Abstract
In our previous work, we found new types of the cosmic string solutions in the Abelian-Higgs model with an enhanced U(1) global symmetry. We dubbed those solutions as the compensated/uncompensated strings. The compensated string is similar to the conventional cosmic string in the Abrikosov-Nielsen-Olesen (ANO) string, around which only the would-be Nambu-Goldstone (NG) boson winds. Around the uncompensated string, on the other hand, the physical NG boson also winds, where the physical NG boson is associated with the spontaneous breaking of the enhanced symmetry. Our previous simulation in the 2+1 dimensional spacetime confirmed that both the compensated/uncompensated strings are formed at the phase transition of the symmetry breaking. Non-trivial winding of the physical NG boson around the strings potentially causes the so-called axion domain- wall problem when the model is applied to the axion model. In this paper, we perform simulation in the 3+1 dimensional spacetime to discuss the fate of the uncompensated strings. We observe that the evolution of the string-network is highly complicated in the 3+1 dimensional simulation compared with that seen in the previous simulation. Despite such complications, we find that the number of the uncompensated strings which could cause can be highly suppressed at late times. Our observation suggests that the present setup can be applied to the axion model without suffering from the axion domain-wall problem.
Keywords: Beyond Standard Model, Solitons Monopoles and Instantons
Footnotes
ArXiv ePrint: 2005.10421
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Takashi Hiramatsu, Email: hiramatz@rikkyo.ac.jp.
Masahiro Ibe, Email: ibe@icrr.u-tokyo.ac.jp.
Motoo Suzuki, Email: m0t@icrr.u-tokyo.ac.jp.
References
- [1].T. Hiramatsu, M. Ibe and M. Suzuki, New type of string solutions with long range forces, JHEP02 (2020) 058 [arXiv:1910.14321] [INSPIRE].
- [2].R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
- [3].R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE].
- [4].S. Weinberg, A new light boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].
- [5].F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
- [6].S.M. Barr, X.C. Gao and D. Reiss, Peccei-Quinn symmetries without domains, Phys. Rev. D26 (1982) 2176 [INSPIRE].
- [7].K. Choi and J.E. Kim, Domain walls in superstring models, Phys. Rev. Lett.55 (1985) 2637 [INSPIRE]. [DOI] [PubMed]
- [8].H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei-Quinn symmetry, Phys. Lett. B771 (2017) 327 [arXiv:1703.01112] [INSPIRE].
- [9].H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, Gauged Peccei-Quinn symmetry — A case of simultaneous breaking of SUSY and PQ symmetry, JHEP07 (2018) 128 [arXiv:1803.00759] [INSPIRE].
- [10].M. Ibe, M. Suzuki and T.T. Yanagida, B − L as a gauged Peccei-Quinn symmetry, JHEP08 (2018) 049 [arXiv:1805.10029] [INSPIRE].
- [11].S.W. Hawking, Quantum coherence down the wormhole, Phys. Lett. B195 (1987) 337 [INSPIRE].
- [12].G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of quantum coherence upon a change in spatial topology in quantum gravity, JETP Lett.46 (1987) 167 [Pisma Zh. Eksp. Teor. Fiz.46 (1987) 134] [INSPIRE].
- [13].S.B. Giddings and A. Strominger, Loss of incoherence and determination of coupling constants in quantum gravity, Nucl. Phys. B307 (1988) 854 [INSPIRE].
- [14].S.R. Coleman, Why there is nothing rather than something: a theory of the cosmological constant, Nucl. Phys. B310 (1988) 643 [INSPIRE].
- [15].G. Gilbert, Wormhole induced proton decay, Nucl. Phys. B328 (1989) 159 [INSPIRE].
- [16].T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
- [17].H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B61 (1973) 45 [INSPIRE].
- [18].E.R. Bezerra de Mello, Y. Brihaye and B. Hartmann, Strings in de Sitter space, Phys. Rev. D67 (2003) 124008 [hep-th/0302212] [INSPIRE].
- [19].C.T. Hill, A.L. Kagan and L.M. Widrow, Are cosmic strings frustrated?, Phys. Rev. D38 (1988) 1100 [INSPIRE]. [DOI] [PubMed]
- [20].J. Garaud and E. Babaev, Topological defects in mixtures of superconducting condensates with different charges, Phys. Rev. B89 (2014) 214507 [arXiv:1403.3373] [INSPIRE].
- [21].G. Vincent, N.D. Antunes and M. Hindmarsh, Numerical simulations of string networks in the Abelian Higgs model, Phys. Rev. Lett.80 (1998) 2277 [hep-ph/9708427] [INSPIRE].
- [22].J.N. Moore, E.P.S. Shellard and C.J.A.P. Martins, On the evolution of Abelian-Higgs string networks, Phys. Rev. D65 (2002) 023503 [hep-ph/0107171] [INSPIRE].
- [23].P. Salmi, A. Achucarro, E.J. Copeland, T.W.B. Kibble, R. de Putter and D.A. Steer, Kinematic constraints on formation of bound states of cosmic strings: field theoretical approach, Phys. Rev. D77 (2008) 041701 [arXiv:0712.1204] [INSPIRE].
- [24].A. Achucarro and R. de Putter, Effective non-intercommutation of local cosmic strings at high collision speeds, Phys. Rev. D74 (2006) 121701 [hep-th/0605084] [INSPIRE].
- [25].M. Yamaguchi, M. Kawasaki and J. Yokoyama, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett.82 (1999) 4578 [hep-ph/9811311] [INSPIRE].
- [26].M. Yamaguchi, J. Yokoyama and M. Kawasaki, Evolution of a global string network in a matter dominated universe, Phys. Rev. D61 (2000) 061301 [hep-ph/9910352] [INSPIRE].
- [27].M. Yamaguchi, Scaling property of the global string in the radiation dominated universe, Phys. Rev. D60 (1999) 103511 [hep-ph/9907506] [INSPIRE].
- [28].M. Yamaguchi and J. Yokoyama, Lagrangian evolution of global strings, Phys. Rev. D66 (2002) 121303 [hep-ph/0205308] [INSPIRE].
- [29].M. Yamaguchi and J. Yokoyama, Quantitative evolution of global strings from the Lagrangian view point, Phys. Rev. D67 (2003) 103514 [hep-ph/0210343] [INSPIRE].
- [30].T. Hiramatsu, Y. Sendouda, K. Takahashi, D. Yamauchi and C.-M. Yoo, Type-I cosmic string network, Phys. Rev. D88 (2013) 085021 [arXiv:1307.0308] [INSPIRE].
- [31].T. Higaki, K.S. Jeong, N. Kitajima, T. Sekiguchi and F. Takahashi, Topological defects and nano-Hz gravitational waves in aligned axion models, JHEP08 (2016) 044 [arXiv:1606.05552] [INSPIRE].
- [32].M. Hindmarsh, J. Lizarraga, J. Urrestilla, D. Daverio and M. Kunz, Type I Abelian Higgs strings: evolution and cosmic microwave background constraints, Phys. Rev. D99 (2019) 083522 [arXiv:1812.08649] [INSPIRE].
- [33].C. Chatterjee, T. Higaki and M. Nitta, Note on a solution to domain wall problem with the Lazarides-Shafi mechanism in axion dark matter models, Phys. Rev. D101 (2020) 075026 [arXiv:1903.11753] [INSPIRE].
- [34].G. Lazarides and Q. Shafi, Axion models with no domain wall problem, Phys. Lett. B115 (1982) 21 [INSPIRE].
- [35].M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part. Sci.63 (2013) 69 [arXiv:1301.1123] [INSPIRE].
- [36].J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].
- [37].M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B166 (1980) 493 [INSPIRE].
- [38].A. Vilenkin and A.E. Everett, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons, Phys. Rev. Lett.48 (1982) 1867 [INSPIRE].
- [39].T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Production of dark matter axions from collapse of string-wall systems, Phys. Rev. D85 (2012) 105020 [Erratum ibid.86 (2012) 089902] [arXiv:1202.5851] [INSPIRE].
