Skip to main content
Journal of Biomechanical Engineering logoLink to Journal of Biomechanical Engineering
. 2020 Aug 31;142(10):100804. doi: 10.1115/1.4048110

The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review

Seungman Park 1,1, Wei-Hung Jung 2,1, Matthew Pittman 2,1, Junjie Chen 2, Yun Chen 2,
PMCID: PMC7477718  PMID: 32803227

Abstract

Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment—stiffness, curvature, extracellular matrix (ECM) architecture and viscosity—in terms of their roles in health, aging, and diseases.

Keywords: stiffness, curvature, ECM architecture, viscosity, aging, cancer, homeostasis

1 Introduction

It had been widely known for a long time that specialized cells, such as sensory neurons of touch and hair cells in the ear can sense and respond to mechanical inputs from the environment; and that another set of specialized cells, such as skeletal muscle cells, cardiomyocytes, and smooth muscle cells, are capable of generating mechanical forces. However, a vast body of studies in the past two decades laid the foundation of modern mechanobiology, the essence of which is the notion that not restricted to the aforementioned specialized cells, every cell type is equipped with the capacity to sense the mechanical cues and/or stimuli, and to interact with the micro-environment by generating mechanical forces. In other words, mechanosignaling is an integral part of homeostasis, to maintain normal function of cells, and to govern cell fate.

Cells sense mechanical cues and stimuli from their surrounding micro-environment. The cues include, but not limited to, stiffness, viscosity, and geometry. Stiffness determines how deformable the substrate is where cells reside. Viscosity defines the resistance experienced by an object when moving in an aqueous environment. The most biologically relevant parameters of geometry at the molecular, cellular, and tissue scales are curvature and organization of constituent extracellular matrix (ECM) proteins. The ECM architecture can be characterized by parameters including density, pore size, and orientation of the ECM proteins. During progression of many diseases, micro-environment of affected tissues is altered biochemically and biophysically, leading to changes of values in stiffness, viscosity, curvature, and ECM architecture. For example, during cancer development, increased stiffness [1,2], elevated extracellular fluid (ECF) viscosity [3,4], altered architecture of fibrillar ECM proteins in stroma [57] and changed curvature [8] are often observed in the micro-environment of solid tumors. Fibrosis results in elevated stiffness [912] and altered ECM architecture [13,14].

To study the relation between alterations in stiffness, viscosity, ECM architecture, and curvature, many techniques have been developed to measure those physical parameters of the micro-environment. For stiffness measurement, methods implementing atomic force microscopy [15,16], magnetic tweezers [17,18], microfluidics [19,20], indentation [21,22], and magnetic resonance electrography [23], are commonly used depending on the length scale of the measurement [24]. For viscosity measurement, rheometers/viscometers [2527], optical traps [2830] and magnetic tweezers [31,32] are commonly used. ECM architecture can be surveyed using several imaging modalities, including histological visualization [33,34], internal reflectance microscopy [3537], and second harmonic generation [3841]. For local curvature measurement, image modalities such as computational tomography [8,42] and optical microscopy [13,43,44] have been used to acquire images of a region of interests, followed by the image analysis to determine the local curvature value at the desirable length scale. The advances in these techniques have allowed dynamic measurement with high spatial resolution in vitro and in vivo.

It should be noted that cells and tissues are a mixture of solid substances, consisting of insoluble biomolecules, and liquid, consisting of water and soluble biomolecules. As a result, cells and tissues usually exhibit dual characteristics belonging to both solids and liquids, and cannot be considered purely elastic or purely viscous most of the time. However, there are a handful of examples where elastic behaviors are dominant. Based on experimental observations, theoretical models depicting elastic, hyperelastic, viscoelastic, and poroelastic behaviors have been established [24]. Both viscoelastic and poroelastic models adopt dual characteristics of solids and fluids. The viscoelastic model examines the time-dependent response of the biomaterials. But the measurement approaches described above can be used to extract stiffness value in different models wherever an elastic element is included. Recent evidences showed that viscous dissipation, or known as stress relaxation in the tissues may be involved in modulating proliferation, differentiation, and gene expression [45,46]. The viscous element of the tissue also can also contribute to cell behaviors. For example, there is an optimal stress relaxation time intrinsic to the soft substrate to maximize cell spreading, whereas stress relaxation time does not affect cell spreading on stiff substrates [47].

In this brief review, we will discuss the essential discoveries made using some of the measurement techniques mentioned above, which enable us to gain insights into the roles of stiffness, viscosity, and geometry of micro-environment in homeostasis, aging, and diseases.

2 Stiffness

Stiffness plays a key role in many cellular behaviors and functions. Stiffness of a certain object, defined as the resistance of the object to change in length, is determined by the structure of the object and intrinsic mechanical properties of the constituent materials [24]. The unit of stiffness is force per length (e.g., Newton/meter). It should be noted that most cells and tissues exhibit nonlinear elastic behaviors, such as strain stiffening, where stiffness is not a constant. Rather, their resistance to change in length is load-dependent. Moreover, many tissue types can be more accurately modeled as viscoelastic, where the response to load evolves in times because of the stress-relaxation process. Nonetheless, representative stiffness values corresponding to physiological loading can be extracted if an appropriate measurement method is selected, despite the nonlinear nature of the cells/tissues.

In biology and medicine, stiffness is broadly used to represent mechanical properties of the cells and tissues, because stiffness is implicated in many diseases, such as tumor progression and fibrosis [48]. The value of stiffness is found different in many types of diseased/aging cells or tissues, compared to their normal/young counterparts [9,22,49]. While the tumor mass of many cancer types tend to be stiffer than normal tissues, decreased stiffness has been observed in single disseminated breast cancer cells during metastatic progression [50]. It has been reported that excessive deposition of ECM proteins by cancer cells and fibroblasts in tumor stroma [5153], as well as force-dependent ECM fibril alignment by cancer and stromal cells [5,54] contribute to increased stiffness in the tumor tissue. Note it has been observed that some cancer cells can generate higher forces than their normal counterparts, and such higher forces are exploited to advance tumor progression [54,55]. Importantly, stiffness of the substrate, where cells reside, regulates gene expression, cell differentiation, migration, and proliferation [56], and determines the stiffness of the cells growing in on the substrate [57]. Here, the effect of substrate stiffness is discussed in the context of homeostasis, aging, and diseases.

2.1 Cell Morphology, Differentiation, Migration Regulated by Stiffness.

The cellular response to the varied substrate stiffness is manifested in their morphology, gene expression, and motility [58]. The process of cell spreading can be understood from the perspective of free energy minimization [59,60]. The total free energy, which is the sum of energy required to sustain cytoskeletal structure and order, and to maintain the tension between the cell and the substrate, is minimized during spreading. As the cell spreads, the energy required to maintain the cytoskeletal structure, which becomes flatter and flatter with the gradual formation of stress fibers, decreases; but the energy required to maintain the tension between the cell and the substrate increases, given more focal adhesions are formed at the interface. In general, cells seeded on stiffer substrates are flatter, with larger spread area and more stress fibers traversing across the cell body [61,62].

The effect of substrate stiffness on differentiation was first demonstrated in the studies by Discher and coworkers, where mesenchymal stem cells differentiated into neurons when plated on soft (0.1–1 kPa) substrate, and into myocytes when plated on substrates of intermediate stiffness (8–17 kPa), and into osteocytes when plated on stiff substrate (25–40 kPa) [16,63]. The underlying mechanism of stiffness-driven differentiation is associated with mechanosensitive gene expression [64]. More details about how stiffness affects gene expression are discussed in Sec. 2.2. Cell migration correlates with the stiffness of the substrate, on which cells undergo locomotion. In general, there is an optimal stiffness of the substrate to enable cells to move at the maximal speed [6569]. Such relation is especially apparent in the mode of focal adhesion-based cell migration [70,71]. The dynamics of focal adhesion determines how fast a cell can anchor itself onto the substrate while shifting its center of mass, expanding the leading edge by actin polymerization, then displace itself from the current location on the substrate by myosin contraction to move forward once the center of mass is shifted.

When moving on 2D surface, myosin contractility, and actin polymerization pushing against the plasma membrane at the leading edge result in a constant actin flow, in the direction from the cell edge to the center, known as “retrograde flow” [72]. In this process, cells also exert forces that are transmitted to the ECM-coated surface through focal adhesions and transmembrane proteins, namely, integrin. When integrin is mechanically engaged to the ECM, resistance to the myosin contractility arises, thereby slowing actin retrograde flow but promoting actin polymerization. Sometimes strong contractile forces can disrupt the integrin-ECM engagement. As a result, competition between actin polymerization, retrograde flow, and adhesion strength determines the extent of leading edge expansion, and subsequent cell motility. The linkage between the actin cytoskeleton and ECM through integrin, known as “molecular clutch,” is a two-state machinery—engaged or ungagged.

On stiff substrate, focal adhesion is anchored onto the substrate via the catch bond [73,74], which is an engaged state between ECM molecules (e.g., fibronectin, collagen, vitronectin) [75] and integrin. At this engaged state, focal adhesion disassembly is force-dependent [76]. On soft substrate, focal adhesion is anchored onto the substrate via the slip bond [73,77] between ECM molecules and integrin, resulting in focal adhesion being tugged backward from the leading edge. When a cell moves using focal adhesions on a stiff surface, the actomyosin network is strongly coupled with the substrate via integrin binding to the ECM molecules; the traction forces generated by the actomyosin network are transmitted more effectively to focal adhesions to facilitate the turnover of the focal adhesion to propel cells forward (Fig. 1(a)). It should be noted that there exists an optimal range of substrate stiffness that enables maximal clutch engagement. Above the optimal stiffness, strong force loading on individual clutches result in engagement immediately followed by disengagement, before additional integrin and FA molecules are allowed to recruit to the adhesion site [65,72]. As a result, many molecular clutches stay disengaged, a phenomenon known as “frictional slippage.” On the other hand, when a cell moves using focal adhesions on soft surface, the actomyosin network is weakly coupled with the substrate via integrin binding to the ECM molecules; the traction forces generated by the actomyosin network pull focal adhesions away from the leading edge [78], making more room for leading-edge expansion driven by actin polymerization (Fig. 1(b)). In other words, the substrate stiffness determines how fast actin polymerizes at the leading edge and how fast focal adhesions turn over, both contributing to cell motility. A cell type-dependent optimal substrate stiffness coordinating the two processes will result in maximal motility.

Fig. 1.

Cells change their movement modes on substrates withdifferent stiffness. (a) On stiff substrates, strong actomyosin–substrate coupling stretches mechanosensitive focal adhesion proteins, leading to the turnover of focal adhesions, a force-dependent process. (b) On soft substrates, weaker actomyosin–substrate coupling causes focal adhesion to be tugged backward, making more space between the membrane and the actin networks, allowing actin polymerization at the leading edge to drive the plasma membrane to expand forward.

Cells change their movement modes on substrates withdifferent stiffness. (a) On stiff substrates, strong actomyosin–substrate coupling stretches mechanosensitive focal adhesion proteins, leading to the turnover of focal adhesions, a force-dependent process. (b) On soft substrates, weaker actomyosin–substrate coupling causes focal adhesion to be tugged backward, making more space between the membrane and the actin networks, allowing actin polymerization at the leading edge to drive the plasma membrane to expand forward.

It has been shown that microtubules coordinate with actin filaments in many cellular processes, including mitosis [79,80], and cell motility [81]. However, the role of microtubules in stiffness sensing and stiffness-dependent cell migration is still yet to fully understood. Further investigation is required to elucidate whether and how microtubules are involved.

Furthermore, cells are known to move along the gradient of substrate stiffness, generally from low to high. This phenomenon, known as durotaxis, can be observed in single cells [82,83] or collective cell migration [84]. From the perspective of free energy, durotaxis is driven by the much lower free energy state associated with remodeled cytoskeletal structure on stiffer substrates, even the formation of more focal adhesions increases the strain energy [85]. Durotaxis plays an important role in development [86], innate immunity [87], cancer invasion [88], and epithelial-to-mesenchymal transition [89]. It has been suggested that cells use focal adhesion to survey the local stiffness of the substrate in proximity to guide the durotactic cell migration [90]. Exceptionally, it was observed that neurons tend to migrate from high to low stiffness [91].

2.2 Gene Expression is Regulated by Substrate Stiffness.

Substrate stiffness regulates the expression of certain mechanosensitive genes. Such mechanosensitive gene expression has been observed in cardiomyocytes [92], hepatocytes [93], vascular smooth muscle cells [94], and various types of cancer cells [95]. For example, relatively soft (∼0.91 MPa) substrates promote gene expression of laminins (cell adhesion), MMP and TIMPS (ECM remodeling) in cardiomyocytes, whereas stiff substrates promote genes or proteins such as Nkx-2.5 and GATA-4 (133 MPa) [92]. Mechanosensitive transcription factors contribute to the stiffness-dependent gene expression. The most extensively studied mechanosensitive transcription factors are YAP and TAZ [58]. YAP/TAZ distributes in the nucleus when the cell is in contact with the stiffer substrate (15–40 kPa) and in the cytoplasm when the cell is in contact with the softer substrate (0.7–1 kPa) [96,97]. When in the nucleus, YAP/TAZ activates the Hippo signaling pathway, which governs the proliferation, apoptosis, and size control of the cell [98,99]. Recently, it has been shown that the mutant form of another transcription factor, p53 (mt p53), is also responsive to substrate stiffness. p53 is a tumor suppressor. However, some p53 mutants can facilitate aggressive tumor progression [100105], thus the term gain-of-function p53 mutants. The gain-of-function p53 mutants are more stabilized against protein degradation when cells are in contact with the relatively stiffer substrate (50 kPa), but wild-type p53 is not affected by substrate stiffness [106,107].

2.3 The Implication of Tissue Stiffness in Aging Biology and Geriatric Medicine.

Tissue stiffness measured in the eye [108,109], blood vessel [94], lung [110], and skin [111] increases with age. The stiffness increase in these tissues corresponds to pathology including glaucoma [112], chronic respiratory diseases such as asthma, fibrosis, and pulmonary hypertension [110], atherosclerosis [113,114], fibrosis [115], stroke [116], aortic aneurysms [117], and cancer progression [118]. Aging-dependent stiffening in tissues results from decreased water content, as well as alterations in ECM architectures. The alterations in ECM architectures are caused by elevated ECM deposition, crosslinking, and fiber orientation [112]. For example, crosslinking of collagen fibers and loss of water content stiffen the skin [119121]. Given that tissues, in general, are stiffer in older individuals, and stiffness can drive tumor progression by promoting invasiveness [2,88,122,123] and gain-of-function p53 activity [100105], tissue stiffness might be a contributing factor to more aggressive cancer development in elderly patients [61,63,124,125]. In addition, it was recently reported that the efficacy of anticancer drugs could be affected by the stiffness of ECM in which cancer cells grow [126], though the underlying molecular mechanism involved in elevated tumor progression in stiffer micro-environments has not been comprehensively investigated. More studies are in need to understand the complex relationship between aging, changing mechanical properties of the tissues, and the diseases prevalent in elderly patients.

3 Substrate Curvature

The effect of substrate curvature on cells and tissues is under active investigation. It has been observed that cytoskeletal organization can be modulated by substrate curvature at the submicron scale [127129], leading to changes in cell migration and cell orientation. Specifically, cells may sense and preferentially migrate along nanopatterned gratings that are only hundreds of nanometers wide [128]. To date, several membrane- or cytoskeleton-associated proteins have been identified to be responsive to curvatures at the submicron scales [130132]. For example, SrGAP2 and ArhGAP44 are proteins that sense membrane curvature through BAR domains and modulate cell protrusions through different downstream pathways [133,134]. However, at the micron-scale and above, it is yet to be elucidated how cells sense the curvature and respond correspondingly, given the curvature sensitive proteins are too small to detect curvature at the micron-scale. Yet, it has been shown cells indeed respond to curvature differences at the micron-scale or larger. For example, curvature (1/50 μm) in intestinal villi enhance the barrier function of the intestinal epithelial cells by upregulating mucin and occluding expression [135]. It has also been shown that high curvatures (1/25 μm) promote tumorigenicity and invasion of breast cancer cells in vitro [136,137].

Substrate curvature plays a profound role in physiological conditions. For example, tubular/ductal structures are commonly found throughout the body, like the trachea of the airway, blood and lymphatic vessels, renal tubules in the kidney, urethra that drains the urine, bile ducts that connect the liver and small intestine, and mammary ducts in the breast tissue. The local curvature along these ducts or tubules usually varies. To evaluate how the variation of the local curvature results in different cellular behaviors and functions, cells are cultured onto the surface of prescribed curvatures. The surface of specific curvatures can be fabricated using photolithography [128,129,136], molding [13,135], and bioprinting [13,138].

3.1 Cell Migration and Adhesion Regulated by Substrate Curvature.

Substrate curvatures at the scale of microns or larger impose prominent effects on collective cell behaviors. With cells seeded on concaved surfaces, it is observed that epithelial cells move collectively with periodic relaxation when the curvature is high (1/25 μm), whereas cells move continuously and 5 times faster when the curvature is low (1/100 μm) [44]. In contrast, when cells are seeded on the convex surfaces, it is observed the collective movement of epithelial cells is faster when the curvature is high (1/25 μm), compared to speed measured on curvatures smaller than 1/25 μm [139]. When cells are plated on the outer surface of a cylinder (convex surface), cells are more elongated in alignment with the axis of the cylinder, if the curvature is larger than 1/45 μm [140]. Substrate curvature affects not only migrating epithelial sheets but also stationary epithelium. For example, increased cortical actin formation, E-cadherin expression, and myosin contractility can be detected in mammary gland epithelial cells growing on the concaved surface (1/60 μm), compared to cells on the flat surface. Interestingly, the prominent cortical actin formation is abolished if there is no cell–cell contact, or after treating the cells with drug to inhibit signaling involving E-cadherin complex or nonmuscle myosin II, suggesting both adherens junction and cortical tension are involved in the curvature sensing [13].

Substrate curvature also affects behaviors and phenotypes at the single-cell level. For example, a reduced density of focal adhesions is observed when human mesenchymal stem cells are cultured on concaved surfaces, compared to the ones cultured on flat surfaces [141]. When single cells are seeded onto substrate with concaved and convex surfaces, it has been observed that single cells migrate toward the location of concaved surface (negative local curvatures), a behavior termed as curvotaxis [142]. Curvotaxis has been shown as the manifestation of interplay between nucleus sliding and actomyosin dynamics in the cell plated on the curved surface, where contractile actomyosin compresses on the nucleus, resulting in the nucleus sliding toward the closest curvature minimum [142].

3.2 Curvature Sensing at the Micron-Scale or Larger.

The effects of curvature on cell migration and adhesion suggest curvature sensing at the micron-scale or larger possibly involves the force balance mediated by the actin cytoskeleton and adhesion molecules present at the cell surface. The structural integrity of the epithelium requires the balance between tension from cell–cell adhesion and force from cell–substrate adhesion [138,143145] (Fig. 2(a)). Specifically, tension between cells in a concaved arrangement might result in forces to detach cells from the initial site of cell adhesion. Such detachment can be understood from the imbalance between tension from cell–cell adhesion and force from cell–substrate adhesion. Prominent junctional localization of E-cadherin is observed when tension between cells is high [146]. Higher junctional localization has been reported in the cell on the curved surface, which is likely caused by high tension between cells when grown on the curved surface [13]. Higher tension between cells requires increased cell–ECM adhesion to reach the force balance [143145]. If the cell–ECM adhesion is not reinforced in proportion to the increased tension between cells on the curved surface, the epithelium might adjust its height and spread area to achieve balance [143], or detach from the substrate. Interestingly, reduced focal adhesions were observed when cells were cultured on the curved surface compared to cells on the flat control [141]. With the weaker adhesion between the cells and the concaved substrate, the integrity of the epithelium is more likely to be breached, leading to the detachment of cells from the substrate. Indeed, lower cell–ECM adhesion and higher cell–cell tension in cells on the curved surface, detachment of Madin-Darby Canine Kidney cells has been observed [147]. To compensate the weaker adhesion caused by decreased cell–substrate adhesion, and to counteract the detaching forces, the cortical actomyosin network grow thicker at the apical part of the cell–cell junction, where myosin contractility is also upregulated [13], to exert contractile force toward the substrate and maintain sustainable tension between cells (Fig. 2(b)).

Fig. 2.

Curvature sensing at a multicellular scale. (a) On the flat surface, cell–cell tension generated by inward actomyosin contraction is balanced between two neighboring cells. Epithelium is securely attached to the substrate provided there is adequate cell–ECM adhesion. (b) On the concaved surface, the tension between two neighboring cells results in forces pointing to the direction of the apical side, stretching the bond between integrin and ECM. The actomyosin contractility at the apical side increases to achieve balance by counteracting the stretching force. If the stretching force cannot be balanced, epithelium with decreased cell–ECM adhesion strength will detach from the substrate.

Curvature sensing at a multicellular scale. (a) On the flat surface, cell–cell tension generated by inward actomyosin contraction is balanced between two neighboring cells. Epithelium is securely attached to the substrate provided there is adequate cell–ECM adhesion. (b) On the concaved surface, the tension between two neighboring cells results in forces pointing to the direction of the apical side, stretching the bond between integrin and ECM. The actomyosin contractility at the apical side increases to achieve balance by counteracting the stretching force. If the stretching force cannot be balanced, epithelium with decreased cell–ECM adhesion strength will detach from the substrate.

4 Extracellular Matrix Architecture

Cells generate forces to interact with their environment [148,149]. Macroscopically, forces deform ECM [150]; microscopically, forces may rearrange the organization of the ECM proteins, causing architectural alterations [5,151]. Cancer cells interact with the tumor micro-environment (TME) [152] using forces without exception. TME is a heterogeneous milieu. In addition to the tumor, TME comprises immune cells, fibroblasts, adipocytes, and endothelial cells [153158], residing in the proximal ECM [159], known as stroma. Invasion, a critical step during metastasis, first depends on cancer cells migrating through the ECM network surrounding the primary tumor [40].

Interaction between ECM and cancer cells is important for tumor progression. An increase in ECM density is related to cancer development. For example, an increase in stromal collagen density can be detected in the mammography of early stage breast cancer patients [160,161]. It was demonstrated that ECM porosity determines the invasive behaviors of disseminated cancer cells. Dense ECM induce collective migration from the primary tumor, whereas more porous ECM allows single-cell invasion [162]. Moreover, during tumor progression, cancer cells stiffen ECM by secreting ECM modification agents including glycoproteins, prolyl-4-hydroxylase, lysyl-hydroxylase, and lysyl oxidase [163167]. Stiffer ECM is associated with the activation of mechanosensitive pathways involving Rho signaling [168,169], which in turn promote proliferation, invasiveness [1,170], and drug resistance of the cancer cells [171].

In the past decade, the critical role of carcinoma-associated fibroblasts (CAFs) in tumor progression has been extensively documented [6,7,51,172178]. CAFs are pathological stromal-dwelling cells promoting tumor progression by enhancing cancer cell proliferation, facilitating efficient metastasis [7,178180], and protecting cancer cells against apoptosis [181,182]. Other than secreting chemical factors to promote tumor progression [155], CAFs are observed to establish contact with cancer cells and mechanically pull cancer cells toward stroma during the dissemination process, initiating the first step of invasion [183].

The CAFs are an integral component of the tumor micro-environment in a variety of cancer types, including lung cancer, breast cancer, and prostate cancer [184186], which are three most commonly diagnosed types of cancer worldwide [187]. At the inception of cancer [188], cancer cells secrete CAF-promoting factors, such as cytokines (e.g., TGF-β), micro-RNAs, and exosomes containing cytokine and/or micro-RNA to transform normal stroma-dwelling cells into CAFs [189193]. The detection of CAFs at the early stage, when cancer cells are not yet invasive and secret low level of MMP [194,195], suggests that CAF-promoting factors are delivered to reach the stromal cells by diffusion through the stromal ECM. It was observed that early stage cancer cells can generate contractile forces to realign the ECM fibers in a radially parallel fashion [37]. The alignment of ECM fibers in the TME enhances the originally slow diffusion of macromolecules [196,197] and exosomes [37] (Fig. 3). Such enhancement in transport can reduce the time for exosomes or other molecules reaching the stromal cells by four orders of magnitude reduction [197], effectively inducing CAFs, which in turn promote cancer invasion [40]. In addition, the aligned ECM fibers might also serve as a medium to transduce mechanical forces in long ranges (further than 300 μm) [198,199], effectively activating mechanosignaling pathways associated with CAF phenotypes [200,201]. Synergistically, ECM alignment, along with increased ECM deposition and subsequent extensive ECM crosslinking by cancer cells, elevate the ECM stiffness.

Fig. 3.

ECM alignment enhances stroma-ward diffusion of CAF-promoting factors, induces CAFs, and provides a track for CAFs to migrate toward the tumor. Left: initially, isotropic ECM limits diffusion of CAF-promoting factors. Right: aligned ECM by cancer cells allows CAF-promoting factors to diffuse more efficiently along the aligned ECM fibrils to reach stroma and induce stromal-residing cells to exhibit CAF phenotypes. The CAFs subsequently move toward the tumor along the aligned ECM fiber to further promote tumor progression.

ECM alignment enhances stroma-ward diffusion of CAF-promoting factors, induces CAFs, and provides a track for CAFs to migrate toward the tumor. Left: initially, isotropic ECM limits diffusion of CAF-promoting factors. Right: aligned ECM by cancer cells allows CAF-promoting factors to diffuse more efficiently along the aligned ECM fibrils to reach stroma and induce stromal-residing cells to exhibit CAF phenotypes. The CAFs subsequently move toward the tumor along the aligned ECM fiber to further promote tumor progression.

5 Extracellular Fluid Viscosity

Another critical component of the micro-environment is the ECF, also known as interstitial fluid. Throughout the body, cells are surrounded by and move through biological fluids that span orders of magnitudes of viscosity (Fig. 4), including mucus [202], saliva, blood, and synovial fluid [203], to name a few. Fluctuations in lipid and protein secretion and hydration levels can lead to changes in fluid viscosity [204], and abnormal viscosity contributes to various disease states. Mucins are large, heavily glycosylated proteins responsible for the viscosity of mucus, and changes in mucin production and mucus viscosity are associated with cystic fibrosis, asthma, and health risks related to smoking [202,204,205]. Aging can lead to elevated fibrinogen and albumin concentrations in blood, thereby increasing the osmolarity and viscosity of plasma, which is thought to contribute to coronary heart disease [206,207]. The increase in plasma osmolarity could, in turn, increase ECF viscosity due to the osmotic pressure balance between plasma and ECF. During the wound healing process, the viscosity of pus has been used by physicians as an indicator of its quality [208]. Abnormal ECF viscosity is also implicated in cancer, where leaky vasculature and matrix degradation within the tumor could lead to elevated viscosity [4]; additionally, both secreted and transmembrane mucins are overexpressed in many malignancies [209211].

Fig. 4.

Physiological relevance of fluid viscosity in the human body

Physiological relevance of fluid viscosity in the human body

Compared to other physical parameters of the micro-environment, such as stiffness, ECM architecture, and substrate curvature, the effect of viscosity on cell behavior is relatively unexplored. This is likely due, at least in part, to the difficulty of measuring viscosity in vivo. Bulk fluids like mucus and blood can be reliably measured ex vivo with conventional macrorheological techniques, but techniques for localized measurements of viscosity in vivo have only recently emerged [212]. Molecular rotors [213] and helical nanobots [214] have been used to probe viscosity both within the cell and in the extracellular environment, as well as in the tumor micro-environment. These studies have shown that ECF viscosity is greater, typically by several orders of magnitude, than that of water and of normal cell culture medium [212214].

Still, challenges remain in the application of these techniques. In viscous fluids consisting of large polymers or proteins, the effective viscosity is relative, and depends on the size of the objects moving through the fluid [215]. For example, in methylcellulose solutions, nanoparticles diffuse freely and do not experience the bulk viscosity [215]; in a biological context, this can be seen with mucus, through which proteins are often able to pass freely [202]. It follows that the technique used for probing viscosity must be appropriate for the length scale of interest. For example, lateral diffusion of membrane proteins might not be affected by bulk ECF viscosity, but a cell migrating through the same ECF could be.

There have been several pioneering studies on the effects of ECF viscosity on cell behavior, both theoretical and experimental. In early studies, where cells were suspended in and moving through or across viscous fluids or dehydrated mucus, it was observed that the migration of macrophages [216] and neutrophils [217] was hindered. More recent work has shown that phenotypically mesenchymal cells migrating on 2D surfaces and biomimetic substrates while immersed in viscous ECF generate stronger cell–substrate adhesion and migrate more quickly [218220]. Although the more recent findings may seem to contradict the earlier studies, that is not necessarily the case. Viscous ECF likely differentially affects adherent cells migrating on solid substrates and nonadherent cells migrating though fluids, as these involve distinct mechanisms of cell motility.

A hypothetical model of adherent, crawling cells predicts that increased ECF viscosity either slows cell motility or has no effect, depending on the strength of cell adherence [221]. However, the opposite has been shown experimentally [218220]. This suggests that migrating cells in viscous ECF may not act as inert moving objects; rather, there may be an adaptive mechanism that allows cells to modify their behavior in response to elevated ECF viscosity.

In a recent study, it was observed that the direction of galvanotaxis of cells in viscous fluids is dependent on the size of the polymer used as a thickening agent [222]. Another study found that enhanced cell–substrate adhesion in viscous ECF was dependent not on the molecular weight or size of the polymer but on bulk viscosity only [219]. Untangling and interpreting these results is challenging. It is possible that a number of factors, including mode of cell motility and ECF composition, contribute to the cellular response to ECF viscosity, and there remain many important questions to be answered.

6 Conclusion

Cells interact with their micro-environment by sensing external mechanical cues and responding to them. When the interactions are properly regulated to attain normal physiological functions, homeostasis in the body is maintained. But pathologically altered stiffness, viscosity, ECM architecture, and curvature can start a vicious cycle that deviates farther and farther from the norm over time. For example, the stiffening of the tumor micro-environment activates the mechanosignaling pathways in cancer cells to deposit more collagen or secrete ECM crosslinking agents [223], resulting in even stiffer micro-environment. To restore the altered mechanical properties of the micro-environment might lead to slowing or stopping the disease progression, though it is an underexplored topic. In the future, if technologies can be developed to reduce ECM stiffness, to decrease body fluid viscosity, to prevent ECM remodeling, or to modify local curvatures in the tissue, they might prove useful in aid of disease treatment. It is little known whether curvature plays any role during the process of aging. Given significant changes in tissue stiffness and osmotic pressure of the interstitial fluid as one ages, the curvature effect on geriatric disease is a topic of potential importance for future study.

Due to the complex and heterogeneous nature of tissues, a comprehensive landscape survey, in terms of mechanical properties, on any tissue of any organ is still lacking. With advances in measurement technology, such survey becomes a possibility in the near future. Mapping mechanical properties, such as stiffness, relaxation time, fluid viscosity, and substrate curvature, in both normal and abnormal tissues, at the micron or smaller length scales, can provide insights to the physical changes during disease progression. By correlating the mechanical properties mapped in the diseased tissues with the local gene expression profiles in cells, powerful insights will be gained regarding the effect of the altered mechanical cues in the pathological micro-environment. With this newly gained knowledge, better models that more realistically represent the mechanochemical behaviors in vivo will emerge.

References

  • [1]. Leight, J. L. , Drain, A. P. , and Weaver, V. M. , 2017, “ Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response,” Annu. Rev. Cancer Biol., 1(1), pp. 313–334. 10.1146/annurev-cancerbio-050216-034431 [DOI] [Google Scholar]
  • [2]. Ng, M. R. , and Brugge, J. S. , 2009, “ A Stiff Blow From the Stroma: Collagen Crosslinking Drives Tumor Progression,” Cancer Cell, 16(6), pp. 455–457. 10.1016/j.ccr.2009.11.013 [DOI] [PubMed] [Google Scholar]
  • [3]. Netti, P. A. , Roberge, S. , Boucher, Y. , Baxter, L. T. , and Jain, R. K. , 1996, “ Effect of Transvascular Fluid Exchange on Pressure-Flow Relationship in Tumors: A Proposed Mechanism for Tumor Blood Flow Heterogeneity,” Microvasc. Res., 52(1), pp. 27–46. 10.1006/mvre.1996.0041 [DOI] [PubMed] [Google Scholar]
  • [4]. Jain, R. K. , Martin, J. D. , and Stylianopoulos, T. , 2014, “ The Role of Mechanical Forces in Tumor Growth and Therapy,” Annu. Rev. Biomed. Eng., 16(1), pp. 321–346. 10.1146/annurev-bioeng-071813-105259 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5]. Taufalele, P. V. , VanderBurgh, J. A. , Muñoz, A. , Zanotelli, M. R. , and Reinhart-King, C. A. , 2019, “ Fiber Alignment Drives Changes in Architectural and Mechanical Features in Collagen Matrices,” PLoS One, 14(5), p. e0216537. 10.1371/journal.pone.0216537 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6]. Goetz, J. G. , Minguet, S. , Navarro-Lérida, I. , Lazcano, J. J. , Samaniego, R. , Calvo, E. , Tello, M. , Osteso-Ibáñez, T. , Pellinen, T. , Echarri, A. , Cerezo, A. , Klein-Szanto, A. J. P. , Garcia, R. , Keely, P. J. , Sánchez-Mateos, P. , Cukierman, E. , and Del Pozo, M. A. , 2011, “ Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis,” Cell, 146(1), pp. 148–163. 10.1016/j.cell.2011.05.040 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7]. Erdogan, B. , Ao, M. , White, L. M. , Means, A. L. , Brewer, B. M. , Yang, L. , Washington, M. K. , Shi, C. , Franco, O. E. , Weaver, A. M. , Hayward, S. W. , Li, D. , and Webb, D. J. , 2017, “ Cancer-Associated Fibroblasts Promote Directional Cancer Cell Migration by Aligning Fibronectin,” J. Cell Biol., 216(11), pp. 3799–3816. 10.1083/jcb.201704053 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8]. Lee, J. , Nishikawa, R. M. , Reiser, I. , Boone, J. M. , and Lindfors, K. K. , 2015, “ Local Curvature Analysis for Classifying Breast Tumors: Preliminary Analysis in Dedicated Breast CT,” Med. Phys., 42(9), pp. 5479–5489. 10.1118/1.4928479 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9]. Handorf, A. M. , Zhou, Y. , Halanski, M. A. , and Li, W.-J. , 2015, “ Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression,” Organogenesis, 11(1), pp. 1–15. 10.1080/15476278.2015.1019687 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10]. Baiocchini, A. , Montaldo, C. , Conigliaro, A. , Grimaldi, A. , Correani, V. , Mura, F. , Ciccosanti, F. , Rotiroti, N. , Brenna, A. , Montalbano, M. , D'Offizi, G. , Capobianchi, M. R. , Alessandro, R. , Piacentini, M. , Schininà, M. E. , Maras, B. , Del Nonno, F. , Tripodi, M. , and Mancone, C. , 2016, “ Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution,” PLoS One, 11(3), p. e0151736. 10.1371/journal.pone.0151736 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11]. Levental, K. R. , Yu, H. , Kass, L. , Lakins, J. N. , Egeblad, M. , Erler, J. T. , Fong, S. F. T. , Csiszar, K. , Giaccia, A. , Weninger, W. , Yamauchi, M. , Gasser, D. L. , and Weaver, V. M. , 2009, “ Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling,” Cell, 139(5), pp. 891–906. 10.1016/j.cell.2009.10.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12]. Chen, G. , Xia, B. , Fu, Q. , Huang, X. , Wang, F. , Chen, Z. , and Lv, Y. , 2019, “ Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis,” Int. J. Biol. Sci., 15(12), pp. 2509–2521. 10.7150/ijbs.37500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13]. Jung, W.-H. , Elawad, K. , Kang, S. H. , and Chen, Y. , 2019, “ Cell–Cell Adhesion and Myosin Activity Regulate Cortical Actin Assembly in Mammary Gland Epithelium on Concaved Surface,” Cells, 8(8), p. 813. 10.3390/cells8080813 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14]. Tilbury, K. , Hocker, J. , Wen, B. L. , Sandbo, N. , Singh, V. , and Campagnola, P. J. , 2014, “ Second Harmonic Generation Microscopy Analysis of Extracellular Matrix Changes in Human Idiopathic Pulmonary Fibrosis,” J. Biomed. Opt., 19(8), p. 086014. 10.1117/1.JBO.19.8.086014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15]. Sicard, D. , Fredenburgh, L. E. , and Tschumperlin, D. J. , 2017, “ Measured Pulmonary Arterial Tissue Stiffness is Highly Sensitive to AFM Indenter Dimensions,” J. Mech. Behav. Biomed. Mater, 2017, pp. 118–127. 10.1016/j.jmbbm.2017.05.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16]. Engler, A. J. , Griffin, M. A. , Sen, S. , Bönnemann, C. G. , Sweeney, H. L. , and Discher, D. E. , 2004, “ Myotubes Differentiate Optimally on Substrates With Tissue-Like Stiffness: Pathological Implications for Soft or Stiff Microenvironments,” J. Cell Biol., 166(6), pp. 877–887. 10.1083/jcb.200405004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17]. Jaiswal, D. , Cowley, N. , Bian, Z. , Zheng, G. , Claffey, K. P. , and Hoshino, K. , 2017, “ Stiffness Analysis of 3D Spheroids Using Microtweezers,” PLoS One, 12(11), p. e0188346. 10.1371/journal.pone.0188346 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18]. Park, S. , Lui, C. , Jung, W. H. , Maity, D. , Ong, C. S. , Bush, J. , Maruthamuthu, V. , Hibino, N. , and Chen, Y. , 2018, “ Mechanical Characterization of HiPSC-Derived Cardiac Tissues for Quality Control,” Adv. Biosyst., 2(12), p. 1800251. 10.1002/adbi.201800251 [DOI] [Google Scholar]
  • [19]. Ueki, Y. , Sakamoto, N. , and Sato, M. , 2010, “ Direct Measurement of Shear Strain in Adherent Vascular Endothelial Cells Exposed to Fluid Shear Stress,” Biochem. Biophys. Res. Commun., 394(1), pp. 94–99. 10.1016/j.bbrc.2010.02.115 [DOI] [PubMed] [Google Scholar]
  • [20]. Park, S. , Joo, Y. K. , and Chen, Y. , 2019, “ Versatile and High-Throughput Force Measurement Platform for Dorsal Cell Mechanics,” Sci. Rep., 9, p. 13286. 10.1038/s41598-019-49592-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21]. McKee, C. T. , Last, J. A. , Russell, P. , and Murphy, C. J. , 2011, “ Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues,” Tissue Eng. Part B Rev., 17(3), pp. 155–164. 10.1089/ten.teb.2010.0520 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22]. Park, S. , Tao, J. , Sun, L. , Fan, C.-M. , and Chen, Y. , 2019, “ An Economic, Modular, and Portable Skin Viscoelasticity Measurement Device for In Situ Longitudinal Studies,” Molecules, 24(5), p. 907. 10.3390/molecules24050907 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23]. Klatt, D. , Hamhaber, U. , Asbach, P. , Braun, J. , and Sack, I. , 2007, “ Noninvasive Assessment of the Rheological Behavior of Human Organs Using Multifrequency MR Elastography: A Study of Brain and Liver Viscoelasticity,” Phys. Med. Biol., 52(24), pp. 7281–7294. 10.1088/0031-9155/52/24/006 [DOI] [PubMed] [Google Scholar]
  • [24]. Park, S. , and Chen, Y. , 2019, Mechanics of Biological Systems, Morgan & Claypool Publishers, Williston, ND. [Google Scholar]
  • [25]. Rubenstein, D. , Yin, W. , and Frame, M. D. , 2012, Biofluid Mechanics, Elsevier, Amsterdam, The Netherlands. [Google Scholar]
  • [26]. Quemada, D. , 1993, “ A Non-Linear Maxwell Model of Biofluids: Application to Normal Blood,” Biorheology, 30(3–4), pp. 253–265. 10.3233/BIR-1993-303-410 [DOI] [PubMed] [Google Scholar]
  • [27]. Gupta, S. , Wang, W. S. , and Vanapalli, S. A. , 2016, “ Microfluidic Viscometers for Shear Rheology of Complex Fluids and Biofluids,” Biomicrofluidics, 10(4), p. 043402. 10.1063/1.4955123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28]. Statsenko, A. , Inami, W. , and Kawata, Y. , 2017, “ Measurement of Viscosity of Liquids Using Optical Tweezers,” Opt. Commun., 402, pp. 9–13. 10.1016/j.optcom.2017.05.034 [DOI] [Google Scholar]
  • [29]. Tassieri, M. , Del Giudice, F. , Robertson, E. J. , Jain, N. , Fries, B. , Wilson, R. , Glidle, A. , Greco, F. , Netti, P. A. , Maffettone, P. L. , Bicanic, T. , and Cooper, J. M. , 2015, “ Microrheology With Optical Tweezers: Measuring the Relative Viscosity of Solutions ‘at a Glance,” Sci. Rep., 5(1), p. 8831. 10.1038/srep08831 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30]. Zhang, Y. , Wu, X. , Wang, Y. , Zhu, S. , Gao, B. Z. , and Yuan, X. C. , 2014, “ Measurement of the Microscopic Viscosities of Microfluids With a Dynamic Optical Tweezers System,” Laser Phys., 24(6), p. 065601. 10.1088/1054-660X/24/6/065601 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31]. Rich, J. P. , Lammerding, J. , McKinley, G. H. , and Doyle, P. S. , 2011, “ Nonlinear Microrheology of an Aging, Yield Stress Fluid Using Magnetic Tweezers,” Soft Matter, 7(21), pp. 9933–9943. 10.1039/c1sm05843f [DOI] [Google Scholar]
  • [32]. Gosse, C. , and Croquette, V. , 2002, “ Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level,” Biophys. J., 82(6), pp. 3314–3329. 10.1016/S0006-3495(02)75672-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33]. Fereidouni, F. , Todd, A. , Li, Y. , Chang, C.-W. , Luong, K. , Rosenberg, A. , Lee, Y.-J. , Chan, J. W. , Borowsky, A. , Matsukuma, K. , Jen, K.-Y. , and Levenson, R. , 2019, “ Dual-Mode Emission and Transmission Microscopy for Virtual Histochemistry Using Hematoxylin- and Eosin-Stained Tissue Sections,” Biomed. Opt. Express, 10(12), p. 6516. 10.1364/BOE.10.006516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34]. Leonard, A. K. , Loughran, E. A. , Klymenko, Y. , Liu, Y. , Kim, O. , Asem, M. , McAbee, K. , Ravosa, M. J. , and Stack, M. S. , 2018, “ Methods for the Visualization and Analysis of Extracellular Matrix Protein Structure and Degradation,” Methods Cell Biol., 143, pp. 79–95. 10.1016/bs.mcb.2017.08.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35]. Vader, D. , Kabla, A. , Weitz, D. , and Mahadevan, L. , 2009, “ Strain-Induced Alignment in Collagen Gels,” PLoS One, 4(6), p. e5902. 10.1371/journal.pone.0005902 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36]. Guilbert, M. , Roig, B. , Terryn, C. , Garnotel, R. , Jeannesson, P. , Sockalingum, G. D. , Manfait, M. , Perraut, F. , Dinten, J. M. , Koenig, A. , and Piot, O. , 2016, “ Highlighting the Impact of Aging on Type I Collagen: Label-Free Investigation Using Confocal Reflectance Microscopy and Diffuse Reflectance Spectroscopy in 3D Matrix Model,” Oncotarget, 7(8), pp. 8546–8555. 10.18632/oncotarget.7385 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37]. Jung, W. H. , Yam, N. , Chen, C. C. , Elawad, K. , Hu, B. , and Chen, Y. , 2020, “ Force-Dependent Extracellular Matrix Remodeling by Early-Stage Cancer Cells Alters Diffusion and Induces Carcinoma-Associated Fibroblasts,” Biomaterials, 234, p. 119756. 10.1016/j.biomaterials.2020.119756 [DOI] [PubMed] [Google Scholar]
  • [38]. Chen, X. , Nadiarynkh, O. , Plotnikov, S. , and Campagnola, P. J. , 2012, “ Second Harmonic Generation Microscopy for Quantitative Analysis of Collagen Fibrillar Structure,” Nat. Protoc., 7(4), pp. 654–669. 10.1038/nprot.2012.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39]. Raub, C. B. , Putnam, A. J. , Tromberg, B. J. , and George, S. C. , 2010, “ Predicting Bulk Mechanical Properties of Cellularized Collagen Gels Using Multiphoton Microscopy,” Acta Biomater., 6(12), pp. 4657–4665. 10.1016/j.actbio.2010.07.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40]. Provenzano, P. P. , Eliceiri, K. W. , Campbell, J. M. , Inman, D. R. , White, J. G. , and Keely, P. J. , 2006, “ Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion,” BMC Med., 4(1), p. 38. 10.1186/1741-7015-4-38 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41]. Dempsey, W. P. , Fraser, S. E. , and Pantazis, P. , 2012, “ SHG Nanoprobes: Advancing Harmonic Imaging in Biology,” Bioessays, 34(5), pp. 351–360. 10.1002/bies.201100106 [DOI] [PubMed] [Google Scholar]
  • [42]. Gjorevski, N. , and Nelson, C. M. , 2012, “ Mapping of Mechanical Strains and Stresses Around Quiescent Engineered Three-Dimensional Epithelial Tissues,” Biophys. J., 103(1), pp. 152–162. 10.1016/j.bpj.2012.05.048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43]. Tarle, V. , Ravasio, A. , Hakim, V. , and Gov, N. S. , 2015, “ Modeling the Finger Instability in an Expanding Cell Monolayer,” Integr. Biol., 7(10), pp. 1218–1227. 10.1039/C5IB00092K [DOI] [PubMed] [Google Scholar]
  • [44]. Xi, W. , Sonam, S. , Beng Saw, T. , Ladoux, B. , and Teck Lim, C. , 2017, “ Emergent Patterns of Collective Cell Migration Under Tubular Confinement,” Nat. Commun., 8(1), p. 1517. 10.1038/s41467-017-01390-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45]. Charrier, E. E. , Pogoda, K. , Wells, R. G. , and Janmey, P. A. , 2018, “ Control of Cell Morphology and Differentiation by Substrates With Independently Tunable Elasticity and Viscous Dissipation,” Nat. Commun., 9(1), p. 449. 10.1038/s41467-018-02906-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46]. Chaudhuri, O. , Gu, L. , Klumpers, D. , Darnell, M. , Bencherif, S. A. , Weaver, J. C. , Huebsch, N. , Lee, H.-P. , Lippens, E. , Duda, G. N. , and Mooney, D. J. , 2016, “ Hydrogels With Tunable Stress Relaxation Regulate Stem Cell Fate and Activity,” Nat. Mater., 15(3), pp. 326–334. 10.1038/nmat4489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47]. Gong, Z. , Szczesny, S. E. , Caliari, S. R. , Charrier, E. E. , Chaudhuri, O. , Cao, X. , Lin, Y. , Mauck, R. L. , Janmey, P. A. , Burdick, J. A. , and Shenoy, V. B. , 2018, “ Matching Material and Cellular Timescales Maximizes Cell Spreading on Viscoelastic Substrates,” Proc. Natl. Acad. Sci. U. S. A., 115(12), pp. E2686–E2695. 10.1073/pnas.1716620115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48]. Hall, M. S. , Alisafaei, F. , Ban, E. , Feng, X. , Hui, C. Y. , Shenoy, V. B. , and Wu, M. , 2016, “ Fibrous Nonlinear Elasticity Enables Positive Mechanical Feedback Between Cells and ECMs,” Proc. Natl. Acad. Sci. U. S. A., 113(49), p. 201613058. 10.1073/pnas.1613058113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49]. Emon, B. , Bauer, J. , Jain, Y. , Jung, B. , and Saif, T. , 2018, “ Biophysics of Tumor Microenvironment and Cancer Metastasis—A Mini Review,” Comput. Struct. Biotechnol. J., 16, pp. 279–287. 10.1016/j.csbj.2018.07.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50]. Liu, Z. , Lee, S. J. , Park, S. , Konstantopoulos, K. , Glunde, K. , Chen, Y. , and Barman, I. , 2020, “ Cancer Cells Display Increased Migration and Deformability in Pace With Metastatic Progression,” Faseb J., 34(7), pp. 9307–9315. 10.1096/fj.202000101RR [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51]. Buchsbaum, R. J. , and Oh, S. Y. , 2016, “ Breast Cancer-Associated Fibroblasts: Where We Are and Where We Need to Go,” Cancers (Basel), 8(2), p. 19. 10.3390/cancers8020019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52]. Gascard, P. , and Tlsty, T. D. , 2016, “ Carcinoma-Associated Fibroblasts: Orchestrating the Composition of Malignancy,” Genes Dev., 30(9), pp. 1002–1019. 10.1101/gad.279737.116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53]. Grasset, E. M. , Bertero, T. , Bozec, A. , Friard, J. , Bourget, I. , Pisano, S. , Lecacheur, M. , Maiel, M. , Bailleux, C. , Emelyanov, A. , Ilie, M. , Hofman, P. , Meneguzzi, G. , Duranton, C. , Bulavin, D. V. , and Gaggioli, C. , 2018, “ Matrix Stiffening and EGFR Cooperate to Promote the Collective Invasion of Cancer Cells,” Cancer Res., 78(18), pp. 5229–5242. 10.1158/0008-5472.CAN-18-0601 [DOI] [PubMed] [Google Scholar]
  • [54]. Jung, W.-H. , Yam, N. , Chen, C.-C. , Elawad, K. , Hu, B. , and Chen, Y. , 2020, “ Force-Dependent Extracellular Matrix Remodeling by Early-Stage Cancer Cells Alters Diffusion and Induces Carcinoma-Associated Fibroblasts,” Biomaterials, 234, p. 119756. [DOI] [PubMed] [Google Scholar]
  • [55]. Park, S. , Shi, Y. , Kim, B. C. , Jo, M. H. , Cruz, L. O. , Gou, Z. , Ha, T. , Lu, L.-F. , Reich, D. H. , and Chen, Y. , 2020, “ Force-Dependent Trans-Endocytosis by Breast Cancer Cells Depletes Costimulatory Receptor CD80 and Attenuates T Cell Activation,” Biosens. Bioelectron., 165, p. 112389. 10.1016/j.bios.2020.112389 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56]. Hadden, W. J. , Young, J. L. , Holle, A. W. , McFetridge, M. L. , Kim, D. Y. , Wijesinghe, P. , Taylor-Weiner, H. , Wen, J. H. , Lee, A. R. , Bieback, K. , Vo, B. N. , Sampson, D. D. , Kennedy, B. F. , Spatz, J. P. , Engler, A. J. , and Cho, Y. S. , 2017, “ Stem Cell Migration and Mechanotransduction on Linear Stiffness Gradient Hydrogels,” Proc. Natl. Acad. Sci. U. S. A., 114(22), pp. 5647–5652. 10.1073/pnas.1618239114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57]. González-Cruz, R. D. , Fonseca, V. C. , and Darling, E. M. , 2012, “ Cellular Mechanical Properties Reflect the Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells,” Proc. Natl. Acad. Sci. U. S. A., 109(24), p. E1523. 10.1073/pnas.1120349109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58]. Dobrokhotov, O. , Samsonov, M. , Sokabe, M. , and Hirata, H. , 2018, “ Mechanoregulation and Pathology of Yap/TAZ Via Hippo and Non-Hippo Mechanisms,” Clin. Transl. Med., 7(1), p. 23. 10.1186/s40169-018-0202-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59]. McEvoy, E. , Deshpande, V. S. , and McGarry, P. , 2017, “ Free Energy Analysis of Cell Spreading,” J. Mech. Behav. Biomed. Mater., 74, pp. 283–295. 10.1016/j.jmbbm.2017.06.006 [DOI] [PubMed] [Google Scholar]
  • [60]. McEvoy, E. , Shishvan, S. S. , Deshpande, V. S. , and McGarry, J. P. , 2018, “ Thermodynamic Modeling of the Statistics of Cell Spreading on Ligand-Coated Elastic Substrates,” Biophys. J., 115(12), pp. 2451–2460. 10.1016/j.bpj.2018.11.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61]. Park, S. , Seawright, A. , Park, S. , Craig Dutton, J. , Grinnell, F. , and Han, B. , 2015, “ Preservation of Tissue Microstructure and Functionality During Freezing by Modulation of Cytoskeletal Structure,” J. Mech. Behav. Biomed. Mater., 45, pp. 32–44. 10.1016/j.jmbbm.2015.01.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62]. Wells, R. G. , 2008, “ The Role of Matrix Stiffness in Regulating Cell Behavior,” Hepatology, 47(4), pp. 1394–1400. 10.1002/hep.22193 [DOI] [PubMed] [Google Scholar]
  • [63]. Engler, A. J. , Sen, S. , Sweeney, H. L. , and Discher, D. E. , 2006, “ Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–89. 10.1016/j.cell.2006.06.044 [DOI] [PubMed] [Google Scholar]
  • [64]. Lv, H. , Li, L. , Sun, M. , Zhang, Y. , Chen, L. , Rong, Y. , and Li, Y. , 2015, “ Mechanism of Regulation of Stem Cell Differentiation by Matrix Stiffness,” Stem Cell Res. Ther., 6(1), p. 103. 10.1186/s13287-015-0083-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65]. Bangasser, B. L. , Shamsan, G. A. , Chan, C. E. , Opoku, K. N. , Tüzel, E. , Schlichtmann, B. W. , Kasim, J. A. , Fuller, B. J. , McCullough, B. R. , Rosenfeld, S. S. , and Odde, D. J. , 2017, “ Shifting the Optimal Stiffness for Cell Migration,” Nat. Commun., 8, p. 15313. 10.1038/ncomms15313 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66]. Gkretsi, V. , and Stylianopoulos, T. , 2018, “ Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis,” Front. Oncol., 8, p. 145. 10.3389/fonc.2018.00145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67]. Lange, J. R. , and Fabry, B. , 2013, “ Cell and Tissue Mechanics in Cell Migration,” Exp. Cell Res., 319(16), pp. 2418–2423. 10.1016/j.yexcr.2013.04.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68]. Dong, Y. , Zheng, Q. , Wang, Z. , Lin, X. , You, Y. , Wu, S. , Wang, Y. , Hu, C. , Xie, X. , Chen, J. , Gao, D. , Zhao, Y. , Wu, W. , Liu, Y. , Ren, Z. , Chen, R. , and Cui, J. , 2019, “ Higher Matrix Stiffness as an Independent Initiator Triggers Epithelial-Mesenchymal Transition and Facilitates HCC Metastasis,” J. Hematol. Oncol., 12, p. 112. 10.1186/s13045-019-0795-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69]. Wang, T. , Hamilla, S. , Cam, M. , Aranda-Espinoza, H. , and Mili, S. , 2017, “ Extracellular Matrix Stiffness and Cell Contractility Control RNA Localization to Promote Cell Migration,” Nat. Commun., 8, p. 896. 10.1038/s41467-017-00884-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70]. Liu, Y.-J. , Le Berre, M. , Lautenschlaeger, F. , Maiuri, P. , Callan-Jones, A. , Heuzé, M. , Takaki, T. , Voituriez, R. , and Piel, M. , 2015, “ Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells,” Cell, 160(4), pp. 659–672. 10.1016/j.cell.2015.01.007 [DOI] [PubMed] [Google Scholar]
  • [71]. Vargas, P. , Barbier, L. , Sáez, P. J. , and Piel, M. , 2017, “ Mechanisms for Fast Cell Migration in Complex Environments,” Curr. Opin. Cell Biol., 48, pp. 72–78. 10.1016/j.ceb.2017.04.007 [DOI] [PubMed] [Google Scholar]
  • [72]. Elosegui-Artola, A. , Trepat, X. , and Roca-Cusachs, P. , 2018, “ Control of Mechanotransduction by Molecular Clutch Dynamics,” Trends Cell Biol., 28(5), pp. 356–367. 10.1016/j.tcb.2018.01.008 [DOI] [PubMed] [Google Scholar]
  • [73]. Marshall, B. T. , Long, M. , Piper, J. W. , Yago, T. , McEver, R. P. , and Zhu, C. , 2003, “ Direct Observation of Catch Bonds Involving Cell-Adhesion Molecules,” Nature, 423(6936), pp. 190–193. 10.1038/nature01605 [DOI] [PubMed] [Google Scholar]
  • [74]. Oakes, P. W. , Bidone, T. C. , Beckham, Y. , Skeeters, A. V. , Ramirez-San Juan, G. R. , Winter, S. P. , Voth, G. A. , and Gardel, M. L. , 2018, “ Lamellipodium is a Myosin-Independent Mechanosensor,” Proc. Natl. Acad. Sci., 115(11), pp. 2646–2651. 10.1073/pnas.1715869115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75]. Kanchanawong, P. , Shtengel, G. , Pasapera, A. M. , Ramko, E. B. , Davidson, M. W. , Hess, H. F. , and Waterman, C. M. , 2010, “ Nanoscale Architecture of Integrin-Based Cell Adhesions,” Nature, 468(7323), pp. 580–584. 10.1038/nature09621 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76]. Chen, Y. , Pasapera, A. M. , Koretsky, A. P. , and Waterman, C. M. , 2013, “ Orientation-Specific Responses to Sustained Uniaxial Stretching in Focal Adhesion Growth and Turnover,” Proc. Natl. Acad. Sci. U. S. A., 110(26), pp. E2352–E2361. 10.1073/pnas.1221637110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77]. Liu, Y. , Dai, Q. , and You, Z. , 2009, “ Viscoelastic Model for Discrete Element Simulation of Asphalt Mixtures,” J. Eng. Mech., 135(4), pp. 324–333. 10.1061/(ASCE)0733-9399(2009)135:4(324) [DOI] [Google Scholar]
  • [78]. Nicolas, A. , Besser, A. , and Safran, S. A. , 2008, “ Dynamics of Cellular Focal Adhesions on Deformable Substrates: Consequences for Cell Force Microscopy,” Biophys. J., 95(2), pp. 527–539. 10.1529/biophysj.107.127399 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79]. Wan, X. , O'Quinn, R. P. , Pierce, H. L. , Joglekar, A. P. , Gall, W. E. , DeLuca, J. G. , Carroll, C. W. , Liu, S.-T. , Yen, T. J. , McEwen, B. F. , Stukenberg, P. T. , Desai, A. , and Salmon, E. D. , 2009, “ Protein Architecture of the Human Kinetochore Microtubule Attachment Site,” Cell, 137(4), pp. 672–684. 10.1016/j.cell.2009.03.035 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [80]. Dmitrieff, S. , Alsina, A. , Mathur, A. , and Nédélec, F. J. , 2017, “ Balance of Microtubule Stiffness and Cortical Tension Determines the Size of Blood Cells With Marginal Band Across Species,” Proc. Natl. Acad. Sci. U. S. A., 114(17), pp. 4418–4423. 10.1073/pnas.1618041114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [81]. Watanabe, T. , Noritake, J. , and Kaibuchi, K. , 2005, “ Regulation of Microtubules in Cell Migration,” Trends Cell Biol., 15(2), pp. 76–83. 10.1016/j.tcb.2004.12.006 [DOI] [PubMed] [Google Scholar]
  • [82]. Lo, C.-M. , Wang, H.-B. , Dembo, M. , and Wang, Y. , 2000, “ Cell Movement is Guided by the Rigidity of the Substrate,” Biophys. J., 79(1), pp. 144–152. 10.1016/S0006-3495(00)76279-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [83]. Raab, M. , Swift, J. , P. Dingal, P. C. D. , Shah, P. , Shin, J.-W. , and Discher, D. E. , 2012, “ Crawling From Soft to Stiff Matrix Polarizes the Cytoskeleton and Phosphoregulates Myosin—II Heavy Chain,” J. Cell Biol., 199(4), pp. 669–683. 10.1083/jcb.201205056 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [84]. Sunyer, R. , Conte, V. , Escribano, J. , Elosegui-Artola, A. , Labernadie, A. , Valon, L. , Navajas, D. , García-Aznar, J. M. , Muñoz, J. J. , Roca-Cusachs, P. , Trepat, X. , Garcia-Aznar, J. M. , Munoz, J. J. , Roca-Cusachs, P. , and Trepat, X. , 2016, “ Collective Cell Durotaxis Emerges From Long-Range Intercellular Force Transmission,” Science, 353(6304), pp. 1157–1161. 10.1126/science.aaf7119 [DOI] [PubMed] [Google Scholar]
  • [85]. Shenoy, V. B. , Wang, H. , and Wang, X. , 2016, “ A Chemo-Mechanical Free-Energy-Based Approach to Model Durotaxis and Extracellular Stiffness-Dependent Contraction and Polarization of Cells,” Interface Focus, 6(1), p. 20150067. 10.1098/rsfs.2015.0067 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [86]. Choi, Y. S. , Vincent, L. G. , Lee, A. R. , Kretchmer, K. C. , Chirasatitsin, S. , Dobke, M. K. , and Engler, A. J. , 2012, “ The Alignment and Fusion Assembly of Adipose-Derived Stem Cells on Mechanically Patterned Matrices,” Biomaterials, 33(29), pp. 6943–6951. 10.1016/j.biomaterials.2012.06.057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [87]. Mandeville, J. T. H. , Lawson, M. A. , and Maxfield, F. R. , 1997, “ Dynamic Imaging of Neutrophil Migration in Three Dimensions: Mechanical Interactions Between Cells and Matrix,” J. Leukoc. Biol., 61(2), pp. 188–200. 10.1002/jlb.61.2.188 [DOI] [PubMed] [Google Scholar]
  • [88]. Paszek, M. J. , Zahir, N. , Johnson, K. R. , Lakins, J. N. , Rozenberg, G. I. , Gefen, A. , Reinhart-King, C. A. , Margulies, S. S. , Dembo, M. , Boettiger, D. , Hammer, D. A. , and Weaver, V. M. , 2005, “ Tensional Homeostasis and the Malignant Phenotype,” Cancer Cell, 8(3), pp. 241–254. 10.1016/j.ccr.2005.08.010 [DOI] [PubMed] [Google Scholar]
  • [89]. Guo, W. H. , Frey, M. T. , Burnham, N. A. , and Wang, Y. L. , 2006, “ Substrate Rigidity Regulates the Formation and Maintenance of Tissues,” Biophys. J., 90(6), pp. 2213–2220. 10.1529/biophysj.105.070144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [90]. Plotnikov, S. V. , Pasapera, A. M. , Sabass, B. , and Waterman, C. M. , 2012, “ Force Fluctuations Within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration,” Cell, 151(7), pp. 1513–1527. 10.1016/j.cell.2012.11.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [91]. Flanagan, L. A. , Ju, Y. , El, Marg, B. , Osterfield, M. , and Janmey, P. A. , 2002, “ Neurite Branching on Deformable Substrates,” Neuroreport., 13(18), pp. 2411–2415. 10.1097/01.wnr.0000048003.96487.97 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [92]. Forte, G. , Pagliari, S. , Ebara, M. , Uto, K. , Van Tam, J. K. , Romanazzo, S. , Escobedo-Lucea, C. , Romano, E. , Di Nardo, P. , Traversa, E. , and Aoyagi, T. , 2012, “ Substrate Stiffness Modulates Gene Expression and Phenotype in Neonatal Cardiomyocytes In Vitro,” Tissue Eng. Part A, 18(17-18), pp. 1837–1848. [DOI] [PubMed] [Google Scholar]
  • [93]. Xia, T. , Zhao, R. , Feng, F. , Song, Y. , Zhang, Y. , Dong, L. , Lv, Y. , and Yang, L. , 2018, “ Gene Expression Profiling of Human Hepatocytes Grown on Differing Substrate Stiffness,” Biotechnol. Lett., 40(5), pp. 809–818. 10.1007/s10529-018-2536-1 [DOI] [PubMed] [Google Scholar]
  • [94]. Yu, C. K. , Xu, T. , Assoian, R. K. , and Rader, D. J. , 2018, “ Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators,” Arterioscler. Thromb. Vasc. Biol., 38(1), pp. 164–173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [95]. Werfel, J. , Krause, S. , Bischof, A. G. , Mannix, R. J. , Tobin, H. , Bar-Yam, Y. , Bellin, R. M. , and Ingber, D. E. , 2013, “ How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression,” PLoS One, 8(10), p. e76122. 10.1371/journal.pone.0076122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [96]. Dupont, S. , Morsut, L. , Aragona, M. , Enzo, E. , Giulitti, S. , Cordenonsi, M. , Zanconato, F. , Le Digabel, J. , Forcato, M. , Bicciato, S. , Elvassore, N. , and Piccolo, S. , 2011, “ Role of Yap/TAZ in Mechanotransduction,” Nature, 474(7350), pp. 179–183. 10.1038/nature10137 [DOI] [PubMed] [Google Scholar]
  • [97]. Aragona, M. , Panciera, T. , Manfrin, A. , Giulitti, S. , Michielin, F. , Elvassore, N. , Dupont, S. , and Piccolo, S. , 2013, “ A Mechanical Checkpoint Controls Multicellular Growth Through Yap/TAZ Regulation by Actin-Processing Factors,” Cell, 154(5), pp. 1047–1059. 10.1016/j.cell.2013.07.042 [DOI] [PubMed] [Google Scholar]
  • [98]. Dong, J. , Feldmann, G. , Huang, J. , Wu, S. , Zhang, N. , Comerford, S. A. , Gayyed, M. F. , Anders, R. A. , Maitra, A. , and Pan, D. , 2007, “ Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals,” Cell, 130(6), pp. 1120–1133. 10.1016/j.cell.2007.07.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [99]. Huang, J. , Wu, S. , Barrera, J. , Matthews, K. , and Pan, D. , 2005, “ The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of Yap,” Cell, 122(3), pp. 421–434. 10.1016/j.cell.2005.06.007 [DOI] [PubMed] [Google Scholar]
  • [100]. Olivier, M. , Hollstein, M. , and Hainaut, P. , 2010, “ TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use,” Cold Spring Harb. Perspect. Biol., 2(1), p. a001008. 10.1101/cshperspect.a001008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [101]. Girardini, J. E. , Napoli, M. , Piazza, S. , Rustighi, A. , Marotta, C. , Radaelli, E. , Capaci, V. , Jordan, L. , Quinlan, P. , Thompson, A. , Mano, M. , Rosato, A. , Crook, T. , Scanziani, E. , Means, A. R. , Lozano, G. , Schneider, C. , and Del Sal, G. , 2011, “ A Pin1/Mutant P53 Axis Promotes Aggressiveness in Breast Cancer,” Cancer Cell, 20(1), pp. 79–91. 10.1016/j.ccr.2011.06.004 [DOI] [PubMed] [Google Scholar]
  • [102]. Di Minin, G. , Bellazzo, A. , Dal Ferro, M. , Chiaruttini, G. , Nuzzo, S. , Bicciato, S. , Piazza, S. , Rami, D. , Bulla, R. , Sommaggio, R. , Rosato, A. , Del Sal, G. , and Collavin, L. , 2014, “ Mutant P53 Reprograms TNF Signaling in Cancer Cells Through Interaction With the Tumor Suppressor DAB2IP,” Mol. Cell, 56(5), pp. 617–629. 10.1016/j.molcel.2014.10.013 [DOI] [PubMed] [Google Scholar]
  • [103]. Bae, Y.-H. , Shin, J.-M. , Park, H.-J. , Jang, H.-O. , Bae, M.-K. , and Bae, S.-K. , 2014, “ Gain-of-Function Mutant P53-R280K Mediates Survival of Breast Cancer Cells,” Genes Genomics, 36(2), pp. 171–178. 10.1007/s13258-013-0154-9 [DOI] [Google Scholar]
  • [104]. Weissmueller, S. , Manchado, E. , Saborowski, M. , Morris, J. P., IV , Wagenblast, E. , Davis, C. A. , Moon, S. H. , Pfister, N. T. , Tschaharganeh, D. F. , Kitzing, T. , Aust, D. , Markert, E. K. , Wu, J. , Grimmond, S. M. , Pilarsky, C. , Prives, C. , Biankin, A. V. , and Lowe, S. W. , 2014, “ Mutant P53 Drives Pancreatic Cancer Metastasis Through Cell-Autonomous PDGF Receptor β Signaling,” Cell, 157(2), pp. 382–394. 10.1016/j.cell.2014.01.066 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [105]. Zerp, S. F. , Elsas, A. V. , Peltenburg, L. T. C. , and Schrier, P. I. , 1999, “ P53 Mutations in Human Cutaneous Melanoma Correlate With Sun Exposure but Are Not Always Involved in Melanomagenesis,” Br. J. Cancer, 79(5–6), pp. 921–926. 10.1038/sj.bjc.6690147 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [106]. Ingallina, E. , Sorrentino, G. , Bertolio, R. , Lisek, K. , Zannini, A. , Azzolin, L. , Severino, L. U. , Scaini, D. , Mano, M. , Mantovani, F. , Rosato, A. , Bicciato, S. , Piccolo, S. , and Del Sal, G. , 2018, “ Mechanical Cues Control Mutant P53 Stability Through a Mevalonate-RhoA Axis,” Nat. Cell Biol., 20(1), pp. 28–35. 10.1038/s41556-017-0009-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [107]. Pitolli, C. , Wang, Y. , Mancini, M. , Shi, Y. , Melino, G. , and Amelio, I. , 2019, “ Do Mutations Turn P53 Into an Oncogene?,” Int. J. Mol. Sci., 20(24), p. 6241. 10.3390/ijms20246241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [108]. Elsheikh, A. , Geraghty, B. , Rama, P. , Campanelli, M. , and Meek, K. M. , 2010, “ Characterization of Age-Related Variation in Corneal Biomechanical Properties,” J. R. Soc. Interface, 7(51), pp. 1475–1485. 10.1098/rsif.2010.0108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [109]. Cartwright, N. E. K. , Tyrer, J. R. , and Marshall, J. , 2011, “ Age-Related Differences in the Elasticity of the Human Cornea,” Investig. Ophthalmol. Vis. Sci., 52(7), pp. 4324–4329. 10.1167/iovs.09-4798 [DOI] [PubMed] [Google Scholar]
  • [110]. Sicard, D. , Haak, A. J. , Choi, K. M. , Craig, A. R. , Fredenburgh, L. E. , and Tschumperlin, D. J. , 2018, “ Aging and Anatomical Variations in Lung Tissue Stiffness,” Am. J. Physiol. Lung Cell. Mol. Physiol., 314(6), pp. L946–L955. 10.1152/ajplung.00415.2017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [111]. Kalra, A. , and Lowe, A. , 2016, “ An Overview of Factors Affecting the Skins Youngs Modulus,” J. Aging Sci., 4(2), p. 1000156.https://www.longdom.org/open-access/an-overview-of-factors-affecting-the-skins-youngs-modulus-2329-8847-1000156.pdf [Google Scholar]
  • [112]. Liu, B. , McNally, S. , Kilpatrick, J. I. , Jarvis, S. P. , and O'Brien, C. J. , 2018, “ Aging and Ocular Tissue Stiffness in Glaucoma,” Surv. Ophthalmol., 63(1), pp. 56–74. 10.1016/j.survophthal.2017.06.007 [DOI] [PubMed] [Google Scholar]
  • [113]. Park, S. , 2016, “ Fluid-Structure Interaction Analysis for Drug Transport in a Curved Stenotic Right Coronary Artery,” J. Biosci. Med., 4(5), pp. 105–115. 10.1002/cnm.1231 [DOI] [Google Scholar]
  • [114]. Palombo, C. , and Kozakova, M. , 2016, “ Arterial Stiffness, Atherosclerosis and Cardiovascular Risk: Pathophysiologic Mechanisms and Emerging Clinical Indications,” Vascul. Pharmacol., 77, pp. 1–7. 10.1016/j.vph.2015.11.083 [DOI] [PubMed] [Google Scholar]
  • [115]. Lampi, M. C. , and Reinhart-King, C. A. , 2018, “ Targeting Extracellular Matrix Stiffness to Attenuate Disease: From Molecular Mechanisms to Clinical Trials,” Sci. Transl. Med., 10(422), p. eaao0475. 10.1126/scitranslmed.aao0475 [DOI] [PubMed] [Google Scholar]
  • [116]. Tuttolomondo, A. , Di Raimondo, D. , Di Sciacca, R. , Pecoraro, R. , Arnao, V. , Buttà, C. , Licata, G. , and Pinto, A. , 2012, “ Arterial Stiffness and Ischemic Stroke in Subjects With and Without Metabolic Syndrome,” Atherosclerosis, 225(1), pp. 216–219. 10.1016/j.atherosclerosis.2012.08.027 [DOI] [PubMed] [Google Scholar]
  • [117]. Gray, C. , Goodman, P. , Badger, S. A. , O'Malley, M. K. , O'Donohoe, M. K. , and McDonnell, C. O. , 2016, “ Endovascular Aneurysm Repair Increases Aortic Arterial Stiffness When Compared to Open Repair of Abdominal Aortic Aneurysms,” Vasc. Endovascular Surg., 50(5), pp. 317–320. 10.1177/1538574416647503 [DOI] [PubMed] [Google Scholar]
  • [118]. Eble, J. A. , and Niland, S. , 2019, “ The Extracellular Matrix in Tumor Progression and Metastasis,” Clin. Exp. Metastasis, 36, pp. 171–198. [DOI] [PubMed] [Google Scholar]
  • [119]. Lynch, B. , Bonod-Bidaud, C. , Ducourthial, G. , Affagard, J. S. , Bancelin, S. , Psilodimitrakopoulos, S. , Ruggiero, F. , Allain, J. M. , and Schanne-Klein, M. C. , 2017, “ How Aging Impacts Skin Biomechanics: A Multiscale Study in Mice,” Sci. Rep., 7, p. 13750. 10.1038/s41598-017-13150-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [120]. Diridollou, S. , Vabre, V. , Berson, M. , Vaillant, L. , Black, D. , Lagarde, J. M. , Grégoire, J. M. , Gall, Y. , and Patat, F. , 2001, “ Skin Ageing: Changes of Physical Properties of Human Skin In Vivo,” Int. J. Cosmet. Sci., 23(6), pp. 353–362. 10.1046/j.0412-5463.2001.00105.x [DOI] [PubMed] [Google Scholar]
  • [121]. Pawlaczyk, M. , Lelonkiewicz, M. , and Wieczorowski, M. , 2013, “ Age-Dependent Biomechanical Properties of the Skin,” Postep. Dermatologii i Alergol., 30(5), pp. 302–306. 10.5114/pdia.2013.38359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [122]. Barnes, J. M. , Przybyla, L. , and Weaver, V. M. , 2017, “ Tissue Mechanics Regulate Brain Development, Homeostasis and Disease,” J. Cell Sci., 130(1), pp. 71–82. 10.1242/jcs.191742 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [123]. Northcott, J. M. , Dean, I. S. , Mouw, J. K. , and Weaver, V. M. , 2018, “ Feeling Stress: The Mechanics of Cancer Progression and Aggression,” Front,” Cell Dev. Biol., 6, p. 17. 10.3389/fcell.2018.00017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [124]. Sprenger, C. C. , Plymate, S. R. , and Reed, M. J. , 2010, “ Aging-Related Alterations in the Extracellular Matrix Modulate the Microenvironment and Influence Tumor Progression,” Int. J. Cancer, 127(12), pp. 2739–2748. 10.1002/ijc.25615 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [125]. Zhao, M. , Liu, H. , Tang, Y. , Meng, X. , Yu, J. , Wang, Q. , Zhou, Q. , Leng, S. X. , and Zhang, H. , 2017, “ Clinicopathologic Features and Prognostic Factors for Patients With Colorectal Cancer Who Are 75 Years and Older,” Oncotarget, 8(45), pp. 80002–80011. 10.18632/oncotarget.20656 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [126]. Shin, J.-W. , and Mooney, D. J. , 2016, “ Extracellular Matrix Stiffness Causes Systematic Variations in Proliferation and Chemosensitivity in Myeloid Leukemias,” Proc. Natl. Acad. Sci., 113(43), pp. 12126–12131. 10.1073/pnas.1611338113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [127]. Flemming, R. G. , Murphy, C. J. , Abrams, G. A. , Goodman, S. L. , and Nealey, P. F. , 1999, “ Effects of Synthetic Micro- and Nano-Structured Surfaces on Cell Behavior,” Biomaterials, 20(6), pp. 573–588. 10.1016/S0142-9612(98)00209-9 [DOI] [PubMed] [Google Scholar]
  • [128]. Yim, E. K. F. , Reano, R. M. , Pang, S. W. , Yee, A. F. , Chen, C. S. , and Leong, K. W. , 2005, “ Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells,” Biomaterials, 26(26), pp. 5405–5413. 10.1016/j.biomaterials.2005.01.058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [129]. Capozza, R. , Caprettini, V. , Gonano, C. A. , Bosca, A. , Moia, F. , Santoro, F. , and De Angelis, F. , 2018, “ Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces,” ACS Appl. Mater. Interfaces, 10(34), pp. 29107–29114. 10.1021/acsami.8b08218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [130]. Antonny, B. , 2011, “ Mechanisms of Membrane Curvature Sensing,” Annu. Rev. Biochem., 80(1), pp. 101–123. 10.1146/annurev-biochem-052809-155121 [DOI] [PubMed] [Google Scholar]
  • [131]. McMahon, H. T. , and Gallop, J. L. , 2005, “ Membrane Curvature and Mechanisms of Dynamic Cell Membrane Remodelling,” Nature, 438(7068), pp. 590–596. 10.1038/nature04396 [DOI] [PubMed] [Google Scholar]
  • [132]. Peter, B. J. , Kent, H. M. , Mills, I. G. , Vallis, Y. , Butler, P. J. G. , Evans, P. R. , and McMahon, H. T. , 2004, “ BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure,” Science, 303(5657), pp. 495–499. 10.1126/science.1092586 [DOI] [PubMed] [Google Scholar]
  • [133]. Fritz, R. D. , Menshykau, D. , Martin, K. , Reimann, A. , Pontelli, V. , and Pertz, O. , 2015, “ SrGAP2-Dependent Integration of Membrane Geometry and Slit-Robo-Repulsive Cues Regulates Fibroblast Contact Inhibition of Locomotion,” Dev. Cell, 35(1), pp. 78–92. 10.1016/j.devcel.2015.09.002 [DOI] [PubMed] [Google Scholar]
  • [134]. Galic, M. , Tsai, F. C. , Collins, S. R. , Matis, M. , Bandara, S. , and Meyer, T. , 2014, “ Dynamic Recruitment of the Curvature-Sensitive Protein ArhGAP44 to Nanoscale Membrane Deformations Limits Exploratory Filopodia Initiation in Neurons,” Elife, 3, p. e03116. 10.7554/eLife.03116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [135]. Kim, S. H. , Chi, M. , Yi, B. , Kim, S. H. , Oh, S. , Kim, Y. , Park, S. , and Sung, J. H. , 2014, “ Three-Dimensional Intestinal Villi Epithelium Enhances Protection of Human Intestinal Cells From Bacterial Infection by Inducing Mucin Expression,” Integr. Biol., 6(12), pp. 1122–1131. 10.1039/c4ib00157e [DOI] [PubMed] [Google Scholar]
  • [136]. Lee, J. , Abdeen, A. A. , Wycislo, K. L. , Fan, T. M. , and Kilian, K. A. , 2016, “ Interfacial Geometry Dictates Cancer Cell Tumorigenicity,” Nat. Mater., 15(8), pp. 856–862. 10.1038/nmat4610 [DOI] [PubMed] [Google Scholar]
  • [137]. Boghaert, E. , Gleghorn, J. P. , Lee, K. , Gjorevski, N. , Radisky, D. C. , and Nelson, C. M. , 2012, “ Host Epithelial Geometry Regulates Breast Cancer Cell Invasiveness,” Proc. Natl. Acad. Sci., 109(48), pp. 19632–19637. 10.1073/pnas.1118872109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [138]. Maechler, F. A. , Allier, C. , Roux, A. , and Tomba, C. , 2019, “ Curvature-Dependent Constraints Drive Remodeling of Epithelia,” J. Cell Sci., 132(4), pp. jcs222372. 10.1242/jcs.222372 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [139]. Yevick, H. G. , Duclos, G. , Bonnet, I. , and Silberzan, P. , 2015, “ Architecture and Migration of an Epithelium on a Cylindrical Wire,” Proc. Natl. Acad. Sci. U. S. A., 112(19), pp. 5944–5949. 10.1073/pnas.1418857112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [140]. Bade, N. D. , Kamien, R. D. , Assoian, R. K. , and Stebe, K. J. , 2017, “ Curvature and Rho Activation Differentially Control the Alignment of Cells and Stress Fibers,” Sci. Adv., 3(9), p. e1700150. 10.1126/sciadv.1700150 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [141]. Werner, M. , Blanquer, S. B. G. , Haimi, S. P. , Korus, G. , Dunlop, J. W. C. , Duda, G. N. , Grijpma, D. W. , and Petersen, A. , 2017, “ Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation Via Altered Attachment Morphology and Nuclear Deformation,” Adv. Sci., 4(2), p. 1600347. 10.1002/advs.201600347 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [142]. Pieuchot, L. , Marteau, J. , Guignandon, A. , Dos Santos, T. , Brigaud, I. , Chauvy, P. F. , Cloatre, T. , Ponche, A. , Petithory, T. , Rougerie, P. , Vassaux, M. , Milan, J. L. , Tusamda Wakhloo, N. , Spangenberg, A. , Bigerelle, M. , and Anselme, K. , 2018, “ Curvotaxis Directs Cell Migration Through Cell-Scale Curvature Landscapes,” Nat. Commun., 9(1), p. 3995. 10.1038/s41467-018-06494-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [143]. Ravasio, A. , Le, A. P. , Saw, T. B. , Tarle, V. , Ong, H. T. , Bertocchi, C. , Mège, R.-M. , Lim, C. T. , Gov, N. S. , and Ladoux, B. , 2015, “ Regulation of Epithelial Cell Organization by Tuning Cell–Substrate Adhesion,” Integr. Biol., 7(10), pp. 1228–1241. 10.1039/C5IB00196J [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [144]. Maruthamuthu, V. , Sabass, B. , Schwarz, U. S. , and Gardel, M. L. , 2011, “ Cell-ECM Traction Force Modulates Endogenous Tension at Cell-Cell Contacts,” Proc. Natl. Acad. Sci., 108(12), pp. 4708–4713. 10.1073/pnas.1011123108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [145]. Sim, J. Y. , Moeller, J. , Hart, K. C. , Ramallo, D. , Vogel, V. , Dunn, A. R. , Nelson, W. J. , and Pruitt, B. L. , 2015, “ Spatial Distribution of Cell–Cell and Cell–ECM Adhesions Regulates Force Balance While Main-Taining E-Cadherin Molecular Tension in Cell Pairs,” Mol. Biol. Cell, 26(13), pp. 2456–2465. 10.1091/mbc.E14-12-1618 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [146]. Ng, M. R. O. , Besser, A. , Brugge, J. S. , and Danuser, G. , 2014, “ Mapping the Dynamics of Force Transduction at Cell-Cell Junctions of Epithelial Clusters,” Elife, 3, p. e03282. 10.7554/eLife.03282 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [147]. Broaders, K. E. , Cerchiari, A. E. , and Gartner, Z. J. , 2015, “ Coupling Between Apical Tension and Basal Adhesion Allow Epithelia to Collectively Sense and Respond to Substrate Topography Over Long Distances,” Integr. Biol., 7(12), pp. 1611–1621. 10.1039/C5IB00240K [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [148]. Pitaktong, I. , Lui, C. , Lowenthal, J. , Mattson, G. , Jung, W. H. , Bai, Y. , Yeung, E. , Ong, C. S. , Chen, Y. , Gerecht, S. , and Hibino, N. , 2020, “ Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids,” Tissue Eng. Part C Methods, 26(2), pp. 80–90. 10.1089/ten.tec.2019.0228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [149]. Boudou, T. , Legant, W. R. , Mu, A. , Borochin, M. A. , Thavandiran, N. , Radisic, M. , Zandstra, P. W. , Epstein, J. A. , Margulies, K. B. , and Chen, C. S. , 2012, “ A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues,” Tissue Eng. Part A, 18(9–10), pp. 910–919. 10.1089/ten.tea.2011.0341 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [150]. Chen, P.-Y. , Yang, K.-C. , Wu, C.-C. , Yu, J.-H. , Lin, F.-H. , and Sun, J.-S. , 2014, “ Fabrication of Large Perfusable Macroporous Cell-Laden Hydrogel Scaffolds Using Microbial Transglutaminase,” Acta Biomater., 10(2), pp. 912–920. 10.1016/j.actbio.2013.11.009 [DOI] [PubMed] [Google Scholar]
  • [151]. Davidson, C. D. , Wang, W. Y. , Zaimi, I. , Jayco, D. K. P. , and Baker, B. M. , 2019, “ Cell Force-Mediated Matrix Reorganization Underlies Multicellular Network Assembly,” Sci. Rep., 9(1), p. 12. 10.1038/s41598-018-37044-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [152]. Balkwill, F. R. , Capasso, M. , and Hagemann, T. , 2012, “ The Tumor Microenvironment at a Glance,” J. Cell Sci., 125(23), pp. 5591–5596. 10.1242/jcs.116392 [DOI] [PubMed] [Google Scholar]
  • [153]. Kalluri, R. , and Zeisberg, M. , 2006, “ Fibroblasts in Cancer,” Nat. Rev. Cancer, 6(5), pp. 392–401. 10.1038/nrc1877 [DOI] [PubMed] [Google Scholar]
  • [154]. Folkman, J. , 2002, “ Role of Angiogenesis in Tumor Growth and Metastasis,” Semin. Oncol., 29(6Q), pp. 15–18. 10.1053/sonc.2002.37263 [DOI] [PubMed] [Google Scholar]
  • [155]. Orimo, A. , Gupta, P. B. , Sgroi, D. C. , Arenzana-Seisdedos, F. , Delaunay, T. , Naeem, R. , Carey, V. J. , Richardson, A. L. , and Weinberg, R. A. , 2005, “ Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis Through Elevated SDF-1/CXCL12 Secretion,” Cell, 121(3), pp. 335–348. 10.1016/j.cell.2005.02.034 [DOI] [PubMed] [Google Scholar]
  • [156]. Olumi, A. F. , Grossfeld, G. D. , Hayward, S. W. , Carroll, P. R. , Tlsty, T. D. , and Cunha, G. R. , 1999, “ Carcinoma-Associated Fibroblasts Direct Tumor Progression of Initiated Human Prostatic Epithelium,” Cancer Res., 59(19), pp. 5002–5011. 10.1186/bcr138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [157]. Nieman, K. M. , Kenny, H. A. , Penicka, C. V. , Ladanyi, A. , Buell-Gutbrod, R. , Zillhardt, M. R. , Romero, I. L. , Carey, M. S. , Mills, G. B. , Hotamisligil, G. S. , Yamada, S. D. , Peter, M. E. , Gwin, K. , and Lengyel, E. , 2011, “ Adipocytes Promote Ovarian Cancer Metastasis and Provide Energy for Rapid Tumor Growth,” Nat. Med., 17(11), pp. 1498–1503. 10.1038/nm.2492 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [158]. Hanahan, D. , and Weinberg, R. A. , 2011, “ Hallmarks of Cancer: The Next Generation,” Cell, 144(5), pp. 646–674. 10.1016/j.cell.2011.02.013 [DOI] [PubMed] [Google Scholar]
  • [159]. Frantz, C. , Stewart, K. M. , and Weaver, V. M. , 2010, “ The Extracellular Matrix at a Glance,” J. Cell Sci., 123(24), pp. 4195–4200. 10.1242/jcs.023820 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [160]. Guo, Y. P. , Martin, L. J. , Hanna, W. , Banerjee, D. , Miller, N. , Fishell, E. , Khokha, R. , and Boyd, N. F. , 2001, “ Growth Factors and Stromal Matrix Proteins Associated With Mammographic Densities,” Cancer Epidemiol. Biomarkers Prev., 10(3), pp. 243–248.https://pubmed.ncbi.nlm.nih.gov/11303594/#:~:text=Abstract,breast%20tissue%20with%20mammographic%20densities [PubMed] [Google Scholar]
  • [161]. Boyd, N. F. , Martin, L. J. , Stone, J. , Greenberg, C. , Minkin, S. , and Yaffe, M. J. , 2001, “ Mammographic Densities as a Marker of Human Breast Cancer Risk and Their Use in Chemoprevention,” Curr. Oncol. Rep., 3(4), pp. 314–321. 10.1007/s11912-001-0083-7 [DOI] [PubMed] [Google Scholar]
  • [162]. Haeger, A. , Krause, M. , Wolf, K. , and Friedl, P. , 2014, “ Cell Jamming: Collective Invasion of Mesenchymal Tumor Cells Imposed by Tissue Confinement,” Biochim. Biophys. Acta, 1840(8), pp. 2386–2395. 10.1016/j.bbagen.2014.03.020 [DOI] [PubMed] [Google Scholar]
  • [163]. Arnold, S. A. , Rivera, L. B. , Miller, A. F. , Carbon, J. G. , Dineen, S. P. , Xie, Y. , Castrillon, D. H. , Sage, E. H. , Puolakkainen, P. , Bradshaw, A. D. , and Brekken, R. A. , 2010, “ Lack of Host SPARC Enhances Vascular Function and Tumor Spread in an Orthotopic Murine Model of Pancreatic Carcinoma,” DMM Dis. Model. Mech., 3(1–2), pp. 57–72. 10.1242/dmm.003228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [164]. Gilkes, D. M. , Bajpai, S. , Wong, C. C. , Chaturvedi, P. , Hubbi, M. E. , Wirtz, D. , and Semenza, G. L. , 2013, “ Procollagen Lysyl Hydroxylase 2 is Essential for Hypoxia-Induced Breast Cancer Metastasis,” Mol. Cancer Res., 11(5), pp. 456–466. 10.1158/1541-7786.MCR-12-0629 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • [165]. Spill, F. , Reynolds, D. S. , Kamm, R. D. , and Zaman, M. H. , 2016, “ Impact of the Physical Microenvironment on Tumor Progression and Metastasis,” Curr. Opin. Biotechnol., 40, pp. 41–48. 10.1016/j.copbio.2016.02.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [166]. Erler, J. T. , Bennewith, K. L. , Nicolau, M. , Dornhöfer, N. , Kong, C. , Le, Q. T. , Chi, J. T. A. , Jeffrey, S. S. , and Giaccia, A. J. , 2006, “ Lysyl Oxidase is Essential for Hypoxia-Induced Metastasis,” Nature, 440(7088), pp. 1222–1226. 10.1038/nature04695 [DOI] [PubMed] [Google Scholar]
  • [167]. Xiong, G. , Deng, L. , Zhu, J. , Rychahou, P. G. , and Xu, R. , 2014, “ Prolyl-4-Hydroxylase α Subunit 2 Promotes Breast Cancer Progression and Metastasis by Regulating Collagen Deposition,” BMC Cancer, 14(1), p. 1. 10.1186/1471-2407-14-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [168]. Wozniak, M. A. , Desai, R. , Solski, P. A. , Der, C. J. , and Keely, P. J. , 2003, “ ROCK-Generated Contractility Regulates Breast Epithelial Cell Differentiation in Response to the Physical Properties of a Three-Dimensional Collagen Matrix,” J. Cell Biol., 163(3), pp. 583–595. 10.1083/jcb.200305010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [169]. Provenzano, P. P. , and Keely, P. J. , 2011, “ Mechanical Signaling Through the Cytoskeleton Regulates Cell Proliferation by Coordinated Focal Adhesion and Rho GTPase Signaling,” J. Cell Sci., 124(8), pp. 1195–1205. 10.1242/jcs.067009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [170]. Ford, A. J. , and Rajagopalan, P. , 2018, “ Extracellular Matrix Remodeling in 3D: Implications in Tissue Homeostasis and Disease Progression,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 10(4), p. e1503. 10.1002/wnan.1503 [DOI] [PubMed] [Google Scholar]
  • [171]. Schedin, P. , and Keely, P. J. , 2011, “ Mammary Gland ECM Remodeling, Stiffness, and Mechanosignaling in Normal Development and Tumor Progression,” Cold Spring Harb. Perspect. Biol., 3(1), p. a003228. 10.1101/cshperspect.a003228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [172]. Öhlund, D. , Elyada, E. , and Tuveson, D. , 2014, “ Fibroblast Heterogeneity in the Cancer Wound,” J. Exp. Med., 211(8), pp. 1503–1523. 10.1084/jem.20140692 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [173]. Leung, C. S. , Yeung, T. L. , Yip, K. P. , Wong, K. K. , Ho, S. Y. , Mangala, L. S. , Sood, A. K. , Lopez-Berestein, G. , Sheng, J. , Wong, S. T. C. , Birrer, M. J. , and Mok, S. C. , 2017, “ Cancer-Associated Fibroblasts Regulate Endothelial Adhesion Protein LPP to Promote Ovarian Cancer Chemoresistance,” J. Clin. Invest., 128(2), pp. 589–606. 10.1172/JCI95200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [174]. Liu, T. , Zhou, L. , Li, D. , Andl, T. , and Zhang, Y. , 2019, “ Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment,” Front Cell Dev. Biol., 7, p. 60. 10.3389/fcell.2019.00060 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [175]. Donnarumma, E. , Fiore, D. , Nappa, M. , Roscigno, G. , Adamo, A. , Iaboni, M. , Russo, V. , Affinito, A. , Puoti, I. , Quintavalle, C. , Rienzo, A. , Piscuoglio, S. , Thomas, R. , and Condorelli, G. , 2017, “ Cancer-Associated Fibroblasts Release Exosomal MicroRNAs That Dictate an Aggressive Phenotype in Breast Cancer,” Oncotarget, 8(12), pp. 19592–19608. 10.18632/oncotarget.14752 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [176]. Osuala, K. O. , Sameni, M. , Shah, S. , Aggarwal, N. , Simonait, M. L. , Franco, O. E. , Hong, Y. , Hayward, S. W. , Behbod, F. , Mattingly, R. R. , and Sloane, B. F. , 2015, “ Il-6 Signaling Between Ductal Carcinoma In Situ Cells and Carcinoma-Associated Fibroblasts Mediates Tumor Cell Growth and Migration,” BMC Cancer, 15(1), p. 584. 10.1186/s12885-015-1576-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [177]. Tao, L. , Huang, G. , Song, H. , Chen, Y. , and Chen, L. , 2017, “ Cancer Associated Fibroblasts: An Essential Role in the Tumor Microenvironment,” Oncol. Lett., 14(3), pp. 2611–2620. 10.3892/ol.2017.6497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [178]. Jang, I. , and Beningo, K. A. , 2019, “ Integrins, CAFs and Mechanical Forces in the Progression of Cancer,” Cancers (Basel), 11(5), p. 721. 10.3390/cancers11050721 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [179]. Attieh, Y. , Clark, A. G. , Grass, C. , Richon, S. , Pocard, M. , Mariani, P. , Elkhatib, N. , Betz, T. , Gurchenkov, B. , and Vignjevic, D. M. , 2017, “ Cancer-Associated Fibroblasts Lead Tumor Invasion Through Integrin-Β3-Dependent Fibronectin Assembly,” J. Cell Biol., 216(11), pp. 3509–3520. 10.1083/jcb.201702033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [180]. Glentis, A. , Oertle, P. , Mariani, P. , Chikina, A. , El Marjou, F. , Attieh, Y. , Zaccarini, F. , Lae, M. , Loew, D. , Dingli, F. , Sirven, P. , Schoumacher, M. , Gurchenkov, B. G. , Plodinec, M. , and Vignjevic, D. M. , 2017, “ Cancer-Associated Fibroblasts Induce Metalloprotease-Independent Cancer Cell Invasion of the Basement Membrane,” Nat. Commun., 8(1), p. 924. 10.1038/s41467-017-00985-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [181]. Karnoub, A. E. , Dash, A. B. , Vo, A. P. , Sullivan, A. , Brooks, M. W. , Bell, G. W. , Richardson, A. L. , Polyak, K. , Tubo, R. , and Weinberg, R. A. , 2007, “ Mesenchymal Stem Cells Within Tumour Stroma Promote Breast Cancer Metastasis,” Nature, 449(7162), pp. 557–563. 10.1038/nature06188 [DOI] [PubMed] [Google Scholar]
  • [182]. Ying, L. , Zhu, Z. , Xu, Z. , He, T. , Li, E. , Guo, Z. , Liu, F. , Jiang, C. , and Wang, Q. , 2015, “ Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform,” PLoS One, 10(6), p. e0129593. 10.1371/journal.pone.0129593 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [183]. Labernadie, A. , 2017, “ A Mechanically Active Heterotypic E-Cadherin/N-Cadherin Adhesion Enables Fibroblasts To,” Nat. Cell Biol., 19, pp. 224–237. 10.1038/ncb3478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [184]. Paulsson, J. , and Micke, P. , 2014, “ Prognostic Relevance of Cancer-Associated Fibroblasts in Human Cancer,” Semin. Cancer Biol., 25, pp. 61–68. 10.1016/j.semcancer.2014.02.006 [DOI] [PubMed] [Google Scholar]
  • [185]. Shiao, S. L. , Chu, G. C. Y. , and Chung, L. W. K. , 2016, “ Regulation of Prostate Cancer Progression by the Tumor Microenvironment,” Cancer Lett., 380(1), pp. 340–348. 10.1016/j.canlet.2015.12.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [186]. Houthuijzen, J. M. , and Jonkers, J. , 2018, “ Cancer-Associated Fibroblasts as Key Regulators of the Breast Cancer Tumor Microenvironment,” Cancer Metastasis Rev., 37(4), pp. 577–597. 10.1007/s10555-018-9768-3 [DOI] [PubMed] [Google Scholar]
  • [187]. Bray, F. , Ferlay, J. , Soerjomataram, I. , Siegel, R. L. , Torre, L. A. , and Jemal, A. , 2018, “ Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J. Clin,., 68(6), pp. 394–424. 10.3322/caac.21492 [DOI] [PubMed] [Google Scholar]
  • [188]. Erez, N. , Truitt, M. , Olson, P. , and Hanahan, D. , 2010, “ Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-ΚB-Dependent Manner,” Cancer Cell, 17(2), pp. 135–147. 10.1016/j.ccr.2009.12.041 [DOI] [PubMed] [Google Scholar]
  • [189]. Borges, F. T. , Melo, S. A. , Özdemir, B. C. , Kato, N. , Revuelta, I. , Miller, C. A. , Gattone, V. H. , LeBleu, V. S. , and Kalluri, R. , 2013, “ TGF-β1–Containing Exosomes From Injured Epithelial Cells Activate Fibroblasts to Initiate Tissue Regenerative Responses and Fibrosis,” J. Am. Soc. Nephrol., 24(3), pp. 385–392. 10.1681/ASN.2012101031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [190]. Chiba, M. , Kimura, M. , and Asari, S. , 2012, “ Exosomes Secreted From Human Colorectal Cancer Cell Lines Contain MRNAs, MicroRNAs and Natural Antisense RNAs, That Can Transfer Into the Human Hepatoma HepG2 and Lung Cancer A549 Cell Lines,” Oncol. Rep., 28(5), pp. 1551–1558. 10.3892/or.2012.1967 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [191]. Valadi, H. , Ekström, K. , Bossios, A. , Sjöstrand, M. , Lee, J. J. , and Lötvall, J. O. , 2007, “ Exosome-Mediated Transfer of MRNAs and MicroRNAs is a Novel Mechanism of Genetic Exchange Between Cells,” Nat. Cell Biol., 9(6), pp. 654–659. 10.1038/ncb1596 [DOI] [PubMed] [Google Scholar]
  • [192]. Jotzu, C. , Alt, E. , Welte, G. , Li, J. , Hennessy, B. T. , Devarajan, E. , Krishnappa, S. , Pinilla, S. , Droll, L. , and Song, Y.-H. , 2010, “ Adipose Tissue-Derived Stem Cells Differentiate Into Carcinoma-Associated Fibroblast-Like Cells Under the Influence of Tumor-Derived Factors,” Anal. Cell. Pathol., 33(2), pp. 61–79. 10.1155/2010/695162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [193]. Xiao, L. , Kim, D. J. , Davis, C. L. , McCann, J. V. , Dunleavey, J. M. , Vanderlinden, A. K. , Xu, N. , Pattenden, S. G. , Frye, S. V. , Xu, X. , Onaitis, M. , Monaghan-Benson, E. , Burridge, K. , and Dudley, A. C. , 2015, “ Tumor Endothelial Cells With Distinct Patterns of TGFβ-Driven Endothelial-to-Mesenchymal Transition,” Cancer Res., 75(7), pp. 1244–1254. 10.1158/0008-5472.CAN-14-1616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [194]. Rizki, A. , Weaver, V. M. , Lee, S.-Y. , Rozenberg, G. I. , Chin, K. , Myers, C. A. , Bascom, J. L. , Mott, J. D. , Semeiks, J. R. , Grate, L. R. , Mian, I. S. , Borowsky, A. D. , Jensen, R. A. , Idowu, M. O. , Chen, F. , Chen, D. J. , Petersen, O. W. , Gray, J. W. , and Bissell, M. J. , 2008, “ A Human Breast Cell Model of Preinvasive to Invasive Transition,” Cancer Res., 68(5), pp. 1378–1387. 10.1158/0008-5472.CAN-07-2225 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [195]. Ma, X.-J. , Dahiya, S. , Richardson, E. , Erlander, M. , and Sgroi, D. C. , 2009, “ Gene Expression Profiling of the Tumor Microenvironment During Breast Cancer Progression,” Breast Cancer Res., 11(1), p. R7. 10.1186/bcr2222 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [196]. Stylianopoulos, T. , Diop-Frimpong, B. , Munn, L. L. , and Jain, R. K. , 2010, “ Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber Network Orientation,” Biophys. J., 99(10), pp. 3119–3128. 10.1016/j.bpj.2010.08.065 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [197]. Gomez, D. , Natan, S. , Shokef, Y. , and Lesman, A. , 2019, “ Mechanical Interaction Between Cells Facilitates Molecular Transport,” Adv. Biosyst., 3(12), p. 1900192. 10.1002/adbi.201900192 [DOI] [PubMed] [Google Scholar]
  • [198]. Wang, H. , Abhilash, A. S. , Chen, C. S. , Wells, R. G. , and Shenoy, V. B. , 2014, “ Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers,” Biophys. J., 107(11), pp. 2592–2603. 10.1016/j.bpj.2014.09.044 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [199]. Guo, C. L. , Ouyang, M. , Yu, J. Y. , Maslov, J. , Price, A. , and Shen, C. Y. , 2012, “ Long-Range Mechanical Force Enables Self-Assembly of Epithelial Tubular Patterns,” Proc. Natl. Acad. Sci. U. S. A., 109(15), pp. 5576–5582. 10.1073/pnas.1114781109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [200]. Calvo, F. , Ege, N. , Grande-Garcia, A. , Hooper, S. , Jenkins, R. P. , Chaudhry, S. I. , Harrington, K. , Williamson, P. , Moeendarbary, E. , Charras, G. , and Sahai, E. , 2013, “ Mechanotransduction and Yap-Dependent Matrix Remodelling is Required for the Generation and Maintenance of Cancer-Associated Fibroblasts,” Nat. Cell Biol., 15(6), pp. 637–646. 10.1038/ncb2756 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [201]. Liu, F. , Lagares, D. , Choi, K. M. , Stopfer, L. , Marinković, A. , Vrbanac, V. , Probst, C. K. , Hiemer, S. E. , Sisson, T. H. , Horowitz, J. C. , Rosas, I. O. , Fredenburgh, L. E. , Feghali-Bostwick, C. , Varelas, X. , Tager, A. M. , and Tschumperlin, D. J. , 2015, “ Mechanosignaling Through Yap and TAZ Drives Fibroblast Activation and Fibrosis,” Am. J. Physiol. Lung Cell. Mol. Physiol., 308(4), pp. L344–L357. 10.1152/ajplung.00300.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [202]. Lai, S. K. , Wang, Y. Y. , Wirtz, D. , and Hanes, J. , 2009, “ Micro- and Macrorheology of Mucus,” Adv. Drug Deliv. Rev., 61(2), pp. 86–100. 10.1016/j.addr.2008.09.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [203]. Verdier, C. , Etienne, J. , Duperray, A. , and Preziosi, L. , 2009, “ Review: Rheological Properties of Biological Materials,” C. R. Phys., 10(8), pp. 790–811. 10.1016/j.crhy.2009.10.003 [DOI] [Google Scholar]
  • [204]. Galabert, C. , Jacquot, J. , Zahm, J. M. , and Puchelle, E. , 1987, “ Relationships Between the Lipid Content and the Rheological Properties of Airway Secretions in Cystic Fibrosis,” Clin. Chim. Acta, 164(2), pp. 139–149. 10.1016/0009-8981(87)90065-9 [DOI] [PubMed] [Google Scholar]
  • [205]. Fahy, J. V. , and Dickey, B. F. , 2010, “ Medical Progress: Airway Mucus Function and Dysfunction,” N. Engl. J. Med., 363(23), pp. 2233–2247. 10.1056/NEJMra0910061 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [206]. Drenos, F. , Miller, G. J. , and Humphries, S. E. , 2007, “ Increase of Plasma Fibrinogen Levels and Variability With Age in a Sample of Middle Aged Healthy Men,” Ann. Hum. Genet., 71(1), pp. 43–53. 10.1111/j.1469-1809.2006.00302.x [DOI] [PubMed] [Google Scholar]
  • [207]. Simmonds, M. J. , Meiselman, H. J. , and Baskurt, O. K. , 2013, “ Blood Rheology and Aging,” J. Geriatr. Cardiol., 10(3), pp. 291–301. 10.3969/j.issn.1671-5411.2013.03.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [208]. Pisetsky, D. S. , 2011, “ Pus: The Rodney Dangerfield of Immunology,” Arthritis Res. Ther., 13(5), p. 131. 10.1186/ar3477 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [209]. Kufe, D. W. , 2009, “ Mucins in Cancer: Function, Prognosis and Therapy,” Nat. Rev. Cancer, 9(12), pp. 874–885. 10.1038/nrc2761 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [210]. Rachagani, S. , Torres, M. P. , Moniaux, N. , and Batra, S. K. , 2009, “ Current Status of Mucins in the Diagnosis and Therapy of Cancer,” BioFactors, 35(6), pp. 509–527. 10.1002/biof.64 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [211]. Hollingsworth, M. A. , and Swanson, B. J. , 2004, “ Mucins in Cancer: Protection and Control of the Cell Surface,” Nat. Rev. Cancer, 4(1), pp. 45–60. 10.1038/nrc1251 [DOI] [PubMed] [Google Scholar]
  • [212]. Requena, S. , Ponomarchuk, O. , Castillo, M. , Rebik, J. , Brochiero, E. , Borejdo, J. , Gryczynski, I. , Dzyuba, S. V. , Gryczynski, Z. , Grygorczyk, R. , and Fudala, R. , 2017, “ Imaging Viscosity of Intragranular Mucin Matrix in Cystic Fibrosis Cells,” Sci. Rep., 7(1), p. 16761. 10.1038/s41598-017-17037-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [213]. Shimolina, L. E. , Izquierdo, M. A. , López-Duarte, I. , Bull, J. A. , Shirmanova, M. V. , Klapshina, L. G. , Zagaynova, E. V. , and Kuimova, M. K. , 2017, “ Imaging Tumor Microscopic Viscosity In Vivo Using Molecular Rotors,” Sci. Rep., 7(1), p. 41097. 10.1038/srep41097 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [214]. Pal, M. , Dasgupta, D. , Somalwar, N. , Vr, R. , Tiwari, M. , Pally, D. , Narayana, S. M. , Katke, A. , Rs, J. , Bhat, R. , Saini, D. K. , and Ghosh, A. , 2020, “ Helical Nanobots as Mechanical Probes of Intra- and Extracellular Environments,” J. Phys. Condens. Matter, 32, p. 224001. 10.1088/1361-648X/ab6f89 [DOI] [PubMed] [Google Scholar]
  • [215]. Jee, A.-Y. , Curtis-Fisk, J. L. , and Granick, S. , 2014, “ Nanoparticle Diffusion in Methycellulose Thermoreversible Association Polymer,” Macromolecules, 47(16), pp. 5793–5797. 10.1021/ma501331z [DOI]
  • [216]. Folger, R. , Weiss, L. , Glaves, D. , Subjeck, J. R. , and Harlos, J. P. , 1978, “ Translational Movements of Macrophages Through Media of Different Viscosities,” J. Cell Sci., 31, pp. 245–257.https://pubmed.ncbi.nlm.nih.gov/670322/ [DOI] [PubMed] [Google Scholar]
  • [217]. Matsui, H. , Verghese, M. W. , Kesimer, M. , Schwab, U. E. , Randell, S. H. , Sheehan, J. K. , Grubb, B. R. , and Boucher, R. C. , 2005, “ Reduced Three-Dimensional Motility in Dehydrated Airway Mucus Prevents Neutrophil Capture and Killing Bacteria on Airway Epithelial Surfaces,” J. Immunol., 175(2), pp. 1090–1099. 10.4049/jimmunol.175.2.1090 [DOI] [PubMed] [Google Scholar]
  • [218]. Gonzalez-Molina, J. , Zhang, X. , Borghesan, M. , Mendonça da Silva, J. , Awan, M. , Fuller, B. , Gavara, N. , and Selden, C. , 2018, “ Extracellular Fluid Viscosity Enhances Liver Cancer Cell Mechanosensing and Migration,” Biomaterials, 177, pp. 113–124. 10.1016/j.biomaterials.2018.05.058 [DOI] [PubMed] [Google Scholar]
  • [219]. Gonzalez-Molina, J. , Mendonça da Silva, J. , Fuller, B. , and Selden, C. , 2019, “ The Extracellular Fluid Macromolecular Composition Differentially Affects Cell-Substrate Adhesion and Cell Morphology,” Sci. Rep., 9(1), p. 8505. 10.1038/s41598-019-44960-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [220]. Pittman, M. , Li, K. , and Chen, Y. , 2020, “ Elevated Extracellular Fluid Viscosity Stimulates Migration of Metastatic Cancer Cells,” Biophys. J., 118(3), p. 602a. 10.1016/j.bpj.2019.11.3252 [DOI] [Google Scholar]
  • [221]. Mai, M. H. , and Camley, B. A. , 2020, “ Hydrodynamic Effects on the Motility of Crawling Eukaryotic Cells,” Soft Matter, 16(5), pp. 1349–1358. 10.1039/C9SM01797F [DOI] [PubMed] [Google Scholar]
  • [222]. Kobylkevich, B. M. , Sarkar, A. , Carlberg, B. R. , Huang, L. , Ranjit, S. , Graham, D. M. , and Messerli, M. A. , 2018, “ Reversing the Direction of Galvanotaxis With Controlled Increases in Boundary Layer Viscosity,” Phys. Biol., 15(3), p. 036005. 10.1088/1478-3975/aaad91 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [223]. Levental, K. R. , Yu, H. , Kass, L. , Lakins, J. N. , Egeblad, M. , Erler, J. T. , Fong, S. F. T. , Csiszar, K. , Giaccia, A. , Weninger, W. , Yamauchi, M. , Gasser, D. L. , and Weaver, V. M. , 2009, “ Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling,” Cell, 139(5), pp. 891–906. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biomechanical Engineering are provided here courtesy of American Society of Mechanical Engineers

RESOURCES