Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jan;4(1):130–137. doi: 10.1016/j.nurt.2006.11.007

Valproic acid: Second generation

Meir Bialer 1,2,, Boris Yagen 3,2
PMCID: PMC7479693  PMID: 17199028

Summary

The manuscript focuses on structure-activity relationship studies of CNS-active compounds derived from valproic acid (VPA) that have the potential to become second-generation VPA drugs. Valproic acid is one of the four most widely prescribed antiepileptic drugs (AEDs) and is effective (and regularly approved) in migraine prophylaxis and in the treatment of bipolar disorders. Valproic acid is also currently undergoing clinical trials in cancer patients. Valproic acid is the least potent of the established AEDs and its use is limited by two rare but potentially life-threatening side effects, teratogenicity and hepatotoxicity. Because AEDs treat the symptoms (seizure) and not the cause of epilepsy, epileptic patients need to take AEDs for a long period of time. Consequently, there is a substantial need to develop better and safer AEDs. To become a successful second-generation VPA, the new drug should possess the following characteristics: broad-spectrum antiepileptic activity, better potency than VPA, lack of teratogenicity and hepatotoxicity, and a favorable pharmacokinetic profile compared with VPA including a low potential for drug interactions.

Key Words: Valproic acid, analogs and derivatives of valproic acid, second generation to valproic acid drugs, antiepileptics and CNS drugs

References

  • 1.Bialer M, Johannessen SI, Kupferberg H, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the seventh Eilat conference on new antiepileptic drugs (EILAT VII) Epilepsy Res. 2004;61:1–48. doi: 10.1016/j.eplepsyres.2004.07.010. [DOI] [PubMed] [Google Scholar]
  • 2.Bialer M, Walker MC, Sander JWS. Pros and cons for the development of new antiepileptic drugs. CNS Drugs. 2004;16:285–289. doi: 10.2165/00023210-200216050-00001. [DOI] [PubMed] [Google Scholar]
  • 3.Perucca E. The new antiepileptic drugs: pharmacological and clinical aspects. Curr Pharm Des. 2000;6:839–860. doi: 10.2174/1381612003400245. [DOI] [PubMed] [Google Scholar]
  • 4.Bialer M. New antiepileptic drugs currently in clinical trials: is there a strategy in their development? Ther Drug Monit. 2002;24:85–90. doi: 10.1097/00007691-200202000-00015. [DOI] [PubMed] [Google Scholar]
  • 5.Walker MC, Sander JWS. The impact of new antiepileptic drugs on the prognosis of epilepsy: seizure freedom should be the ultimate goal. Neurology. 1996;46:912–914. doi: 10.1212/wnl.46.4.912. [DOI] [PubMed] [Google Scholar]
  • 6.Isoherranen N, Yagen B, Bialer M. New CNS-active drugs which are second generation valproic acid: can they lead to development of the magic bullet? Curr Opin Neurol. 2003;16:203–211. doi: 10.1097/00019052-200304000-00014. [DOI] [PubMed] [Google Scholar]
  • 7.Bialer M. New antiepileptic drugs that are second generation to existing antiepileptic drugs. Expert Opin Investig Drugs. 2006;15:637–647. doi: 10.1517/13543784.15.6.637. [DOI] [PubMed] [Google Scholar]
  • 8.Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006;69:273–294. doi: 10.1016/j.eplepsyres.2006.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Perucca E. Pharmacological and therapeutic properties of valproate. A summary after 35 years of clinical experience. CNS Drugs. 2002;16:695–714. doi: 10.2165/00023210-200216100-00004. [DOI] [PubMed] [Google Scholar]
  • 10.Loscher W. Valproate. Basel, Switzerland: Birkhauser Verlag; 1999. [Google Scholar]
  • 11.Loscher W. Basic pharmacology of valproate. A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16:669–694. doi: 10.2165/00023210-200216100-00003. [DOI] [PubMed] [Google Scholar]
  • 12.Peterson GM, Maunton M. Valproate: a simple chemical with so much to offer. J Clin Pharm Ther. 2005;30:417–421. doi: 10.1111/j.1365-2710.2005.00671.x. [DOI] [PubMed] [Google Scholar]
  • 13.Trojnar MK, Weirzchowska-Cioch E, Krzyzanowski M, Jargiello M, Czuzczwar SJ. New generation of valproic acid. Pol J Pharmacol. 2004;56:283–288. [PubMed] [Google Scholar]
  • 14.Nau H, Hauck R-S, Ehlers K. Valproic acid induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol. 1991;69:310–321. doi: 10.1111/j.1600-0773.1991.tb01303.x. [DOI] [PubMed] [Google Scholar]
  • 15.Nau H, Siemens H. Differentiation between valproate-induced anticonvulsant effect, teratogenicity and hepatotoxicity. Pharm Weekbl Sci. 1992;14:101–107. doi: 10.1007/BF01962697. [DOI] [PubMed] [Google Scholar]
  • 16.Nau H, Hendrickx AG. Valproic acid teratogenesis. ISI Atlas Sci Pharmacol. 1987;1:52–56. [Google Scholar]
  • 17.Nau H, Loscher W. Pharmacological evaluations of various metabolites and analogs of valproic acid: teratogenic potencies in mice. Fundam Appl Toxicol. 1986;6:669–676. doi: 10.1016/0272-0590(86)90180-6. [DOI] [PubMed] [Google Scholar]
  • 18.Tang W, Palaty J, Abbott FS. Time course of α-fluorinated valproic acid in mouse brain and serum and its effect on synaptosomal γ-aminobutyric acid levels in comparison to valproic acid. J Pharmacol Exp Ther. 1997;282:1163–1172. [PubMed] [Google Scholar]
  • 19.Tang W, Borel AG, Fujimiya T, Abbott SF. Fluorinated analogues as mechanistic probes in valproic acid hepatotoxicity: hepatic microvesicular steatosis and glutathione status. Chem Res Toxicol. 1995;8:671–682. doi: 10.1021/tx00047a006. [DOI] [PubMed] [Google Scholar]
  • 20.Neuman MG, Shear NH, Jacobson-Brown PM, et al. CYP2E1 mediated modulation of valproic acid-induced hepatocytotoxicity. Clin Biochem. 2001;34:211–218. doi: 10.1016/S0009-9120(01)00217-X. [DOI] [PubMed] [Google Scholar]
  • 21.Grillo MP, Chiellini G, Tonelli M, Benet LZ. Effect of alpha-fluorination of valproic acid on valproyl-S-acyl-CoA formation in vivo in rats. Drug Metab Dispos. 2001;29:1210–1215. [PubMed] [Google Scholar]
  • 22.Isoherranen N, Yagen B, Blotnik S, et al. Characterization of the anticonvulsant activity and pharmacokinetics of propylisopropyl acetamide and its enantiomers. Br J Pharmacol. 2003;138:602–613. doi: 10.1038/sj.bjp.0705076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sobol E, Bialer M, Yagen B. Tetramethylcyclopropyl analogue of a leading antiepileptic drug, valproic acid. Synthesis and evaluation of anticonvulsant activity of its amide derivatives. J Med Chem. 2004;47:4316–4326. doi: 10.1021/jm0498351. [DOI] [PubMed] [Google Scholar]
  • 24.Winkler I, Sobol E, Yagen B, Steinman A, Devor M, Bialer M. Efficacy of antiepileptic tetramethylcyclopropyl analogues of valproic acid amides in a rat model for neuropathic pain. Neuropharmacology. 2005;49:1110–1120. doi: 10.1016/j.neuropharm.2005.06.008. [DOI] [PubMed] [Google Scholar]
  • 25.Morre M, Keane PE, Vemieres JC, Simiand J, Roncucci R. Valproate: recent findings and perspectives. Epilepsia. 1984;25(suppl 1):S5–S9. doi: 10.1111/j.1528-1157.1984.tb05637.x. [DOI] [PubMed] [Google Scholar]
  • 26.Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of valpromide isomers with antiepileptic activity. Pharm Res. 1989;6:683–689. doi: 10.1023/A:1015934321764. [DOI] [PubMed] [Google Scholar]
  • 27.Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of fatty acid amide isomers that possess anticonvulsant activity. J Pharm Sci. 1990;79:719–724. doi: 10.1002/jps.2600790814. [DOI] [PubMed] [Google Scholar]
  • 28.Badir K, Haj-Yehia A, Vree TB, van der Kleijn E, Bialer M. Pharmacokinetics and anticonvulsant activity of three mon-esteric prodrugs of valproic acid. Pharm Res. 1991;8:750–753. doi: 10.1023/A:1015854118110. [DOI] [PubMed] [Google Scholar]
  • 29.Bialer M. Clinical pharmacology of valpromide. Clin Pharmacokinet. 1991;20:114–122. doi: 10.2165/00003088-199120020-00003. [DOI] [PubMed] [Google Scholar]
  • 30.Isoherranen N, White HS, Klein B, et al. Pharmacokinetic-pharmacodynamic relationships of (2S,3S)-valnoctamide and its stereoisomer (2R,3S)-valnoctamide in rodent models of epilepsy. Pharm Res. 2003;20:1293–1301. doi: 10.1023/A:1025069519218. [DOI] [PubMed] [Google Scholar]
  • 31.Spiegelstein O, Yagen B, Levy RH, et al. Stereoselective pharmacokinetics and pharmacodynamics of propylisopropyl acetamide, a CNS-active chiral amide analog of valproic acid. Pharm Res. 1999;16:1582–1588. doi: 10.1023/A:1018960722284. [DOI] [PubMed] [Google Scholar]
  • 32.Barel S, Yagen B, Schurig V, et al. Stereoselective pharmacokinetic analysis of valnoctamide in healthy subjects and epileptic patients. Clin Pharmacol Ther. 1997;61:442–449. doi: 10.1016/S0009-9236(97)90194-6. [DOI] [PubMed] [Google Scholar]
  • 33.Winkler I, Blotnik S, Shimshoni J, Yagen B, Devor M, Bialer M. Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model for neuropathic pain. Br J Pharmacol. 2005;146:198–208. doi: 10.1038/sj.bjp.0706310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Applebaum J, Gayduk J, Agam G, Bersudsky Y, Belmaker RH. Valnoctamide as valproate substitute with low teratogenic potential: double blind controlled clinical trial. Bipolar Disord. 2005;7(suppl 2):30–30. doi: 10.1111/j.1399-5618.2010.00828.x. [DOI] [PubMed] [Google Scholar]
  • 35.Eadie MJ. Could valerian have been the first anticonvulsant? Epilepsia. 2004;45:1338–1343. doi: 10.1111/j.0013-9580.2004.27904.x. [DOI] [PubMed] [Google Scholar]
  • 36.Bialer M, Hadad S, Kadry B, et al. Pharmacokinetic analysis and antiepileptic activity of tetramethylcyclopropyl analogues of valpromide. Pharm Res. 1995;13:284–289. doi: 10.1023/A:1016055517724. [DOI] [PubMed] [Google Scholar]
  • 37.Isoherranen N, White HS, Finnell RH, et al. Anticonvulsant profile and teratogenicity of N-methyl-tetramethylcyclopropyl carboxamide: a new antiepileptic drug. Epilepsia. 2002;43:115–126. doi: 10.1046/j.1528-1157.2002.25801.x. [DOI] [PubMed] [Google Scholar]
  • 38.Sobol E, Yagen B, White HS, et al. Preclinical evaluation of 2,2,3,3-tetramethylcyclopropanecarbonylurea, a novel second generation to valproic acid, antiepileptic drug. Neuropharmacology. 2006;51:933–946. doi: 10.1016/j.neuropharm.2006.06.006. [DOI] [PubMed] [Google Scholar]
  • 39.Sobol E, Yagen B, Winkler I, Britzi M, Gibson D, Bialer M. Pharmacokinetics and metabolism of a new potent anticonvulsant agent 2,2,3,3-tetramethylcyclopropylcarbonylurea in rats. Drug Metab Dispos. 2005;33:1538–1546. doi: 10.1124/dmd.105.005637. [DOI] [PubMed] [Google Scholar]
  • 40.Okada A, Onishi Y, Aoki K, et al. Teratology studies of derivatives of tetramethylcyclopropyl amide analogues of valproic acid in mice. Birth Defect Res (Part B) 2006;77:1–7. doi: 10.1002/bdrb.20062. [DOI] [PubMed] [Google Scholar]
  • 41.Shaltiel G, Shamir A, Shapiro J, et al. Valproate decreases inositol biosynthesis. Biol Psychiatry. 2004;56:868–874. doi: 10.1016/j.biopsych.2004.08.027. [DOI] [PubMed] [Google Scholar]
  • 42.Sobol E, Yagen B, White HS, et al. Anticonvulsant activity, neural tube defect induction, mutagenicity and pharmacokinetics of a new potent antiepileptic drug, N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide. Epilepsy Res 2006 [Epub ahead of print]. [DOI] [PubMed]
  • 43.Hadad S, Bialer M. Pharmacokinetic analysis and antiepileptic activity of N-valproyl derivatives of GABA and glycine. Pharm Res. 1995;12:905–910. doi: 10.1023/A:1016277507865. [DOI] [PubMed] [Google Scholar]
  • 44.Isoherranen N, Yagen B, Speigelstien O, et al. Anticonvulsant activity, teratogenicity and pharmacokinetics of novel valproyltaurinamide derivatives in mice. Br J Pharmacol. 2003;139:755–764. doi: 10.1038/sj.bjp.0705301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Isoherranen N, Woodhead JH, White HS, Bialer M. Anticonvulsant profile of valrocemide (TV1901): a new antiepileptic drug. Epilepsia. 2001;42:831–836. doi: 10.1046/j.1528-1157.2001.042007831.x. [DOI] [PubMed] [Google Scholar]
  • 46.Hovinga CA. Valrocemide. Curr Opin Investig Drugs. 2004;5:101–106. [PubMed] [Google Scholar]
  • 47.Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E. Progress report on new antiepileptic drugs: a summary of the sixth Eilat conference on new antiepileptic drugs (EILAT VI) Epilepsy Res. 2002;51:31–71. doi: 10.1016/S0920-1211(02)00106-7. [DOI] [PubMed] [Google Scholar]
  • 48.Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the eighth Eilat conference on new antiepileptic drugs (EILAT VIII). Epilepsy Res (in press). [DOI] [PubMed]
  • 49.de Paulis T. ONO-2506. Curr Opin Investig Drugs. 2003;4:863–867. [PubMed] [Google Scholar]
  • 50.Blaheta RA, Cintal J. Anti-tumor mechanism of valproate: a novel role of an old drug. Med Res Rev. 2002;22:491–511. doi: 10.1002/med.10017. [DOI] [PubMed] [Google Scholar]
  • 51.Blaheta RA, Nau H, Michaelis M, Cintal J. Valproate and valproate-analogues: potent tools to fight against cancer. Curr Med Chem. 2002;9:1417–1433. doi: 10.2174/0929867023369763. [DOI] [PubMed] [Google Scholar]
  • 52.Eyal S, Yagen B, Shimshoni J, Bialer M. Histone deacetylases inhibition and tumor cells cytotoxicity by CNS-active VPA constitutional isomers and derivatives. Biochem Pharmacol. 2005;69:1501–1508. doi: 10.1016/j.bcp.2005.02.012. [DOI] [PubMed] [Google Scholar]
  • 53.De Felice L, Tararelli C, Mascolo MG, et al. Histone deacetylase inhibitor valproic acid enhances cytokine-induced expansion of human hematopoietic stem cells. Cancer Res. 2005;65:1505–1513. doi: 10.1158/0008-5472.CAN-04-3063. [DOI] [PubMed] [Google Scholar]
  • 54.Bug G, Ritter M, Wassmann B, et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer. 2005;104:2717–2725. doi: 10.1002/cncr.21589. [DOI] [PubMed] [Google Scholar]
  • 55.Bug G, Gul H, Schwartz K, et al. Valproic acid stimulated proliferation and self-renewal of hematopoietic stem cells. Cancer Res. 2005;65:2537–2541. doi: 10.1158/0008-5472.CAN-04-3011. [DOI] [PubMed] [Google Scholar]
  • 56.Deubzer H, Busche B, Ronndahl G, et al. Novel valproic acid derivatives with potent differentiation-inducing activity in myeloid leukemia cells. Leuk Res. 2006;30:1167–1175. doi: 10.1016/j.leukres.2006.01.009. [DOI] [PubMed] [Google Scholar]
  • 57.Selby R, Nisbet-Brown E, Basran RK, Chang L, Olivieri NF. Valproic acid and augmentation of fetal hemoglobin in individuals with and without sickle cell disease. Blood. 1997;90:891–893. [PubMed] [Google Scholar]
  • 58.Atweh GF, De Simone J, Sauntharajah Y, et al. Hemoglobinopathies. Hematology Am Soc Hematol Educ Program. 2003;1:14–39. doi: 10.1182/asheducation-2003.1.14. [DOI] [PubMed] [Google Scholar]
  • 59.Brill J, Lee M, Zhao S, Fernald RD, Huguenard JR. Chronic valproic acid treatment triggers increased neuropeptide Y expression and signaling in rat nucleus reticularis thalami. J Neurosci. 2006;26:6813–6822. doi: 10.1523/JNEUROSCI.5320-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Sun QQ, Barban SC, Rince DA, Huegenard JR. Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. J Neurosci. 2003;23:9639–9649. doi: 10.1523/JNEUROSCI.23-29-09639.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wilmore LJ. Divalproex and epilepsy. Psychopharmacol Bull. 2003;37(suppl 2):43–53. [PubMed] [Google Scholar]
  • 62.Bialer M, Twyman RE, White HS. Correlation between anticonvulsant-ED50 values of antiepileptic drugs in mice and rats and their therapeutic doses and plasma levels. Epilepsy Behav. 2004;5:866–872. doi: 10.1016/j.yebeh.2004.08.021. [DOI] [PubMed] [Google Scholar]
  • 63.Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem. 2003;278:27586–27592. doi: 10.1074/jbc.M303740200. [DOI] [PubMed] [Google Scholar]
  • 64.Jeong MR, Hashimoto R, Senatorov V, et al. Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 2003;542:74–78. doi: 10.1016/S0014-5793(03)00350-8. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES