Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jul;4(3):443–452. doi: 10.1016/j.nurt.2007.04.006

Positron emission tomography imaging of neuroinflammation

Annachiara Cagnin 1,2,, Michael Kassiou 3,4,5, Steve R Meikle 3,4, Richard B Banati 3,4
PMCID: PMC7479716  PMID: 17599710

Summary

In the diseased brain, upon activation microglia express binding sites for synthetic ligands designed to recognize the 18-kDa translocator protein TP-18, which is part of the so-called peripheral benzodiazepine receptor complex. PK11195 [1-(2-chlorophenyl)-N-methyl-N- (1-methylpropyl)-3-isoquinoline carboxamide], the prototype synthetic ligand, has been widely used for the functional characterization of TP-18. Its cellular source in activated microglia has been established using high-resolution, single-cell autoradiography with the R-enantiomer [3H](R)-PK11195. Radiolabeled [11C](R)-PK11195 has been used to image active brain disease with positron emission tomography. Consistent with experimental and postmortem observations of a characteristically distributed pattern of microglia activation in areas of focal pathology, as well as in anterograde and retrograde projection areas, the in vivo regional [11C](R)-PK11195 signal is found in active focal lesions and over time also along the affected neural tracts and their respective cortical and subcortical projection areas. Thus, a profile of active disease emerges that matches some of the typical distribution patterns known from structural neuroimaging techniques, but additionally shows involvement of brain regions linked through neural pathways. In the context of cell-based in vivo neuropathology, the image data are thus best interpreted in the context of the emerging cellular understanding of brain disease or damage, rather than the definitions of clinical diagnosis. One important observation, borne out by experiment, is the long latency with which activated microglia or increased PK11195 retention appear to gradually emerge and remain in distal areas secondarily affected by disease, supporting speculations that the presence of activated microglia is an important corollary of brain plasticity.

Key Words: Peripheral benzodiazepine receptor, PBR, PK11195, microglia, neuroinflammation, PET, brain

References

  • 1.Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. TINS. 1996;19:312–318. doi: 10.1016/0166-2236(96)10049-7. [DOI] [PubMed] [Google Scholar]
  • 2.Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–1318. doi: 10.1126/science.1110647. [DOI] [PubMed] [Google Scholar]
  • 3.Davalos D, Grutzendler J, Jang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–758. doi: 10.1038/nn1472. [DOI] [PubMed] [Google Scholar]
  • 4.Graeber MB. Glial inflammation in neurodegenerative diseases [abstract] Immunology. 2001;101(Suppl 1):52–52. [Google Scholar]
  • 5.Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut. 2006;55:547–553. doi: 10.1136/gut.2005.075051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Banati RB, Cagnin A, Brooks DJ, et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport. 2001;12:3439–3442. doi: 10.1097/00001756-200111160-00012. [DOI] [PubMed] [Google Scholar]
  • 7.Banati RB. Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J Physiol Paris. 2002;96:289–299. doi: 10.1016/S0928-4257(02)00018-9. [DOI] [PubMed] [Google Scholar]
  • 8.Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia. 1993;7:111–118. doi: 10.1002/glia.440070117. [DOI] [PubMed] [Google Scholar]
  • 9.Banati RB, Graeber MB. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci. 1994;16:114–127. doi: 10.1159/000112098. [DOI] [PubMed] [Google Scholar]
  • 10.Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev. 2004;46:261–281. doi: 10.1016/j.brainresrev.2004.06.006. [DOI] [PubMed] [Google Scholar]
  • 11.Duke DC, Moran LB, Turkheimer F, Banati RB, Graeber MB. Microglia in culture: what genes do they express? Dev Neurosci. 2004;26:30–37. doi: 10.1159/000080709. [DOI] [PubMed] [Google Scholar]
  • 12.Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber MB. Towards a transcriptome definition of microglial cells. Neurogenetics. 2004;5:95–108. doi: 10.1007/s10048-004-0172-5. [DOI] [PubMed] [Google Scholar]
  • 13.Banati RB. Visualising microglial activation in vivo. Glia. 2002;40:206–217. doi: 10.1002/glia.10144. [DOI] [PubMed] [Google Scholar]
  • 14.Hertz L. Binding characteristics of the receptor and coupling to transport proteins. In: Giessen-Crouse E, editor. Peripheral benzodiazepine receptors. London: Academic Press; 1993. pp. 27–51. [Google Scholar]
  • 15.Anholt RR, Pedersen PL, De Souza EB, Snyder SH. The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem. 1986;261:576–583. [PubMed] [Google Scholar]
  • 16.Olson JM, McNeel W, Young AB, Mancini WR. Localization of the peripheral-type benzodiazepine binding site to mitochondria of human glioma cells. J Neurooncol. 1992;13:35–42. doi: 10.1007/BF00172944. [DOI] [PubMed] [Google Scholar]
  • 17.Benavides J, Comu P, Dennis T, et al. Imaging of human brain lesions with an omega-3 site radioligand. Ann Neurol. 1988;24:708–712. doi: 10.1002/ana.410240603. [DOI] [PubMed] [Google Scholar]
  • 18.Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RSJ, Cremer JE. Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat brain cortex following a local ischaemic lesion. J Cereb Blood Flow Metab. 1991;11:314–332. doi: 10.1038/jcbfm.1991.64. [DOI] [PubMed] [Google Scholar]
  • 19.Conway EL, Gundlach AL, Craven JA. Temporal changes in glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience. 1998;82:805–817. doi: 10.1016/S0306-4522(97)00321-7. [DOI] [PubMed] [Google Scholar]
  • 20.Itzhak Y, Baker L, Norenberg MD. Characterization of the peripheral-type benzodiazepine receptors in cultured astrocytes: evidence for multiplicity. Glia. 1993;9:211–218. doi: 10.1002/glia.440090306. [DOI] [PubMed] [Google Scholar]
  • 21.Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol. 1997;26:77–82. doi: 10.1023/A:1018567510105. [DOI] [PubMed] [Google Scholar]
  • 22.Veenman L, Levin E, Weisinger G, et al. Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem Pharmacol. 2004;68:689–698. doi: 10.1016/j.bcp.2004.05.011. [DOI] [PubMed] [Google Scholar]
  • 23.Lee DH, Kang SK, Lee RH, et al. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J Cell Physiol. 2004;198:91–99. doi: 10.1002/jcp.10391. [DOI] [PubMed] [Google Scholar]
  • 24.Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev. 1999;51:629–650. [PubMed] [Google Scholar]
  • 25.Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–409. doi: 10.1016/j.tips.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 26.Cleary J, Johnson KM, Opipari AW, Glick GD. Inhibition of mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg Med Chem Lett. 2007;17:1667–1670. doi: 10.1016/j.bmcl.2006.12.102. [DOI] [PubMed] [Google Scholar]
  • 27.Banati RB, Newcombe J, Gunn RN, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo-imaging of microglia as a measure of disease activity. Brain. 2000;123:2321–2337. doi: 10.1093/brain/123.11.2321. [DOI] [PubMed] [Google Scholar]
  • 28.Stephenson DT, Schober DA, Smalstig EB, Mincy RC, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 1995;15:5263–5274. doi: 10.1523/JNEUROSCI.15-07-05263.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol. 2000;16:102–114. doi: 10.1006/exnr.1999.7269. [DOI] [PubMed] [Google Scholar]
  • 30.Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem. 2000;4:1694–1704. doi: 10.1046/j.1471-4159.2000.0741694.x. [DOI] [PubMed] [Google Scholar]
  • 31.Chen MK, Baidoo K, Verina T, Guilarte TR. Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain. 2004;127:1379–1392. doi: 10.1093/brain/awh161. [DOI] [PubMed] [Google Scholar]
  • 32.Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kieutzberg GW, et al. [11C](R)-PK11195 PET-imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology. 1999;53:2199–2203. doi: 10.1212/wnl.53.9.2199. [DOI] [PubMed] [Google Scholar]
  • 33.Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–158. doi: 10.1006/nimg.1996.0066. [DOI] [PubMed] [Google Scholar]
  • 34.Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997;6:279–287. doi: 10.1006/nimg.1997.0303. [DOI] [PubMed] [Google Scholar]
  • 35.Ashburner J, Haslam J, Taylor C, Cunningham V, Jones T. A cluster analysis approach for the characterization of dynamic PET data. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press; 1996. pp. 301–306. [Google Scholar]
  • 36.Acton PD, Pilowsky LS, Costa DC, Ell PJ. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2 receptor images in schizophrenia. Eur J Nucl Med. 1997;2:111–118. doi: 10.1007/BF02439541. [DOI] [PubMed] [Google Scholar]
  • 37.Gunn RN, Lammertsma AA, Cunningham VJ. Parametric imaging of ligand-receptor interactions using a reference tissue model and cluster analysis. In: Carson R, Daule M, Witherspoon P, Herscovitch P, editors. Quantitative functional brain imaging with positron emission tomography. San Diego: Academic Press; 1998. pp. 401–406. [Google Scholar]
  • 38.Myers R, Gunn RN, Cunningham V, Banati RB, Jones T. Cluster analysis and the reference tissue model in the analysis of clinical [11C](R)-PK11195 PET [Abstract] J Cereb Blood Flow Metab. 1999;19:S789–S789. [Google Scholar]
  • 39.Cagnin A, Myers R, Gunn RN, et al. In vivo visualization of activated glia by [11C](R)-PK11195 PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain. 2001;124:2014–2027. doi: 10.1093/brain/124.10.2014. [DOI] [PubMed] [Google Scholar]
  • 40.Turkheimer FE, Edison P, Pavese N, et al. Reference and target region modeling of [11C](R)-PK11195 brain studies. J Nucl Med. 2007;48:158–167. [PubMed] [Google Scholar]
  • 41.Rasmussen T, Andermann F. Rasmussen’s syndrome: symptomatology of the syndrome of chronic encephalitis and seizures: 35-year experience with 51 cases. In: Lüders H, editor. Epilepsy surgery. 1st ed. New York: Raven Press; 1991. pp. 173–182. [Google Scholar]
  • 42.Oguni H, Andermann F, Rasmussen TB. The syndrome of chronic encephalitis and epilepsy: a study based on the MNI series of 48 cases. Adv Neurol. 1992;57:419–433. [PubMed] [Google Scholar]
  • 43.McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev. 1995;21:195–218. doi: 10.1016/0165-0173(95)00011-9. [DOI] [PubMed] [Google Scholar]
  • 44.Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–175. doi: 10.1002/ana.20338. [DOI] [PubMed] [Google Scholar]
  • 45.Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21:404–412. doi: 10.1016/j.nbd.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 46.Gerhard A, Banati RB, Goerres GB, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61:686–689. doi: 10.1212/01.wnl.0000078192.95645.e6. [DOI] [PubMed] [Google Scholar]
  • 47.Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord. 2006;21:89–93. doi: 10.1002/mds.20668. [DOI] [PubMed] [Google Scholar]
  • 48.Gerhard A, Watts J, Trender-Gerhard I, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord. 2004;19:1221–1226. doi: 10.1002/mds.20162. [DOI] [PubMed] [Google Scholar]
  • 49.Imamura K, Hishikawa N, Sawada M, et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol (Berl) 2003;106:518–526. doi: 10.1007/s00401-003-0766-2. [DOI] [PubMed] [Google Scholar]
  • 50.Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9. [DOI] [PubMed] [Google Scholar]
  • 51.Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60:161–172. doi: 10.1093/jnen/60.2.161. [DOI] [PubMed] [Google Scholar]
  • 52.Pavese N, Gerhard A, Tai YF, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66:1638–1643. doi: 10.1212/01.wnl.0000222734.56412.17. [DOI] [PubMed] [Google Scholar]
  • 53.Tai YF, Pavese N, Gerhard A, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007 Mar 30 [Epub ahead of print]. [DOI] [PubMed]
  • 54.Veerhuis R, Hoozemans JJM, Cagnin A, Eikelemboom P, Banati RB. The activation of microglia as an early sign of disease progression in Alzheimer’s disease. In: Kettenmann H, Ransom BR, editors. Neuroglia. 2nd ed. New York: Oxford University Press; 2004. pp. 1027–1043. [Google Scholar]
  • 55.Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421. doi: 10.1016/S0197-4580(00)00124-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–467. doi: 10.1016/S0140-6736(01)05625-2. [DOI] [PubMed] [Google Scholar]
  • 57.Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400:173–177. doi: 10.1038/22124. [DOI] [PubMed] [Google Scholar]
  • 58.Cagnin A, Rossor M, Sampson EL, MacKinnon T, Banati RB. In vivo detection of microglia activation in frontotemporal dementia. Ann Neurol. 2004;56:894–897. doi: 10.1002/ana.20332. [DOI] [PubMed] [Google Scholar]
  • 59.Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage. 2005;24:591–595. doi: 10.1016/j.neuroimage.2004.09.034. [DOI] [PubMed] [Google Scholar]
  • 60.Rice CS, Wang D, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke. 2006;37:1749–1753. doi: 10.1161/01.STR.0000226980.95389.0b. [DOI] [PubMed] [Google Scholar]
  • 61.Pappata S, Levasseur M, Gunn RN, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology. 2000;55:1052–1054. doi: 10.1212/wnl.55.7.1052. [DOI] [PubMed] [Google Scholar]
  • 62.Sobel RA, Collins AB, Colvin RB, Bhan AK. The in situ cellular autoimmune response in acute herpes simplex encephalitis. Am J Pathol. 1986;125:332–338. [PMC free article] [PubMed] [Google Scholar]
  • 63.Esiri MM, Drummond CW, Morris CS. Macrophages and microglia in HSV-1 infected mouse brain. J Neuroimmunol. 1995;62:201–205. doi: 10.1016/0165-5728(95)00123-8. [DOI] [PubMed] [Google Scholar]
  • 64.Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci. 2000;23:1–37. doi: 10.1146/annurev.neuro.23.1.1. [DOI] [PubMed] [Google Scholar]
  • 65.Kassiou M, Meikle SR, Banati RB. Ligands for peripheral benzodiazepine binding sites in glial cells. Brain Res Brain Res Rev. 2005;48:207–210. doi: 10.1016/j.brainresrev.2004.12.010. [DOI] [PubMed] [Google Scholar]
  • 66.Maeda J, Suhara T, Zhang MR, et al. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse. 2004;52:283–291. doi: 10.1002/syn.20027. [DOI] [PubMed] [Google Scholar]
  • 67.Zhang MR, Kida T, Noguchi J, et al. [11C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol. 2003;30:513–519. doi: 10.1016/S0969-8051(03)00016-7. [DOI] [PubMed] [Google Scholar]
  • 68.Zhang MR, Maeda J, Ogawa M, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl) acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;22:2228–2235. doi: 10.1021/jm0304919. [DOI] [PubMed] [Google Scholar]
  • 69.Fujimura Y, Ikoma Y, Yasuno F, et al. Quantitative analyses of 18 F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med. 2006;47:43–50. [PubMed] [Google Scholar]
  • 70.Gulyas B, Halldin C, Sandell J, et al. PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects. Acta Neurol Scand. 2002;106:325–332. doi: 10.1034/j.1600-0404.2002.01302.x. [DOI] [PubMed] [Google Scholar]
  • 71.Gulyas B, Halldin C, Vas A, et al. [11C] Vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci. 2005;15:219–223. doi: 10.1016/j.jns.2004.11.032. [DOI] [PubMed] [Google Scholar]
  • 72.Belloli S, Moresco RM, Matarrese M, et al. Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo PET imaging of neurodegeneration. Neurochem Int. 2004;44:433–440. doi: 10.1016/j.neuint.2003.08.006. [DOI] [PubMed] [Google Scholar]
  • 73.James ML, Fulton RR, Henderson DJ, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem. 2005;13:6188–6194. doi: 10.1016/j.bmc.2005.06.030. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES