant Not relevant Fuhlendorff et al. (1987)
IAC Antitetranectin - Sepharose 4B 3 M MgCl2
IAC Antihuman plasma protein column Effluent used
GF Ultrogel AcA34 Not relevant
3.
AC
Hitrap Heparin - Sepharose
Phosphate buffer gradient
Thougaard et al. (2001)
6. L - Ficolin
1. Polyethylene glycol precipitation Not relevant Not relevant Matsushita et al. (1996)
AC Mannan - Sepharose 4B 150 mM N - acetylglucosamine
IEC Mono – Q NaCl gradient
2. AC Sepharose 4B Effluent used Le et al. (1997)
AC GlcNAc - Sepharose 4B 100 mM N - acetylglucosamine
IAC Q - Sepharose 4B Effluent used
IEC Mono – Q NaCl gradient
AC Tris - blocked CNBr - activated Sepharose 4B 100 mM N - acetylglucosamine
3. AC Sepharose 4B Effluent used Le et al. (1998)
AC GlcNAc - Sepharose 4B 200 mM N - acetylglucosamine
IEC Mono - Q (x2) NaCl gradient
AC Tris - blocked CNBr - activated Sepharose 4B 200 mM N - acetylglucosamine
4. Precipitation with polyethylene glycol Not relevant Not relevant Matsushita et al.,2000
AC GlcNAc – agarose 150 mM N - acetylglucosamine
IEC Mono – Q NaCl gradient
AC Anti MBL - Sepharose 4B Effluent used
5. Precipitation with ethanol Not relevant Not relevant Matsushita et al. (2002)
Precipitation with polyethylene glycol Not relevant Not relevant
AC GlcNAc – agarose 150 mM N - acetylglucosamine
IEC Mono – Q NaCl gradient
6. Precipitation with ethanol Not relevant Not relevant Cseh et al. (2002)
Precipitation with polyethylene glycol Not relevant Not relevant
AC GlcNAc – agarose 300 mM N - acetylglucosamine
AC Asialofetuin - Sepharose (x2) 300 mM N - acetylglucosamine
IAC Anti MBL - Sepharose 4B Effluent used
IAC Anti H- ficolin - Sepharose 4B Effluent used
7. Polyethylene glycol precipitation Not relevant Not relevant Ma et al. (2004)
AC 1, 3 -β-D-glucan-Toyopearl 300 mM N - acetylglucosamine
8. Polyethylene glycol precipitation Not relevant Not relevant Krarup et al. (2004)
AC N - acetylcysteine - Sepharose CL - 4B Lower ionic strength buffer
IEC Mono – Q NaCl gradient

Number given in parenthesis indicates the successive repetition of the same method employed.

Abbreviations used: AC = Affinity chromatography; CPS = Capsular polysaccharide; Con A = Concanavalin A; CNBr = Cyanogen bromide; CRP = C-reactive protein; DEAE = Diethylaminoethyl; EDTA = Ethylenediaminetetraacetic acid disodium salt; EGTA = Ethylene glycol -bis-(β - aminoethylether) N, N, Ń, Ń - tetraacetic acid; GF = Gel filtration; Glc-Gal-Hyl = 2-O-α-D-glucopyranosyl-O-β-D- galactopyranosyl hydroxylysine; HIC = Hydrophobic interaction chromatography; IAC = Immuno - affinity chromatography; IEC = Ion exchange chromatography; IgG = Immunoglobulin G; Immunoglobulin M = IgM; LAC = Lectin affinity chromatography; MAC = Metal affinity chromatography; MBL = Mannan-binding lectin; MBP = Mannan-binding protein; NHS = Normal human serum; SAP = Serum amyloid protein.

The gel type of the matrix is given as reported by the investigators.

1.14. Molecular nature of the isolated lectins

Molecular nature of all the six naturally occurring lectins isolated from human plasma/serum or pleural and peritoneal fluid as in the case of C-reactive protein (Table 5). They have estimated the native molecular weight of the lectins using various methods including analytical ultracentrifugation, gel filtration, sucrose gradient centrifugation and polyacrylamide gradient gel electrophoresis. On the other hand, the subunit characteristics of the isolated lectin molecules were examined frequently by SDS-PAGE under reducing conditions. As evident from these earlier investigations, different types of the isolated lectins showed considerable variations in their native molecular weight as well as subunit structures. Accordingly, the native molecular weight estimates for various lectins are: 118–140 kDa for C-reactive protein, 240–300 kDa for serum amyloid protein, 520–688 kDa for H-ficolin, 200–700 kDa for mannan-binding lectin, 68 or 90 kDa for tetranectin and 320 or 650 kDa for L-ficolin. The variations notable in these molecular weight estimates could be apparently due to the methods employed for both isolation of the lectins and estimation of their molecular mass. The analysis of subunit characteristics mostly by SDS-PAGE under reducing conditions revealed that various isolated lectin molecules are composed of identical subunits, but the number of subunits in different lectins varied between 3 and 22 and each subunit with molecular mass ranging from 20 to 40 kDa.

Table 5.

Molecular characteristics of various lectins isolated from human blood (plasma/serum).

S. No. Native molecular mass
Subunit characteristics
References
Method of estimation kDa Subunit molecular weight (kDa) Number of subunits
1. C-reactive protein
1. Analytical ultracentrifugation 118@ 20/24@ 6@ Gotschlich and Edelman (1965)
2. Gel filtration 115–120 23
6 Kushner and Somerville (1970)
Sucrose density gradient centrifugation 135–140
3. Gel filtration 120–140 Not tested Not relevant Siegel et al. (1974)
4. Not tested Not relevant 23 Not reported Köttgen et al. (1992)
5. Not tested Not relevant 24 Not reported Nunomura et al. (1990)
6.
Not tested
Not relevant
27–31
Not reported
Das et al. (2004)
2. Serum amyloid protein
1. Gel filtration 300 Not tested Not relevant Binette et al. (1974)
2. Analytical ultracentrifugation 255.3 23/30 11/8 Painter et al. (1982)
3. Polyacrylamide gradient gel electrophoresis 240 29.5 8 Hamazaki (1986)
4. Polyacrylamide gradient gel electrophoresis 250 25 10 Hamazaki (1987)
5. Gel filtration 255 25 10 Kubak et al. (1988)
6. Not tested Not relevant 25 Not reported Hamazaki (1989)
7. Polyacrylamide gradient gel electrophoresis 250 24 10 Urbányi and Medzihradszky (1992)
8.
Not tested
Not relevant
23
Not reported
Kilpatrick (1997b)
3. H - Ficolin
1. Gel filtration 650/688 35
~20 Yae et al. (1991)

Analytical ultracentrifugation
520


4. Mannan-binding lectin
1. Gel filtration 600 31 19 Kawasaki et al. (1983)
2. Gel filtration 700 (MBP1) 32 22 Taylor and Summerfield (1987)
Gel filtration 200 (MBP2) 28 7
3. Gel filtration 700 32 22 Super et al. (1989)
4. Gel filtration 700 Not tested Not relevant Thiel et al. (1992)
5. Gel filtration 400–700 Not tested Not relevant Matsushita and Fujita (1992)
6. Not tested Not relevant 32 Not reported Terai et al. (1993)
7. Not tested Not relevant 32 Not reported Tan et al. (1996)
8. Not tested Not relevant 28 Not reported Kilpatrick (1997a)
9. Not tested Not relevant 31 Not reported Butler et al. (2002)
10.
Not tested
Not relevant
30
Not reported
Ma et al. (2004)
5. Tetranectin
1. Gel filtration 68 17 4 Clemmensen et al. (1986)
2. Gel filtration 80 Not tested Not relevant Clemmensen (1989)
3.
Gel filtration
90
30
3
Thougaard et al. (2001)
6. L - Ficolin
1. SDS-PAGE under non-reducing conditions 320 35 9 Matsushita et al. (1996)
2. SDS-PAGE under non-reducing conditions 320
40 8 Le et al. (1997)
Gel filtration 320
3. Gel filtration 650 35 18/19 Krarup et al. (2004)
(oligomeric complex)

@ CRP isolated from pooled pleural and peritoneal fluids and subunit characteristics examined by gel filtration and starch gel electrophoresis.

Analysed by SDS-PAGE under reducing conditions.

1.15. Functions of humoral lectins

The six major types of humoral lectins have also been examined for their biological functions, especially their role in mediating various immune processes (Table 6). All the lectins, except H-ficolin, were reported to activate complement system as well as mediate opsonophagocytosis by macrophages and/or neutrophils. On the other hand, H-ficolin has been shown to activate complement system and inhibit bacterial growth. The latter functional feature implicates the ability of H-ficolin to interact directly with pathogenic bacteria and effectively abrogate their growth.

Table 6.

A summary of literature pertaining to various immune functions demonstrated for the lectins naturally occurring in human blood (plasma/serum).

S. No. Immune function Action References
1. C-Reactive protein
1. Phagocytic response of macrophages Enhancement Hokama et al. (1962); Ganrot and Kindmark (1969); Mortensen et al. (1976);
(= Opsonophagocytosis) Mortensen and Duskiewiez (1977); Zahedi et al. (1989); Culley et al. (1996)
2. Phagocytic response of neutrophils Enhancement Kindmark (1971); Kilpatrick and Volanakis (1985); Kilpatrick et al. (1987);
(= Opsonophagocytosis) Edwards et al. (1982); Richardson et al. (1991); Mold et al. (2001)
3. Lymphocyte blast transformation Induction Hornung and Fritchi (1971)
4. Inhibition of growth of melanoma cells by Enhancement Hornung (1972)
T-lymphocytes
5. Complement system Activation Kaplan and Volanakis (1974); Siegel et al. (1975); Claus et al. (1977);
Volanakis (1982); Jiang et al. (1992); Gewurz et al. (1995);
Wolbink et al. (1996); Szalai et al. (1999)
6. Response of T lymphocytes to allogeneic cells Inhibition Mortensen et a1., 1975
7. Antitumour activity of macrophages Induction Deodhar et al. (1982); Zahedi and Mortensen (1986);
Zahedi et al. (1989); Tebo and Mortensen (1991)
8. Colony formation of B lymphocytes Modulation Whisler et al. (1986)
9. Complement activation by alternative pathway Inhibition Mold and Gewurz (1981); Mold et al. (1984)
10. Respiratory burst in peripheral blood monocytes Enhancement Zeller et al. (1986)
11. Migration of peritoneal macrophages Inhibition Miyagawa et al. (1989)
12. Superoxide production and granule secretion by neutrophils Inhibition Buchta et al. (1988); Dobrinich and Spagnuolo (1991)
13. Neutrophil chemotaxis Inhibition Kew et al. (2000); Zhong et al. (1998)
14. Production of hydrogen peroxide by neutrophils Induction Tebo and Mortensen (1991)
15. Production of pro - inflammatory cytokines from alveolar macrophages Stimulation Rochemonteix et al. (1993)
16. MBL - initiated complement - mediated cytolysis Inhibition Suankratay et al. (1998)
17.
Complement activation by alternative pathway
Regulation
Mold et al. (1999)
2. Serum amyloid protein
1. C3b/C3bi - mediated phagocytosis by monocytes Enhancement Wright et al. (1983)
2. Complement system Activation Bristow and Boackle (1986); Ying et al. (1993); Emsley et al. (1994)
3.
Factor I - mediated inactivation of C4b
Prevention
Schwalbe et al. (1992); Frutos et al. (1995)
3. Mannan-binding lectin
1. Phagocytic response of neutrophils Enhancement Miller et al. (1968); Soothill and Harvey (1976); Kuhlman et al. (1989);
(= Opsonophagocytosis) Malhotra et al. (1994); Turner (1996); Holmskov et al. (2003)
2. Complement system Activation Ikeda. et al., 1987a, Ikeda et al., 1987b; Lu et al. (1990); Yakota et al. (1995);
Neth et al. (2002); Fujita et al. (2004)
3. Phagocytic response of macrophages Enhancement Kuhlman et al. (1989); Turner (1996); Fraser et al. (1998);
(= Opsonophagocytosis) Tenner (1999); Kilpatrick (2002); Holmskov et al. (2003)
4. Infection by human immunodeficiency virus Inhibition Ezekowitz et al. (1989)
5. Neutrophil response against influenza A virus Activation Hartshorn et al. (1993); Malhotra et al. (1994)
6. Complement - dependent cytotoxicity Promotion Ohta and Kawasaki (1994)
7. Antitumour activity Expression Muto et al. (1999); Ma et al. (1999)
8. Complement - independent cytotoxicity Promotion Ma et al. (1999)
9. Neutralization of influenza A virus Promotion Anders et al. (1994); Kase et al. (1999)
10. Release of cytokines by monocytes Regulation Jack et al. (2001)
11. Phagocytic uptake of apoptotic cells by macrophages Initiation Ogden et al. (2001)
12.
Inflammatory reactions and immunity
Modulation
Turner (2003); Terai et al. (1997)
4. H - Ficolin
1. Complement system Activation Matsushita and Fujita. (2001); Matsushita et al. (2002); Lu et al. (2002)
2.
Growth of Aerococcus viridians
Inhibition
Tsujimura et al. (2001)
5. L - Ficolin
1. Phagocytic response Enhancement Matsushita et al. (1996); Lu et al. (2002)
of neutrophils (= Opsonophagocytosis)
2. Complement system Activation Matsushita et al. (2000); Matsushita and Fujita (2001); Matsushita et al. (2002)
Lu et al. (2002); Lynch et al. (2004)

1.16. Generation of defense molecules from native substances

The immune system utilizes naturally occurring defense molecules as well as synthesizes and releases certain specific molecules such as antibodies in order to accomplish effective immune reactions against the invaded pathogens. Apart from this well known aspect of humoral immune responses, the treatment of various native and non-immune biochemical constituents in vitro with different kinds of endogenous or exogenous substances has been found to result in generation of a variety of new immunologically relevant molecules. Such a phenomenon has attracted the attention of several researchers, apparently due to the fact that the generation of the defense molecules could augment the existing capacity of host immune responsiveness. A survey of the literature has been presented in Table 7. It is notable from these studies that the generation of immunologically reactive molecules appears to be a common phenomenon in vertebrates.

Table 7.

Generation of diverse types of immunologically reactive molecules from various native biochemical constituents upon treatment with exogenous and endogenous substances.

[S. No.] Source Identity of target molecules Treatment with exogenous/endogenous substances Activity generated References
1. Bovine and human milk Lactoferrin Pepsin Antibacterial Bellamy et al. (1992)
2. Hen eggs Egg white lysozyme Dimethyl suberimidate Lectin-like Mega and Hase (1994)
Egg white lysozyme Clostripain Antibacterial Pellegrini et al. (1997)
Egg white lysozyme Trypsin, chymotrypsin, pepsin Antiviral Overmann et al. (2003)
Egg white lysozyme Pepsin → trypsin Antibacterial Mine et al. (2004)
Ovalbumin Trypsin, chymotrypsin Antibacterial Pellegrini et al. (2004)
Antifungal
3. Bovine milk Casein Trypsin, pronase, Antibacterial Zucht et al. (1995)
endoproteinase Glu C
4. Bovine milk Casein Chymosin Antibacterial Lahov and Regelson, 1996
Immunostimulatory
5. Bovine milk β-lactoglobulin Trypsin Antibacterial Pellegrini et al. (2001)
6. Bovine serum Albumin Trypsin, chymotrypsin, pepsin Antiviral Overmann et al. (2003)
7. Rabbit milk (Oryctolagus cuniculus) Casein Trypsin, chymotrypsin, pepsin, clostripain Antibacterial Baranyi et al. (2003)
8. Human Serum Human serum Albumin Pronase Hemagglutinating and Phenoloxidase activity Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b

In vertebrates, many investigators have reported the generation of potent antibacterial or antiviral activity from lactoferrin (from bovine and human milk), casein (from bovine and ovine milk) and albumin (from bovine serum) upon treatment with various exogenous proteases (Table 7). Similarly, the treatment of egg white lysozyme and ovalbumin with such proteases has been found to generate antimicrobial activity. It is also interesting to note that lectin-like activity could also be generated from egg white lysozyme after chemical treatment (Mega and Hase, 1994).

As evident from the interesting findings of the novel experimental studies listed in Table 7, such investigations aimed at exploring the possibility for generation of immunologically reactive molecules need to be extended to human system. Although the presence of phenoloxidase (Bullón et al., 1998) and many distinct lectins (Table 1) have been detected in normal human serum, the generation of these new multifunctional defense molecules in human serum after treatment with appropriate elicitors. Based on these data, the objectives were framed wherein, anew pronase inducible lectin was detected, isolated and characterized, subsequently published and are included in the review table.

In Table 8, we have tabulated the generation and detection of hemagglutinating and phenoloxidase activities in human serum upon induction using an exogenous elicitor, namely pronase. The detected inducible lectin generated anew was successfully isolated by a single step using lectin-affinity chromatography with Concanavalin A- Sepharose as gel matrix. This lectin depicted specificity towards aminosugars, namely, mannosamine, glucosamine and galactosamine. This molecule has a native molecular weight of 6kDa and two sub units each of 3 kDa. Identification of the serum component involved in generation of neo-lectin with agglutinating and phenoloxidase activities in human serum was found to be human serum albumin (Beulaja et al., 2014)Further, exploration of study on this inducible lectin molecule or similar generations of such activities in human serum warrants further investigation.

Table 8.

Detection, Binding Specificity, Cation Dependency, Isolation, Molecular Characteristics and Immune function of a Pronase inducible lectin from human serum.

S. No. Molecules Generated Method of Detection References
1. Pronase inducible lectin Hemagglutination Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b
2. Phenoloxidase Oxidation of phenolic substrates Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b
S. No. Binding Specificity
Divalent Cation Dependency
References
Ligands recognized Best Ligand (s) Cations tested Dependency
1. Mannosamine, Glucosamine, Galactosamine Mannosamine Ca2+, Mg2+, Mn2+, Sr2+ Independent Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b, Beulaja et al. (2017)
S. No. Methods of isolation Matrix used Eluants used in adsorption chromatography References
1. Lectin-Affinity Chromatography Concanavalin A-Sepharose 4B Mannose Beulaja et al. (2017)
S. No. Native molecular mass
Subunit characteristics
References
Method of estimation kDa Subunit molecular weight (kDa) Number of subunits
1. FPLC 6 3
2 Beulaja et al. (2017)
2. MALDI-TOF 6.5
S. No. Immune function Action References
1. Hemagglutination Generation Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b
2. Phenoloxidase Enhancement Beulaja and Manikandan, 2012a, Beulaja and Manikandan, 2012b

Overall, it may be said that in this article, we have presented an explicit over view on the various human serum lectins and diverse activities that could be generated in vertebrates as review tables. We have discussed on various parameters like the mode of detection of human serum lectins, its isolation methodologies, structural and functional characteristics. In addition, we have tabulated our results on the pronase-inducible lectin isolated from human serum and its salient features. Over all this extensive review illustrates and demonstrates the massiveness of the enormous research work accomplished by eminent scientists world-wide on human serum lectins from 1930's till recent years.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

  1. Abernathy T.J., Avery O.T. The occurrence during acute infections of a protein not normally present in the blood. J. Exp. Med. 1941;73:173–182. doi: 10.1084/jem.73.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ackerman S.J., Corrette S.E., Rosenberg H.F., Bennett J.C., Mastrianni D.M., Nicholson-Weller A., Weller P.F., Chin D.T., Tenen D.G. Molecular cloning and characterization of human eosinophil Charcol leyden crystal protein (lysophospholipase) J. Immunol. 1993;150:456–468. [PubMed] [Google Scholar]
  3. Akaiwa M., Yae Y., Sugimoto R., Suzuki S.O. Hakata antigen, a new member of the ficolin/opsonin p35 family, is a novel human lectin secreted into bronchus/alveolus and bile. J. Histochem. Cytochem. 1999;47:777–785. doi: 10.1177/002215549904700607. [DOI] [PubMed] [Google Scholar]
  4. Anders E.M., Hartly C.A., Reading P.C., Ezekowitz R.A. Complement-dependent neutralization of virus by a serum mannose-binding lectin. J. Gen. Virol. 1994;75:615–622. doi: 10.1099/0022-1317-75-3-615. [DOI] [PubMed] [Google Scholar]
  5. Arason G.J. Lectins as defense molecules in vertebrates and invertebrates. Fish Shellfish Immunol. 1996;6:277–289. [Google Scholar]
  6. Baenziger J.U., Maynard Y. Human hepatic lectin. J. Biol. Chem. 1980;255:4607–4613. [PubMed] [Google Scholar]
  7. Baranyi M., Thomas U., Pellegrini A. Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk. J. Dairy Res. 2003;70:189–197. doi: 10.1017/s0022029903006150. [DOI] [PubMed] [Google Scholar]
  8. Barondes S.H. Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci. 1988;13:721–726. doi: 10.1016/0968-0004(88)90235-6. [DOI] [PubMed] [Google Scholar]
  9. Beck G., Cooper E.L., Habicht G.S., Marchalonis J.J. Primordial immunity: foundation for the Vertebrate immune system. Ann. N. Y. Acad. Sci. 1994;712:376. doi: 10.1111/j.1749-6632.1994.tb33556.x. [DOI] [PubMed] [Google Scholar]
  10. Bellamy W., Takase M., Yamauchi K., Wakabayashi H. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta. 1992;1121:130–136. doi: 10.1016/0167-4838(92)90346-f. [DOI] [PubMed] [Google Scholar]
  11. Berglund L., Petersen T.E. The gene structure of tetranectin, a plasminogen binding protein. FEBS Lett. 1992;309:15–19. doi: 10.1016/0014-5793(92)80729-z. [DOI] [PubMed] [Google Scholar]
  12. Beulaja M., Manikandan R. Detection and characterisation of natural and inducible lectins in human serum. Res. Immunol. 2012;2:132–141. doi: 10.1016/j.rinim.2012.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Beulaja M., Manikandan R. Detection of natural and induced phenoloxidasein human serum. Hum. Immunol. 2012;73:1005–1010. doi: 10.1016/j.humimm.2012.07.331. [DOI] [PubMed] [Google Scholar]
  14. Beulaja M., Manikandan R., Arumugam M. Identification of serum component involved in generation of neo-lectin with agglutinating and phenoloxidase activities in human serum. Hum. Immunol. 2014;75:34–40. doi: 10.1016/j.humimm.2013.09.013. [DOI] [PubMed] [Google Scholar]
  15. Beulaja M., Manikandan R., Thiagarajan R., Mullainadhan P., Arumugam M. Purification and characterisation of a pronase-inducible lectin isolated from human serum. Int. J. Biol. Macromol. 2017;99:443–453. doi: 10.1016/j.ijbiomac.2017.02.022. [DOI] [PubMed] [Google Scholar]
  16. Binette P., Binette M., Calkins E. The isolation identification of the P-component of normal human plasma proteins. Biochem. J. 1974;143:253–254. doi: 10.1042/bj1430253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bristow C.L., Boackle R.J. Evidence for the binding of human serum amyloid P-component to C1q and Fab. Mol. Immunol. 1986;23:1045–1052. doi: 10.1016/0161-5890(86)90003-9. [DOI] [PubMed] [Google Scholar]
  18. Buchta R., Gennaro R., Pontet M., Fridkin M., Romeo D. C-reactive protein decreases protein phosphorylation in stimulated human neutrophils. FEBS Lett. 1988;237:173–177. doi: 10.1016/0014-5793(88)80195-9. [DOI] [PubMed] [Google Scholar]
  19. Bullón M.R.R., Pendreno P.S., Liarte J.H.M. Serum tyrosine hydroxylase activity is increased in melanoma patients. An ROC curve analysis. Canc. Lett. 1998;129:151–155. doi: 10.1016/s0304-3835(98)00109-8. [DOI] [PubMed] [Google Scholar]
  20. Butler G., Sim D., Tam E., Devine D., Oerall C.M. Mannose binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis. J. Biol. Chem. 2002;277:17511–17519. doi: 10.1074/jbc.M201461200. [DOI] [PubMed] [Google Scholar]
  21. Camus M.L. Recherches expermentales surune agglutinine produite par la glande de l albumen chen l Helix pomatia. C. R. Acad. Sci. 1899;129:337–345. [Google Scholar]
  22. Catalina M.D., Estess P., Siegelman M.H. Selective requirements for leukocyte adhesion molecules in models of acute and chronic inflammation participation of E- and P- but not L-selectin. Blood. 1999;93:580–589. [PubMed] [Google Scholar]
  23. Cathcart E.S., Shirahama T., Cohen A.S. Isolation and identification of a plasma component of amyloid. Biochim. Biophys. Acta. 1967;147:392–393. [Google Scholar]
  24. Claus D.R., Siegel J., Petras K., Osmand A.P., Gewurz H. Interaction of C-reactive protein with the first component of human complement. J. Immunol. 1977;119:187–192. [PubMed] [Google Scholar]
  25. Clemmensen I. Interaction of tetranectin with sulphated polysaccharides and trypan blue. Scand. J. Clin. Lab. Invest. 1989;49:719–725. doi: 10.3109/00365518909091550. [DOI] [PubMed] [Google Scholar]
  26. Clemmensen I., Petersen L.C., Kluft C. Purification and characterization of a novel, oligomeric plasminogen kringle 4 binding protein from human plasma: tetranectin. Eur. J. Biochem. 1986;156:327–333. doi: 10.1111/j.1432-1033.1986.tb09586.x. [DOI] [PubMed] [Google Scholar]
  27. Colley K.J., Beranek M.C., Baenziger J.U. Purification and characterization of the core specific lectin from human serum and liver. Biochem. J. 1988;256:61–68. doi: 10.1042/bj2560061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Coombe D.R., Ey P.L., Jenkin C.R. Particle recognition by haemocytes from the colonial ascidian Botrylloids leachii: evidence that the B.leachii HA-2 aggulitinin is opsonic. J. Comp. Physiol. 1984;154B:509–521. [Google Scholar]
  29. Cooper E., Rinkevich B., Uhlenbruck G., Valembois P. Invertebrate immunity: another viewpoint. Scand. J. Immunol. 1992;35:247–266. doi: 10.1111/j.1365-3083.1992.tb02857.x. [DOI] [PubMed] [Google Scholar]
  30. Cseh S., Vera L., Matsushita M., Fujita T., Arlaud G.J., Thielens N.M. Characterization of the interaction between L-ficolin/p35 and mannan-binding lectin associated serine proteases-1 and 2. J. Immunol. 2002;169:5735–5743. doi: 10.4049/jimmunol.169.10.5735. [DOI] [PubMed] [Google Scholar]
  31. Culley F.J., Harris R.A., Kaye P.M., McAdam K.P.W.J., Raynes J.G. C-reactive protein binds to a noval ligand of Leishmania donovani and increases uptake into human macrophages. J. Immunol. 1996;156:4691–4696. [PubMed] [Google Scholar]
  32. Culley F.J., Bodman-Smith K.B., Ferguson M.A.J., Nikolaev A.V., Shantilal N., Raynes J.G. C-reactive protein binds to phosphorylated carbohydrates. Glycobiology. 2000;10:59–65. doi: 10.1093/glycob/10.1.59. [DOI] [PubMed] [Google Scholar]
  33. Danielsen B., Sorensen I.J., Nybo M., Nielsen E.H., Kaplan B., Svehag S.E. Calcium-dependent and-independent binding of the pentraxin serum amyloid P-component to glycosaminoglycans and amyloid proteins: enhanced binding at slightly acid pH. Biochim. Biophys. Acta. 1997;1339:73–78. doi: 10.1016/s0167-4838(96)00218-x. [DOI] [PubMed] [Google Scholar]
  34. Das T., Mandal C., Mandal C. Protein A-a new ligand for human C-reactive protein. FEBS Lett. 2004;576:107–113. doi: 10.1016/j.febslet.2004.08.072. [DOI] [PubMed] [Google Scholar]
  35. de Beer F.C., Pepys M.B. Isolation of human C-reactive protein and serum amyloid P-component. J. Immunol. Methods. 1982;50:17–31. doi: 10.1016/0022-1759(82)90300-3. [DOI] [PubMed] [Google Scholar]
  36. de Beer F.C., Baltz M.A., Holford S.A., Pepys M.B. Fibronectin and C4-binding protein are selectively bound by aggregated amyloid P component. J. Exp. Med. 1981;154:1134–1149. doi: 10.1084/jem.154.4.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. de Beer F.C., Soutar A.K., Baltz M.L., Trayner I.M., Feinstein A., Pepys M.B. Low density lipoprotein and very low density lipoprotein are selectively bound by aggregated C-reactive protein. J. Exp. Med. 1982;156:230–242. doi: 10.1084/jem.156.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Deodhar S.D., James K., Chaing T., Edinfger M., Barna B.P. Inhibition of lung metastases in mice bearing a malignant fibrosarcoma by treatment with liposomes containing human C-reactive protein. Canc. Res. 1982;42:5084. [PubMed] [Google Scholar]
  39. Di Camelli R., Potempa L.A., Siegel J., Suyehira L., Petras K., Gewurz H. Binding reactivity of C-reactive protein for polycations. J. Immunol. 1980;125:1933–1938. [PubMed] [Google Scholar]
  40. Dobrinich R., Spagnuolo P.J. Binding of C-reactive protein to human neutrophils: inhibition of respiratory burst activity. Arthritis Rheum. 1991;34:1031–1038. doi: 10.1002/art.1780340813. [DOI] [PubMed] [Google Scholar]
  41. Edwards K.M., Gewurz H., Lint T.F., Mold C. A role for C-reactive protein in the complement mediated stimulation of human neutrophils by type 27 Streptococcus pneumoniae. J. Immunol. 1982;128:2493–2496. [PubMed] [Google Scholar]
  42. Emsley J., White H.E., O’Hara B.P., Oliva G., Srinivasan N., Tickle I.J., Blundell T.L., Pepys M.B., Wood S.P. Structure of pentameric human serum amyloid P-component. Nature. 1994;367:338–345. doi: 10.1038/367338a0. [DOI] [PubMed] [Google Scholar]
  43. Ezekowitz R.A.B., Kuhlman M., Groopman J.E., Byrn R. A human serum mannose binding protein inhibits in vitro infection by the human immunodeficiency virus. J. Exp. Med. 1989;169:185–196. doi: 10.1084/jem.169.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fraser I.P., Kozeil H., Ezekowitz R.A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that like innate and adaptive immunity. Semin. Immunol. 1998;10:363–372. doi: 10.1006/smim.1998.0141. [DOI] [PubMed] [Google Scholar]
  45. Frutos P.G., Hardig Y., Dahlback B. Serum amyloid P-component binding to C4b-binding protein. J. Biol. Chem. 1995;270:26950–26955. doi: 10.1074/jbc.270.45.26950. [DOI] [PubMed] [Google Scholar]
  46. Fuhlendorff J., Clemmensen I., Magnusson S. Primary structure of tetranectin, a plasminogen kringle 4 binding plasma protein: homology with asialoglycoprotein receptor and cartilage proteoglycan core protein. Biochemistry. 1987;26:6757–6764. doi: 10.1021/bi00395a027. [DOI] [PubMed] [Google Scholar]
  47. Fujita T., Endo Y., Nonaka M. Primitive complement system-recognition and activation. Mol. Immunol. 2004;4:103–111. doi: 10.1016/j.molimm.2004.03.026. [DOI] [PubMed] [Google Scholar]
  48. Gabius H.J. Non-carbohydrate binding partners/domains of animal lectins. Int. J. Biochem. 1994;26:469–477. doi: 10.1016/0020-711x(94)90002-7. [DOI] [PubMed] [Google Scholar]
  49. Gal K., Miltényi M. Haemaggutination test for the demonstration of C-reactive protein. Acta Microbiol. Sci. Hung. 1955;3:41–51. [PubMed] [Google Scholar]
  50. Ganrot P.O., Kindmark C.O. A simple two-step procedure for isolation of C- reactive protein. Biochim. Biophys. Acta. 1969;194:443–448. doi: 10.1016/0005-2795(69)90104-4. [DOI] [PubMed] [Google Scholar]
  51. Gewurz H., Zhang X.-H., Lint T.F. Structure and function of the pentraxins. Curr. Opin. Immunol. 1995;7:54–64. doi: 10.1016/0952-7915(95)80029-8. [DOI] [PubMed] [Google Scholar]
  52. Gokudan S., Muta T., Tsuda R., Koori K., Kawahara T., Seki N., Mizanoe Y., Wai S.N., Iwanga S., Kawabata S. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc. Natl. Acad. Sci. 1999;96:10086–10091. doi: 10.1073/pnas.96.18.10086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Goldstein I.J., Hayes C.E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr. Chem. 1978:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  54. Goldstein I.J., Hughes R.C., Monsigny M., O sawa T., Sharon N. What should be called a lectin? Nature. 1980;285:66. [Google Scholar]
  55. Gotschlich E.C., Edelman G.M. C-reactive protein: a molecule composed of subunits. Proc. Natl. Acad. Sci. 1965;54:558–565. doi: 10.1073/pnas.54.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Gotschlich E.C., Edelman G.M. Binding properties and specificity of C- reactive protein. Biochemistry. 1967;57:706–712. doi: 10.1073/pnas.57.3.706. s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Gotschlich E.C., Liu T.Y. Structural and immunological studies on the Pneumococcal C polysaccharide. J. Biol. Chem. 1967;242:463–470. [PubMed] [Google Scholar]
  58. Hamazaki H. Purification and characterization of a human lectin specific for penultimate galactose residues. J. Biol. Chem. 1986;261:5455–5459. [PubMed] [Google Scholar]
  59. Hamazaki H. Ca2+-mediated association of human serum amyloid P-component with heparin sulfate and dematan sulfate. J. Biol. Chem. 1987;262:1456–1460. [PubMed] [Google Scholar]
  60. Hamazaki H. Calcium mediated hemagglutination by serum amyloid P-component and the inhibition by specific glycosaminoglycans. Biochem. Biophys. Res. Commun. 1988;150:212–218. doi: 10.1016/0006-291x(88)90507-4. [DOI] [PubMed] [Google Scholar]
  61. Hamazaki H. Calcium-dependent polymerization of human serum amyloid P-component is inhibited by heparin and dextran sulfate. Biochim. Biophys. Acta. 1989;998:231–235. doi: 10.1016/0167-4838(89)90279-3. [DOI] [PubMed] [Google Scholar]
  62. Hartshorn K.L., Sastry K., White M.R., Anders E.M., Super M., Ezekowitz R.A., Tauber A.I. Human mannose binding protein functions as an opsonin for influenza a viruses. J. Clin. Invest. 1993;91:1414–1420. doi: 10.1172/JCI116345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Hashimoto K., Tatsumi N. Rapid isolation of human C-reactive protein and serum amyloid Pcomponent. J. Immunol. Methods. 1989;125:295–296. doi: 10.1016/0022-1759(89)90108-7. [DOI] [PubMed] [Google Scholar]
  64. Haurum J.S., Thiel S., Haagsman H.P., Laursen S.B., Larsen B., Jensenius J.C. Studies on the carbohydrate-binding characteristic of human pulmonary surfactant-associated protein a and comparison with two other collection: mannan-binding protein and conglutinin. Biochem. J. 1993;293:873–878. doi: 10.1042/bj2930873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hedlund P. The appearance of acute phase protein in various diseases. Acta Med. Scand. 1947;128:579–601. [Google Scholar]
  66. Affinity chromatography (special issue) Heftmann E., editor. J. Biochem. Biophys. Methods. 2001;49:1–739. [Google Scholar]
  67. Hind C.R.K., Colling P.M., Penin D., Cook R.B., Caspi D., Baltz M.L., Pepys M.B. Binding specificity of serum amyloid P-component for the pyruvate acetal of galactose. J. Exp. Med. 1984;159:1058–1069. doi: 10.1084/jem.159.4.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Hokama Y., Coleman M.K., Riley R.F. In vitro effect of C-reactive protein on phagocytosis. J. Bacteriol. 1962;83:1017. doi: 10.1128/jb.83.5.1017-1024.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hokama Y., Tam R., Hirano W., Kimura L. Significance of C-reactive protein binding by lecithin: a simplified procedure for CRP isolation. Clin. Chim. Acta. 1974;50:53–62. doi: 10.1016/0009-8981(74)90077-1. [DOI] [PubMed] [Google Scholar]
  70. Holmskov U., Theil S., Jensenius J.C. Collectins and ficolins: humorallectins of the innate immune defense. Annu. Rev. Immunol. 2003;21:547–578. doi: 10.1146/annurev.immunol.21.120601.140954. [DOI] [PubMed] [Google Scholar]
  71. Hornung M.O. Growth inhibition of melanoma cells by C-reactive protein activated lymphocytes. Proc. Soc. Exp. Biol. Med. 1972;139:1166. doi: 10.3181/00379727-139-36322. [DOI] [PubMed] [Google Scholar]
  72. Hornung M., Fritchi S. Isolation of C-reactive protein and its effect on human lymphocytes in vitro. Nat. New Biol. 1971;230:84. doi: 10.1038/newbio230084a0. [DOI] [PubMed] [Google Scholar]
  73. Hurlimann J., Thorbecke G.J., Hochwald G.M. The liver as the site of C-reactive protein formation. J. Exp. Med. 1965:365–378. doi: 10.1084/jem.123.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hutchcraft C.L., Gewurz H., Hansen B., Dyck R.F., Pepys M.B. Agglutination of complement-coated erythrocytes by serum amyloid P-component. J. Immunol. 1981;126:1217–1219. [PubMed] [Google Scholar]
  75. Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J. Biol. Chem. 1987;262:7451–7454. [PubMed] [Google Scholar]
  76. Ikeda K., Takami M., Kim C.W., Honjo T., Miyoshi T., Tagaya Y., Kawabe T., Yodoi J. Human lymphocyte Fc receptor for IgE: sequence homology of its cloned cDNA with animal lectins. Proc. Natl. Acad. Sci. 1987;84:819–823. doi: 10.1073/pnas.84.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Inaba S., Okochi K. On a new precipitating antibody against normal human serum found in two patients with SLE. Igaku no Ayumi. 1978;107:690–691. [Google Scholar]
  78. Jack D.L., Jarvis G.A., Booth C.L., Turner M.W., Klein N.J. Mannose-binding lectin accelerate complement activation and increase serum killing of Neisseria meningititis Serogroup C. J. Infect. Dis. 2001;184:836. doi: 10.1086/323204. [DOI] [PubMed] [Google Scholar]
  79. Jiang H., Robey F.A., Gewur H. Localization of sites through which C-reactive protein binds and activates complement to residues 14-26 and 76-92 of the human C1q A chain. J. Exp. Med. 1992;175:1373–1379. doi: 10.1084/jem.175.5.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Johnson U., Prellner K. Purification of C-reactive protein on DEAE-cellulose by a simple two- step procedure utilizing the calcium-dependency of the protein. Biochim. Biophys. Acta. 1977;495:349–353. doi: 10.1016/0005-2795(77)90390-7. [DOI] [PubMed] [Google Scholar]
  81. Kanses G.S. Selections and their ligands: current concepts and controversies. Blood. 1996;88:3259–3287. [PubMed] [Google Scholar]
  82. Kaplan M.H., Volanakis J.E. Interaction of C-reactive protein complexes with the complement system. J. Immunol. 1974;112:2135–2147. [PubMed] [Google Scholar]
  83. Kase T., Suzuki Y., Sakamoto T. Kawai T., Ohtani K., Eda S., Maeda A., Okuno Y., Kurimura T., Wakamiya N. Human mannan-binding lectin inhibits the infection of influenzae A virus without complement. Immunology. 1999;97:385–392. doi: 10.1046/j.1365-2567.1999.00781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Kawagishi H., Yamawaki M., Isobe S., Usvi T., Kimwa A., Chiba S. Two lectins from the marine sponge Halichondria okadai. An N-acetyl sugar-specific lectin (HOL-I) J. Biol. Chem. 1994;269:1375–1379. [PubMed] [Google Scholar]
  85. Kawasaki N., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. 1983;94:937–947. doi: 10.1093/oxfordjournals.jbchem.a134437. [DOI] [PubMed] [Google Scholar]
  86. Kew R.R., Hyers T.M., Webster R.O. Human C-reactive protein inhibits neutrophil chemotaxis in vitro: possible implications for the adult respiratory distress syndrome. J. Lab. Clin. Med. 2000;115:339–345. [PubMed] [Google Scholar]
  87. Kilpatrick D.C. Mannan binding protein in sera positive for rheumatoid factor. Br. J. Rheumatol. 1997;36:207–209. doi: 10.1093/rheumatology/36.2.207. [DOI] [PubMed] [Google Scholar]
  88. Kilpatrick D.C. Isolation of human mannan binding lectin, serum amyloid P-component and related factors from Cohn Fraction III. Transfus. Med. 1997;7:289–294. doi: 10.1046/j.1365-3148.1997.d01-40.x. [DOI] [PubMed] [Google Scholar]
  89. Kilpatrick D.C. Phospholipid binding activity of human mannan binding lectin. Immunol. Lett. 1998;61:191–195. doi: 10.1016/s0165-2478(98)00031-5. [DOI] [PubMed] [Google Scholar]
  90. Kilpatrick D.C. John Wiley, Inc; Chichester: 2000. Handbook of Animal Lectins: Properties and Biomedical Applications; p. 480. [Google Scholar]
  91. Kilpatrick D.C. Mannan-binding lectin and its role in innate immunity. Transfus. Med. 2002;12:335–352. doi: 10.1046/j.1365-3148.2002.00408.x. [DOI] [PubMed] [Google Scholar]
  92. Kilpatrick J.M., Volanakis J.E. Opsonic properties of C-reactive protein. Stimulation by phorbol myristate acetate enables human neutrophils to phagocytize C-reactive protein coated cells. J. Immunol. 1985;134:3364. [PubMed] [Google Scholar]
  93. Kilpatrick J.M., Gersham H.D., Griffin F.M., Volanakis J.E. Peripheral blood mononuclear leukocytes release a mediator(s) that induces phagocytosis of C-reactive protein coated cells by polymophonuclear leukocytes. J. Leukoc. Biol. 1987;41:50. doi: 10.1002/jlb.41.2.150. [DOI] [PubMed] [Google Scholar]
  94. Kindmark C.-O. Stimulating effect of C-reactive protein on phagocytosis of various species of pathogenic bacteria. Clin. Exp. Immunol. 1971;8:941. [PMC free article] [PubMed] [Google Scholar]
  95. Kluft C., Jie A.F.H., Los P., de Wit E., Havekes L. Functional analogy between lipoprotein (a) and plasminogen in the binding to the kringle 4 binding protein, tetranectin. Biochim. Biophys. Acta. 1989;161:427–433. doi: 10.1016/0006-291x(89)92616-8. [DOI] [PubMed] [Google Scholar]
  96. Kluft C., Los P., Clemmensen I. Calcium-dependent binding of tetranectin to fibrin. Thromb. Res. 1989;55:233–238. doi: 10.1016/0049-3848(89)90440-4. [DOI] [PubMed] [Google Scholar]
  97. Köttgen E., Hell B., Kage A., Tauber R. Lectin specificity and binding characteristics of human C-reactive protein. J. Immunol. 1992;149:445–453. [PubMed] [Google Scholar]
  98. Krarup A., Thiel S., Hansen A., Fujita T., Jensenius J.C. L-ficolin is a pattern recognition molecule specific for acetyl groups. J. Biol. Chem. 2004;279:47513–47519. doi: 10.1074/jbc.M407161200. [DOI] [PubMed] [Google Scholar]
  99. Kubak B.M., Potempa L.A., Anderson B., Mahklouf S., Venegas M., Gewurz H., Gewurz A.T. Evidence that serum amyloid P-component binds to mannose-terminated sequences of polysaccharides and glycoproteins. Mol. Immunol. 1988;25:851–858. doi: 10.1016/0161-5890(88)90121-6. [DOI] [PubMed] [Google Scholar]
  100. Kuhlman M., Joiner K., Ezekowitz A.B. The human mannose binding protein functions as an opsonin. J. Exp. Med. 1989;169:1733–1745. doi: 10.1084/jem.169.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kurata H., Sannoh T., Kozutsumi Y., Yokota Y., Kawasaki T. Structure and function of mannan-binding protein isolated from human liver and serum. J. Biochem. 1994;115:1148–1154. doi: 10.1093/oxfordjournals.jbchem.a124471. [DOI] [PubMed] [Google Scholar]
  102. Kushner I., Somerville J.A. Estimation of the molecular size of C-reactive protein and Cx-reactive protein in serum. Biochim. Biophys. Acta. 1970;207:105–114. doi: 10.1016/0005-2795(70)90140-6. [DOI] [PubMed] [Google Scholar]
  103. Kyogashima M., Krivan H.C., Schweinle J.E., Ginsburg V., Holt G.D. Glycosphingolipid binding specificity of the mannose binding protein from human sera. Arch. Biochem. Biophys. 1990;283:217–222. doi: 10.1016/0003-9861(90)90634-b. [DOI] [PubMed] [Google Scholar]
  104. Laursen I. Mannan-binding lectin (MBL) production from human plasma. Biochem. Soc. Trans. 2003;31:758–762. doi: 10.1042/bst0310758. [DOI] [PubMed] [Google Scholar]
  105. Lahov E., Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem. Toxicol. 1996;34:131–145. doi: 10.1016/0278-6915(95)00097-6. [DOI] [PubMed] [Google Scholar]
  106. Le Y., Tan S.M., Lee S.H., Kon O.L., Lu J. Purification and binding properties of a human ficolin-like protein. J. Immunol. Methods. 1997;204:43–49. doi: 10.1016/s0022-1759(97)00029-x. [DOI] [PubMed] [Google Scholar]
  107. Le Y., Lee S.H., Kon O.L., Lu J. Human L-ficolin: plasma levels, sugar specificity, and assignment of its lectin activity to the fibrinogen-like (FBG) domain. FEBS Lett. 1998;425:367–370. doi: 10.1016/s0014-5793(98)00267-1. [DOI] [PubMed] [Google Scholar]
  108. Lennartz M.R., Cole F.S., Shepherd V.L., Wileman T.E., Stahl P.D. Isolation and characterization of a mannose-specific endocytosis receptor from human placenta. J. Biol. Chem. 1987;262:9942–9944. [PubMed] [Google Scholar]
  109. Lu J., Thiel S., Wiedemann H., Timpl R., Reid K.B.M. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme Clr2 Cls2 complex, involvement of C1q. J. Immunol. 1990;144:2287–2294. [PubMed] [Google Scholar]
  110. Lu J., Teh C., Kishore U., Reid K.B. Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system. Biochem. Biophys. Acta. 2002;1572:387–400. doi: 10.1016/s0304-4165(02)00320-3. [DOI] [PubMed] [Google Scholar]
  111. Lynch N.L., Roscher S., Hartung T., Morath S., Matsushita M., Maennel D.N., Kuraya M., Fujita T., Schwaeble W.J. L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of gram positive bacteria, and activates the lectin pathway of complement. J. Immunol. 2004;172:1198–1202. doi: 10.4049/jimmunol.172.2.1198. [DOI] [PubMed] [Google Scholar]
  112. Ma Y., Uemura K., Oka S., Kozutsumi Y., Kawasaki N., Kawasaki T. Antitumor activity of mannan binding protein in vivo as revealed by a virus expression system: mannan binding protein dependent cell mediated cytotoxicity. Proc. Natl. Acad. Sci. 1999;96:371–375. doi: 10.1073/pnas.96.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Ma Y.G., Cho M.Y., Zhao M., Park J.W., Matsushita M., Fujita T., Lee B.L. Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J. Biol. Chem. 2004;279:25307–25312. doi: 10.1074/jbc.M400701200. [DOI] [PubMed] [Google Scholar]
  114. MacLeod C.M., Avery O.T. The occurrence during acute infections of a protein not normally present in the blood. J. Exp. Med. 1941;73:191–200. doi: 10.1084/jem.73.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Maheswari R., Mullainadhan P., Arumugam M. Isolation and characterization of an acetyl group-recognizing agglutinin from the serum of the Indian white shrimp Fenneropenaeus indicus. Arch. Biochem. Biophys. 2002;402:65–76. doi: 10.1016/S0003-9861(02)00055-3. [DOI] [PubMed] [Google Scholar]
  116. Malhotra R., Haurum J.S., Thiel S., Siem R.B. Binding of human collectins (SP-A and MBP) to influenza virus. Biochem. J. 1994;304:455–461. doi: 10.1042/bj3040455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Marchalonis J.J., Edelman G.M. Isolation and characterization of a hemagglutinin from Limulus polyphemus. J. Mol. Biol. 1968;32:453–465. doi: 10.1016/0022-2836(68)90022-3. [DOI] [PubMed] [Google Scholar]
  118. Matsushita B.M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J. Exp. Med. 1992;176:1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Matsushita M., Fujita T. Ficolins and the lectin complement pathway. Immunol. Rev. 2001;180:78–85. doi: 10.1034/j.1600-065x.2001.1800107.x. [DOI] [PubMed] [Google Scholar]
  120. Matsushita M., Endo Y., Taira S., Sato Y., Fujita T., Ichikawa N., Nakata M., Mizuochi T. A novel human serum lectin with collagen and fibrinogen-like domains that fuctions as an opsonin. J. Biol. Chem. 1996;271:2448–2454. doi: 10.1074/jbc.271.5.2448. [DOI] [PubMed] [Google Scholar]
  121. Matsushita M., Endo Y., Fujita T. Cutting edge: complement activating complex of ficolin and mannose-binding lectin associated serine protease. J. Immunol. 2000;164:2281–2284. doi: 10.4049/jimmunol.164.5.2281. [DOI] [PubMed] [Google Scholar]
  122. Matsushita M., Kuraya M., Hamasaki N., Tsujimura M., Shiraki H., Fujita T. Activation of the lectin complement pathway by H-ficolin (Hakata antigen) J. Immunol. 2002;168:3502–3506. doi: 10.4049/jimmunol.168.7.3502. [DOI] [PubMed] [Google Scholar]
  123. Mega T., Hase S. Conversion of egg-white lysozyme to a lectin-like protein with agglutinating activity analogous to wheat germ agglutinin. Biochim. Biophys. Acta. 1994;1200:331–333. doi: 10.1016/0304-4165(94)90175-9. [DOI] [PubMed] [Google Scholar]
  124. Miller M., Seals E.J., Hopkins M.D.J., Levitsky L.C., Yale M.D. A family, plasma associated defect of phagocytosis. Lancet. 1968:60–63. [Google Scholar]
  125. Mine Y., Ma F., Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 2004;52:1088–1094. doi: 10.1021/jf0345752. [DOI] [PubMed] [Google Scholar]
  126. Miyagawa N., Okamoto Y., Miyagawa S. Characteristic protein on peritoneal macrophage. I. Human C-reactive protein inhibits migration of Guinea pig peritoneal macrophages. Microbiol. Immunol. 1989;32:709. doi: 10.1111/j.1348-0421.1988.tb01432.x. [DOI] [PubMed] [Google Scholar]
  127. Mold C., Gewurz H. Inhibitory effect of C-reactive protein on alternative complement pathway activation by liposomes and Streptococcus pneumonia. J. Immunol. 1981;127:2089–2092. [PubMed] [Google Scholar]
  128. Mold C., Kingzette M., Gewurz H. C-reactive protein inhibits activation of the alternative pathway by increasing the interaction between factor H and C3b. J. Immunol. 1984;133:882–885. [PubMed] [Google Scholar]
  129. Mold C., Gewurz H., Clos T.W.D. Regulation of complement activation by C-reactive protein. Immunopharmacology. 1999;42:23–30. doi: 10.1016/s0162-3109(99)00007-7. [DOI] [PubMed] [Google Scholar]
  130. Mold C., Gresham H.D., Clos T.W.Du. Serum amyloid P-component and C-reactive protein mediate phagocytosis through murine FcγRs. J. Immunol. 2001;166:1200–1205. doi: 10.4049/jimmunol.166.2.1200. [DOI] [PubMed] [Google Scholar]
  131. Mortensen R.F., Duskiewiez J.A. Mediation of CRP dependent phagocytosis through mouse macrophage FC receptor. J. Immunol. 1977;119:1611. 1611. [PubMed] [Google Scholar]
  132. Mortensen R., Osmand A.P., Gewurz H. Effects of C-reactive protein on the lymphoid system. J. Exp. Med. 1975;141:821–839. [PMC free article] [PubMed] [Google Scholar]
  133. Mortensen R., Osmand A.P., Lint T.F., Gewurz H. Interaction of C-reactive protein with lymphocytes and monocytes: complement-dependent adherence and phagocytosis. J. Immunol. 1976;117:774–781. [PubMed] [Google Scholar]
  134. Mullainadhan P., Renwrantz L. Lectin-dependent recognition of foreign cell by hemocytes of the mussel, Mytilus edulis. Immunobiology. 1986;171:263–273. doi: 10.1016/S0171-2985(86)80009-2. [DOI] [PubMed] [Google Scholar]
  135. Mullainadhan P., Renwrantz L. Comparative analysis of agglutinins from hemolymph and albumin gland of Helix pomatia. J. Comp. Physiol. 1989;159B:443–452. doi: 10.1007/BF00692416. [DOI] [PubMed] [Google Scholar]
  136. Murali S., Mullainadhan P., Arumugam M. Purification and characterization of a natural agglutinin from the serum of the hermit crab Diognes affinis. Biochem. Biophys. Acta. 1999;147:13–24. doi: 10.1016/s0304-4165(99)00097-5. [DOI] [PubMed] [Google Scholar]
  137. Muto S., Sakuma K., Taniguichi A., Matsumoto K. Human mannose-binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amounts of Lewis A and Lewis B antigens. Biol. Pharm. Bull. 1999;22:347–352. doi: 10.1248/bpb.22.347. [DOI] [PubMed] [Google Scholar]
  138. Muto S., Takada T., Matsumoto K. Biological activity of human mannose binding lectin bound to two different ligand sugar structure, Lewis A and Lewis B antigen and high mannose type oligosaccharides. Biochim. Biophys. Acta. 2001;1527:39–46. doi: 10.1016/s0304-4165(01)00136-2. [DOI] [PubMed] [Google Scholar]
  139. Neth O., Jack D.L., Johnson M., Klein N.J., Turner M.W. Enhancement of complement activation and opsonophagocytosis by complexes of mannose binding lectin with mannose binding lectin associated serine protease after binding to Staphylococcus aureus. J. Immunol. 2002;169:4430–4436. doi: 10.4049/jimmunol.169.8.4430. [DOI] [PubMed] [Google Scholar]
  140. Noguchi H. The interaction of the blood of cold-blooded animals with reference to hemolysis, agglutination and precipitation. Biochem. Biophys. Res. Commun. 1903;178:336–342. [Google Scholar]
  141. Nunomura W., Hatakeyama M., Hirtai H. Purification of human C-reactive protein by immunoaffinity chromatography using mouse monoclonal antibody. J. Biochem. Biophys. Methods. 1990;21:75–80. doi: 10.1016/0165-022x(90)90048-h. [DOI] [PubMed] [Google Scholar]
  142. Ogden C.A., deCathelineau A., Hoffmann P.R., Bratton D., Ghebrehiwet B., Fadok V.A., Henson P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 2001;194:781–795. doi: 10.1084/jem.194.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Ohta M., Kawasaki T. Complement-dependent cytotoxic activity of serum mannan-binding protein towards mammalian cells with surface-exposed high-mannose type. J. Glycoconjugate. 1994;11:304–308. doi: 10.1007/BF00731203. [DOI] [PubMed] [Google Scholar]
  144. Olafsen J.A. Role of lectins in invertebrate humoral defense. Am. Fish. Soc. Spec. Publ. 1988;18:189–205. [Google Scholar]
  145. Olden K., Parent J.B., editors. Vertebrate Lectins. Van Nostrend Rainhold Company; New York: 1987. p. 255. [Google Scholar]
  146. Overmann A., Engels M., Thomas U., Pellegirini A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir. Res. 2003;59:23–33. doi: 10.1016/S0166-3542(03)00010-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Painter R.H., De Escallon I., Massey A., Pinteric L., Stern S.B. The structure and binding charactestics of serum amyloid protein. Ann. N. Y. Acad. Sci. 1982:199–221. doi: 10.1111/j.1749-6632.1982.tb22138.x. [DOI] [PubMed] [Google Scholar]
  148. Pellegrini A., Thomas U., Bramaz N., Klauser S., Hunziker P., Von Fellenberg R. Identification and isolation of a bacterial domain in chicken egg white lysozyme. J. Appl. Microbiol. 1997;82:372–378. doi: 10.1046/j.1365-2672.1997.00372.x. [DOI] [PubMed] [Google Scholar]
  149. Pellegrini A., Detteling C., Thomas U., Hunziker P. Isolation and characterization of four bactericidal domines in the bovine β-lactoglobulin. Biochem. Biophys. Acta. 2001;1526:131–140. doi: 10.1016/s0304-4165(01)00116-7. [DOI] [PubMed] [Google Scholar]
  150. Pellegrini A., Hulsmeier A.J., Hunziker P., Thomas U. Proteolytic fragments of ovalbumin display antimicrobial activity. Biochem. Biophys. Acta. 2004;1672(2):76–85. doi: 10.1016/j.bbagen.2004.02.010. [DOI] [PubMed] [Google Scholar]
  151. Pepys M.B., Baltz M.B. Acute phase proteins with special reference to C-reactive proteins and related proteins (pentraxins) and serum amyloid A protein. Adv. Immunol. 1983;34:141–212. doi: 10.1016/s0065-2776(08)60379-x. [DOI] [PubMed] [Google Scholar]
  152. Pepys M.B., Butler P.J.G. Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem. Biophys. Res. Commun. 1987;148:308–313. doi: 10.1016/0006-291x(87)91111-9. [DOI] [PubMed] [Google Scholar]
  153. Pepys M.B., Dash A.C., Ashley M.J. Isolation of C-reactive protein by affinity chromatography. Clin. Exp. Immunol. 1977;30:32–37. [PMC free article] [PubMed] [Google Scholar]
  154. Pepys M.B., Dash A.C., Munn E.A., Feinstein A., Skinner M., Cohen A.S., Gewurz H., Osmand A.P., Painter R.H. Isolation of amyloid component (Protein AP) from normal serum as a calcium-dependent binding protein. Lancet. 1977:1029–1031. doi: 10.1016/s0140-6736(77)91260-0. [DOI] [PubMed] [Google Scholar]
  155. Potempa L.A., Kubak B.M., Gewurz H. Effect of divalent metal ion and pH upon the binding reactivity of human serum amyloid P-component, a C-reactive protein homoloque, for zymosan. J. Biol. Chem. 1985;260:12142–12147. [PubMed] [Google Scholar]
  156. Ravindranath M.H., Higa H.H., Cooper E.L., Paulson J.C. Purification and characterization of an O-acetylsialicacid-specific lectin from a marine crab Cancer antennarius. J. Biol. Chem. 1985;260:8850–8856. [PubMed] [Google Scholar]
  157. Reeke G.J., Jr., Becker J.U., Cunnigham B.A., Gunther G.R., Wang J.L., Edelman G.M. Relationships between the structure and activities of Concanvalin A. In: Cohen E., editor. Vol. 234. 1974. pp. 369–382. (Biomedical Perspectives of Agglutinins of Invertebrate and Plant Origins). Ann. N.Y. Acad. Sci. [DOI] [PubMed] [Google Scholar]
  158. Richardson M.D., Grey C.A., Shankland G.S. Opsonic effect of C-reactive protein on phagocytosis and intracellular killing of virulent and attenuated strains of Candida albicans by human neutrophils. FEMS Microbiol. Immunol. 1991;3:341–344. doi: 10.1111/j.1574-6968.1991.tb04259.x. [DOI] [PubMed] [Google Scholar]
  159. Rochemonteix B.G-d., Wiktorowicz K., Kushner I., Dayer J.-M. C-reactive protein increase production of IL-1α, IL-1β and TNFα and expression of mRNA by human alveolar macrophages. J. Leukoc. Biol. 1993;53:439–445. doi: 10.1002/jlb.53.4.439. [DOI] [PubMed] [Google Scholar]
  160. Rowe I.R., Soutar A.K., Pepys M.B. Agglutination of intravenous lipid emulsion (‘Intralipid’) and plasma lipoproteins by C-reactive protein. Clin. Exp. Immunol. 1986;66:241–247. [PMC free article] [PubMed] [Google Scholar]
  161. Saifuddin M., Hart M.L., Gewurz H., Zhang Y., Spear G.T. Interaction of mannose binding lectin with primary isolates of human immunodeficiency virus type 1. J. General Virol. 2000;81:949–955. doi: 10.1099/0022-1317-81-4-949. [DOI] [PubMed] [Google Scholar]
  162. Salonen E.M., Vartio T., Hedman K., Vaheri A. Binding of fibronectin by the acute phase reactant C-reactive protein. J. Biol. Chem. 1984;259:1496–1501. [PubMed] [Google Scholar]
  163. Sasmal D., Guhathakurta B., Ghosh A.N., Pal C.R., Datta A. N-acetyl-D-glucosamine-specific lectin purified from Vibrio cholerae 01. FEMS Microbiol. Lett. 1992;98:217–224. doi: 10.1016/0378-1097(92)90159-l. [DOI] [PubMed] [Google Scholar]
  164. Schwalbe R.A., Dahlback B., Coe J.E., Nelsestuen G.L. Pentraxin family of proteins interacts specifically with phosphorylcholine and/or phosphorylethanolmine. Biochemistry. 1992;31:4907–4914. doi: 10.1021/bi00135a023. [DOI] [PubMed] [Google Scholar]
  165. Shapiro D., Shenkin A. A two-site immunoradiometric assay for C-reactive protein in serum. Clin. Chim. Acta. 1989;180:285–292. doi: 10.1016/0009-8981(89)90010-7. [DOI] [PubMed] [Google Scholar]
  166. Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007;283:2753–2764. doi: 10.1074/jbc.X600004200. [DOI] [PubMed] [Google Scholar]
  167. Sharon N., Lis H. Lectins as cell recognition molecules. Science. 1989;246:227–234. doi: 10.1126/science.2552581. [DOI] [PubMed] [Google Scholar]
  168. Sharon N., Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14:53–62. doi: 10.1093/glycob/cwh122. [DOI] [PubMed] [Google Scholar]
  169. Shine B., de Beer F.C., Pepys M.B. Solid phase radioimmunoassay for human C-reactive protein. Clin. Chim. Acta. 1981;117:13–23. doi: 10.1016/0009-8981(81)90005-x. [DOI] [PubMed] [Google Scholar]
  170. Siegel J., Rent R., Gewurz H. Interaction of C-reactive protein with the complement system. J. Exp. Med. 1974;140:631–647. doi: 10.1084/jem.140.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Siegel J., Osmand A.P., Wilson M.F., Gewurz H. Interaction of C-rective protein with the complement system. J. Exp. Med. 1975;142:709–721. doi: 10.1084/jem.142.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Smith V.J., Chisholm R.S. Non-cellular immunity in crustacean. Fish Shellfish Immunol. 1991;2:1–31. [Google Scholar]
  173. Soelter J., Uhlenbruck G. The role of phosphate group in the interaction on human C-reactive protein with galactan polysaccharides. Immunololgy. 1986;58:139–144. [PMC free article] [PubMed] [Google Scholar]
  174. Soothill J.F., Harvey B.A.M. Defective opsonization: a common immunity deficiency. Arch. Dis. Child. 1976;51:91–99. doi: 10.1136/adc.51.2.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Sørensen I.J., Andersen O., Holm Nielsen E., Svehag S.-E. Native human serum amyloid P-component is a single pentamer. Scand. J. Immunol. 1995;41:263–267. doi: 10.1111/j.1365-3083.1995.tb03562.x. [DOI] [PubMed] [Google Scholar]
  176. Stamenkovic I., Seed B. The B cell antigen CD22 mediates monocytes and erythrocyte adhesion. Nature. 1990;345:74–77. doi: 10.1038/345074a0. [DOI] [PubMed] [Google Scholar]
  177. Suankratay C., Mold C., Zhang Y., Potempa L.A., Lint T.F., Gewurz H. Complement regulation in innate immunity and the acute phase response: inhibition of mannan binding lectin initiated complement cytolysis by C-reactive protein (CRP) Clin. Exp. Immunol. 1998;113:353–359. doi: 10.1046/j.1365-2249.1998.00663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Sugimoto R., Yae Y., Akaiwa M., Kitajima S., Shibata Y., Sato H., Hirata J., Okochi K., Izuhara K., Hamasaki N. Cloning and characterization of the hakata antigen, a member of the ficolin/opsonin p35 lectin family. J. Biol. Chem. 1998;273:20721–20727. doi: 10.1074/jbc.273.33.20721. [DOI] [PubMed] [Google Scholar]
  179. Summerfield J.A., Taylor M.E. Mannose-binding proteins in human serum: identification of mannose-specific immunoglobulins and a calcium-dependent lectin, of broader carbohydrate specificity, secreted by hepatocytes. Biochim. Biophys. Acta. 1986;883:197–206. doi: 10.1016/0304-4165(86)90309-0. [DOI] [PubMed] [Google Scholar]
  180. Super M., Thiel S., Lu J., Levinsky R.J., Turner M.W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989:1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
  181. Szalai A.J., Agrawal A., Greenhough T.J., Volanakis J.E. C-reactive protein: structure biology, gene expression and host defense function. Immunol. Res. 1999;16:127–136. doi: 10.1007/BF02786357. [DOI] [PubMed] [Google Scholar]
  182. Tan S.M., Chung M.C.M., Kon O.L., Thiel S., Lee S.H., Lu J. Improvements of the purification of mannan-binding lectin and demonstration of its Ca2+-independent association with a C1s-like serine protease. Biochem. J. 1996;319:329–332. doi: 10.1042/bj3190329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Taskinen S., Kovanen P.T., Jarva H., Meri S., Pentikainen M.O. Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein. Biochem. J. 2002;367:403–412. doi: 10.1042/BJ20020492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Taylor M.E., Summerfield J.A. Carbohydrate-binding proteins of human serum: isolation of two mannose/fucose-specific lectins. Biochim. Biophys. Acta. 1987;915:60–67. doi: 10.1016/0167-4838(87)90125-7. [DOI] [PubMed] [Google Scholar]
  185. Tebo J.M., Mortensen R.F. Internalization and degradation of receptor bound C-reactive protein by U-937 cells: induction of H2O2 production and tumoricidal activity. Biochim. Biophys. Acta. 1991;1095:210–216. doi: 10.1016/0167-4889(91)90101-3. [DOI] [PubMed] [Google Scholar]
  186. Tenner A.J. Membrane receptors for soluble defense collagens. Curr. Opin. Immunol. 1999;11(1):34–41. doi: 10.1016/s0952-7915(99)80007-7. [DOI] [PubMed] [Google Scholar]
  187. Terai I., Kobayashi K., Fujita T., Hagiwara K. Human serum mannose binding protein (MBP): development of an enzyme linked immunosorbent assay (ELISA) and determination of levels in serum from 1085 normal Japanese and in some body fluids. Biochem. Med. Metab. Biol. 1993;50:111–119. doi: 10.1006/bmmb.1993.1052. [DOI] [PubMed] [Google Scholar]
  188. Terai I., Kobayashi K., Matsushita M., Fujita T. Human serum mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1): determination of levels in body fluids and identification of two forms in serum. Clin. Exp. Immunol. 1997;110(2):317–323. doi: 10.1111/j.1365-2249.1997.tb08334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Thiel S., Holmskov U., Hviid L., Laursen S.B., Jensenius J.C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increase during an acute phase response. Clin. Immunol. 1992;90:31–35. doi: 10.1111/j.1365-2249.1992.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Thompson A.R., Enfield D.L. Human plasma P-component: isolation and characterization. Biochemistry. 1978;17:4304–4311. doi: 10.1021/bi00613a030. [DOI] [PubMed] [Google Scholar]
  191. Thougaard A.V., Jaliashvili I., Christiansen M. Tetranectin-like protein in vertebrate serum: a comparative immunochemical analysis. Comp. Biochem. Physiol. 2001;128:625–634. doi: 10.1016/s1096-4959(00)00329-8. [DOI] [PubMed] [Google Scholar]
  192. Tillett W.S., Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J. Exp. Med. 1930;52:561–567. doi: 10.1084/jem.52.4.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Tsujimura M., Ishida C., Sagara Y., Miyazaki T., Shiraki K., Okochi K., Maeda Y. Detection of a serum thermolabile α-2 macroglycoprotein (Hakata antigen) by enzyme-linked immunosorbent assay using polysaccharide produced by Aerococcus viridians. Clin. Diagn. Lab. Immunol. 2001;8:454–459. doi: 10.1128/CDLI.8.2.454-459.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Turner M.W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today. 1996;17:532–540. doi: 10.1016/0167-5699(96)10062-1. [DOI] [PubMed] [Google Scholar]
  195. Turner M.W. The role of mannose-binding lectin in health and disease. Mol. Immunol. 2003;40:423–429. doi: 10.1016/s0161-5890(03)00155-x. [DOI] [PubMed] [Google Scholar]
  196. Urbányi Z., Medzihradszky D. Rapid method to isolate serum amyloid P component from human plasma characterization of the isolated protein. J. Chromatogr. 1992;578:130–133. doi: 10.1016/0378-4347(92)80235-i. [DOI] [PubMed] [Google Scholar]
  197. Valdimarsson H., Vikingsdottir T., Bang P., Seavarsdottir S., Gudjonsson J.E., Oskarsson O., Christiansen M., Blou L., Laursen I., Koch C. Human plasma-derived mannose-binding lectin: A phase I safety and pharmacokinetic study. J. Immunol. 2003;59:97–102. doi: 10.1111/j.0300-9475.2004.01357.x. [DOI] [PubMed] [Google Scholar]
  198. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3:97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Volanakis J.E. Complement activation by C-reactive protein complex. Ann. N. Y. Acad. Sci. 1982;389:235–250. doi: 10.1111/j.1749-6632.1982.tb22140.x. [DOI] [PubMed] [Google Scholar]
  200. Wadsworth C., Fasth A., Wadsworth E. A critical analysis of commercially available latex particle reagents for C-reactive protein (CRP) slide agglutination tests. J. Immunol. Methods. 1985;83:29–36. doi: 10.1016/0022-1759(85)90054-7. [DOI] [PubMed] [Google Scholar]
  201. Wang J.-Y., Shieh C.-C., You P.-F., Lei H.-Y., Reid K.B.M. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in chidren with asthma. Am. J. Respir. Crit. Care Med. 1998;158:510–518. doi: 10.1164/ajrccm.158.2.9709111. [DOI] [PubMed] [Google Scholar]
  202. Weis W.I. Cell-surface carbohydrate recognition by animal and viral lectins. Curr. Opin. Struct. Biol. 1997;7:624–630. doi: 10.1016/s0959-440x(97)80070-x. [DOI] [PubMed] [Google Scholar]
  203. Westergaard U.B., Andersen M.H., Heegaard C.W., Fedosov S.N. Tetranectin binds hepatocyte growth factors and tissue-type plasminogen activator. Eur. J. Biochem. 2003;270:1850–1854. doi: 10.1046/j.1432-1033.2003.03549.x. [DOI] [PubMed] [Google Scholar]
  204. Whisler R.L., Newhouse Y.G., Mortensen R.F. C-reactive protein reduces the promotion of human B-cell colony formation by autoreactive T4 cells and T-cell proliferation during the autologous mixed lymphocyte reaction. Cell. Immunol. 1986;102:287–298. doi: 10.1016/0008-8749(86)90422-3. [DOI] [PubMed] [Google Scholar]
  205. Wolbink G.J., Brouwer M.C., Buysmann S., Ten Berge I.J.M., Hack C.E. CRP-mediated activation of complement in vivo. J. Immunol. 1996;157:473–479. [PubMed] [Google Scholar]
  206. Wright S.D., Craigmyle L.S., Silverstain S.C. Fibronectin and serum amyloid P-component stimulates C3b and C3bi-mediated phagocytosis in culture human monocytes. J. Exp. Med. 1983;158:1338–1343. doi: 10.1084/jem.158.4.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Yae Y., Inaba S., Sato H., Okochi K., Tokunaga F., Iwanaga S. Isolation and characterization of a thermolabile β-2 macroglycoprotein (‘thermolabile substance’ or ‘Hakata antigen’) detected by precipitating (auto) antibody in sere of patients with systemic lupus erythematosus. Biochim. Biophys. Acta. 1991;1078:369–376. doi: 10.1016/0167-4838(91)90158-v. [DOI] [PubMed] [Google Scholar]
  208. Yakota Y., Arai T., Kawasaki T. Oligomeric structure required for complement activation of serum mannan-binding proteins. J. Biochem. 1995;117:414–419. doi: 10.1093/jb/117.2.414. [DOI] [PubMed] [Google Scholar]
  209. Yaron H., Eisenstein M., Rina Z., Zick Y. Galectin-8: on the road from structure to function. Trends Glycosci. Glycotechnol. 1997;9:103–112. [Google Scholar]
  210. Ying S.C., Gewurz A.T., Jiang H., Gewurz H. Human serum amyloid P-component oligomers bind and activate the classical complement pathway via residues 14-26 and 76-92 of the A chain collagen-like region of C1q. J. Immunol. 1993;150:169–176. [PubMed] [Google Scholar]
  211. Zahedi K. Characterization of the binding of serum amyloid P to laminin. J. Biol. Chem. 1997;272:2143–2148. [PubMed] [Google Scholar]
  212. Zahedi K., Mortensen R.F. Macrophage tumoricidal activity induced by human C-reactive protein (CRP) Canc. Res. 1986;46:5077. [PubMed] [Google Scholar]
  213. Zahedi K., Tebo J.M., Siripont J., Klimo G.F., Mortensen R.F. Binding of human C-reactive protein to mouse macrophages is mediated by distinct receptors. J. Immunol. 1989;142:2384–2392. [PubMed] [Google Scholar]
  214. Zanetta J.P., Kuchler S., Lehmannabadache S., Maschke S., Thomas D., Dufourco P., Vancendon G. Glycoprotein and lectin in cell adhesion and cell recognition process. Histochem. J. 1992;24:791–804. doi: 10.1007/BF01046351. [DOI] [PubMed] [Google Scholar]
  215. Zeller J.M., Landay A.L., Lint T.F., Gewurz H. Enhancement of human peripheral blood monocyte respiratory burst activity by aggregated C-reactive protein. J. Leukoc. Biol. 1986;40:769. doi: 10.1002/jlb.40.6.769. [DOI] [PubMed] [Google Scholar]
  216. Zhong W., Zen Q., Tebo J., Schlottmann K., Coggeshall M., Mortensen R.F. Effect of human C-reactive protein on chemokine and chemotactic factor-induced neutrophil chemotaxis and signaling. J. Immunol. 1998;161:2533–2540. [PubMed] [Google Scholar]
  217. Zucht H.D., Raida M., Adermann K., Mägert H.J., Forssmann W.G. Casocidin-I: a casein αs2 derived peptide exhibits antibacterial activity. FEBS Lett. 1995;372:185–188. doi: 10.1016/0014-5793(95)00974-e. [DOI] [PubMed] [Google Scholar]

Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES