Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jan;4(1):117–122. doi: 10.1016/j.nurt.2006.11.014

Seletracetam (UCB 44212)

Barbara Bennett 1,, Alain Matagne 2, Philippe Michel 3, Michèle Leonard 4, Miranda Cornet 4, Marie-Anne Meeus 5, Nathalie Toublanc 5
PMCID: PMC7479702  PMID: 17199025

Summary

Better pharmacotherapies for epilepsy are needed for patients who are refractory to or have tolerability difficulties with current treatments. Seletracetam, a new drug in epilepsy development, is a pyrrolidone derivative structurally related to levetiracetam (trade name Keppra). It was discovered because of its high binding affinity to the synaptic vesicle 2A (SV2A) protein, which is now known to be the binding site for this family of compounds. Seletracetam shows very potent seizure suppression in models of acquired or genetic epilepsy, as well as high CNS tolerability in various animal models. Pharmacokinetic studies in animals suggest that seletracetam is rapidly and highly absorbed, with linear and time-independent pharmacokinetics. Seletracetam appears neither to inhibit nor to induce the major human drug metabolizing enzymes, and it demonstrates low plasma protein binding (<10%), which suggests a low potential for drug-drug interactions. Initial studies in humans demonstrated first-order monocompartmental kinetics with a half-life of 8 h and an oral bioavailability of >90%. Studies in healthy volunteers showed that the treatment emergent adverse events were of mild to moderate severity, were mostly of CNS origin and were resolved within 24 h. Altogether, these results suggest that seletracetam represents a promising new antiepileptic drug candidate, one that demonstrates a potent, broad spectrum of seizure protection and a high CNS tolerability in animal models, with initial clinical findings suggestive of straightforward pharmacokinetics and good tolerability.

Key Words: Seletracetam, epilepsy, SV2A, pharmacokinetics, kindled, anticonvulsant

References

  • 1.Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol. 2003;16:165–170. doi: 10.1097/00019052-200304000-00008. [DOI] [PubMed] [Google Scholar]
  • 2.Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry. 1996;61:433–443. doi: 10.1136/jnnp.61.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Dreifuss FE. Classification of epileptic seizures. In: Engel J, Pedley TA, editors. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott Raven Publishers; 1997. pp. 517–524. [Google Scholar]
  • 4.Kwan P, Brodie MJ. Early identification of refractory epilepsy. New Engl J Med. 2000;342:314–319. doi: 10.1056/NEJM200002033420503. [DOI] [PubMed] [Google Scholar]
  • 5.Cockerell OC, Johnson AL, Sander JW, Shorvon SD. Prognosis of epilepsy: a review and further analysis of the first nine years of the British National General Practice Study of Epilepsy, a prospective population-based study. Epilepsia. 1997;38:31–46. doi: 10.1111/j.1528-1157.1997.tb01075.x. [DOI] [PubMed] [Google Scholar]
  • 6.Mattson RH, Cramer JA, Collins JF. Department of Veterans Affairs Epilepsy Cooperative Studies No. 118 and No. 264 Group. Prognosis for total control of complex partial and secondarily generalized tonic clonic seizures. Neurology. 1996;47:68–76. doi: 10.1212/wnl.47.1.68. [DOI] [PubMed] [Google Scholar]
  • 7.Brodie MJ. Do we need any more new antiepileptic drugs? Epilepsy Res. 2001;45:3–6. doi: 10.1016/S0920-1211(01)00203-0. [DOI] [PubMed] [Google Scholar]
  • 8.Brodie MJ, Dichter MA. Antiepileptic drugs. N Engl J Med. 1996;334:168–175. doi: 10.1056/NEJM199601183340308. [DOI] [PubMed] [Google Scholar]
  • 9.Fuks B, Bouché F. Affinity of ucb 44212 for levetiracetam binding site (LBS) and its binding profile. UCB report reference code: RRLE03B2402. Brussels: UCB Pharma; 2003. [Google Scholar]
  • 10.Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. PNAS. 2004;101:9861–9866. doi: 10.1073/pnas.0308208101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Noyer M, Gillard M, Matagne A, Hénichart JP, Wülfert E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol. 1995;286:137–146. doi: 10.1016/0014-2999(95)00436-O. [DOI] [PubMed] [Google Scholar]
  • 12.Zona C, Niespodziany I, Pieri M, Klitgaard H, Margineanu D-G. Seletracetam (ucb 44212), a new pyrrolidone derivative, lacks effect on Na+ currents in rat brain neuronsin vitro. Epilepsia. 2005;46(Suppl 8):116–116. [Google Scholar]
  • 13.Matagne A. Electrophysiological examination of ucb 44212 on voltage-gated K+ currents in cultured mouse hippocampal neurons. UCB report reference code: RRLE02G0305. Brussels: UCB Pharma; 2005. [Google Scholar]
  • 14.Pisani A, Bonsi P, Martella G, Cuomo D, Klitgaard H, Margineanu D. Seletracetam (ucb 44212), a new pyrrolidone derivative, inhibits high-voltage-activated Ca2+ currents and intracellular [Ca2+] increase in rat cortical neuronsin vitro. Epilepsia. 2005;46(Suppl 8):119–119. doi: 10.1111/j.1528-1167.2008.01915.x. [DOI] [PubMed] [Google Scholar]
  • 15.Lukyanetz EA, Shkryl VM, Kostyuk PG. Selective blockade of N-type calcium channels by levetiracetam. Epilepsia. 2002;43:9–18. doi: 10.1046/j.1528-1157.2002.24501.x. [DOI] [PubMed] [Google Scholar]
  • 16.Pisani A, Bonsi P, Martella G, et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia. 2004;45:719–728. doi: 10.1111/j.0013-9580.2004.02204.x. [DOI] [PubMed] [Google Scholar]
  • 17.Rigo JM, Nguyen L, Hans G, et al. Seletracetam (ucb 44212): Effect on inhibitory and excitatory neurotransmission. Epilepsia. 2005;46(Suppl 8):110–110. [Google Scholar]
  • 18.Matagne A, Margineanu D, Michel P, Kenda B, Klitgaard H. Seletracetam (UCB 44212), a new pyrrolidone derivative, reveals potent activity inin vitro andin vivo models of epilepsy. J Neurol Sci. 2005;238(Suppl 1):S133–S133. [Google Scholar]
  • 19.Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg: a review. J Neural Transm Suppl. 1992;35:37–69. doi: 10.1007/978-3-7091-9206-1_4. [DOI] [PubMed] [Google Scholar]
  • 20.Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc. 1957;46:208–209. doi: 10.1002/jps.3030460322. [DOI] [PubMed] [Google Scholar]
  • 21.Loscher W, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res. 1991;9:1–10. doi: 10.1016/0920-1211(91)90041-D. [DOI] [PubMed] [Google Scholar]
  • 22.Klitgaard H, Matagne A, Gobert J, Wulfert E. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol. 1998;353:191–206. doi: 10.1016/S0014-2999(98)00410-5. [DOI] [PubMed] [Google Scholar]
  • 23.Dubois M, Vaemewijck A. ucb 44212: Pharmacokinetics in the Wistar rat after single oral administration of doses ranging from 3 to 1000 mg/kg. UCB report reference code: RRLE02M1005. Brussels: UCB Pharma; 2003. [Google Scholar]
  • 24.Ogilvie B. ucb 44212: Evaluation as a potential inhibitor of human microsomal epoxide hydrolase. UCB report reference code: RRLE03G1504. Brussels: UCB Pharma; 2004. [Google Scholar]
  • 25.Ndikum-Moffor F. In vitro evaluation of ucb 44212 as an inducer of cytochrome P450 expression in cultured human hepatocytes. UCB report reference code: RRLE03F2403. Brussels: UCB Pharma; 2004. [Google Scholar]
  • 26.Bassett S. ucb 44212: 13-week oral toxicity study in Wistar rats followed by a 4-week recovery period. UCB report reference code: RRLE04B1908. Brussels: UCB Pharma; 2005. [Google Scholar]
  • 27.Harvey P. ucb 44212: 13-week oral toxicity study in beagle dogs followed by a 4-week recovery period. UCB report reference code: RRLE04B1108. Brussels: UCB Pharma; 2005. [Google Scholar]
  • 28.Perks DA. ucb 44212: Oral (gavage) embryofoetal development study in the rabbit. UCB report reference code: RRLE04A1211. Brussels: UCB Pharma; 2005. [Google Scholar]
  • 29.Goldwater DR, Lu Z, Salas V, et al. Seletracetam single rising dose safety, tolerability and pharmacokinetics in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki.
  • 30.Leese PT, Hulhoven R, Salas V, et al. Seletracetam multiple dose safety, tolerability and pharmacokinetics in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki.
  • 31.Ramael S, Sargentini-Maier ML, Toublanc N, Dubin GM, Daoust A, Stockis A. Pharmacokinetics and metabolism of 14C-seletracetam in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki, Finland.
  • 32.Perucca E, Beghi E, Dulac O, Shorvon S, Tomson T. Assessing risk to benefit ratio in antiepileptic drug therapy. Epilepsy Res. 2000;41:107–139. doi: 10.1016/S0920-1211(00)00124-8. [DOI] [PubMed] [Google Scholar]
  • 33.Mattson RH, Cramer JA, Collins JF. Early tolerance to antiepileptic drug side effects: a controlled trial of 24 patients. In: Frey H-H, Fröscher W, Koella WP, Meinardi H, editors. Tolerance to beneficial and adverse effects of antiepileptic drugs. New York: Raven Press; 1986. pp. 149–156. [Google Scholar]
  • 34.Gilliam F. Optimizing health outcomes in active epilepsy. Neurology. 2002;58(Suppl 5):S9–S20. doi: 10.1212/wnl.58.8_suppl_5.s9. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES