Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jul;4(3):453–459. doi: 10.1016/j.nurt.2007.05.003

Examination of spinal cord tissue architecture with magnetic resonance diffusion tensor imaging

Stephan E Maier 1,
PMCID: PMC7479719  PMID: 17599711

Summary

Magnetic resonance diffusion tensor imaging yields images with detailed information about tissue water diffusion. Diffusion-weighted imaging of the human spinal cord requires dedicated magnetic resonance pulse sequences that minimize the effects of subject motion, distortions, and artifacts from lipids and CSF flow. These problems are accentuated by the anatomic properties of the spinal cord (i.e., a small crosssectional dimension and a location deep inside the body). The diffusion tensor (a simplified model for complex diffusion in structured tissues) can be estimated for each image pixel by measuring diffusion along a minimum of six independent directions. It can then be used to derive mean diffusivity, diffusion anisotropy, and the dominant orientation of the diffusion process. The observation that diffusion along nerve fibers is much higher than across fibers, allows a noninvasive reconstruction of the spinal cord nerve fiber architecture. This includes not only the primary cranio-caudad running connections, but also secondary, transverse running collateral fibers. With fiber tracking, the pixel-based diffusion information can be integrated to obtain a three-dimensional view of axonal fiber connectivity between the spinal cord and different brain regions. The development and myelination during infancy and early childhood is reflected in a gradual decrease of mean diffusivity and increase in anisotropy. There are several diseases that lead to either local or general changes in spinal cord water diffusion. For therapy research, such changes can be studied noninvasively and repeatedly in animal models.

Key Words: Spinal cord, white matter, gray matter, MRI, eigenvector, diffusion imaging

References

  • 1.Papadakis NG, Xing D, Houston GC, et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging. 1999;17:881–892. doi: 10.1016/S0730-725X(99)00029-6. [DOI] [PubMed] [Google Scholar]
  • 2.Takahashi M, Hackney D, Zhang G, et al. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci USA. 2002;99:16192–16196. doi: 10.1073/pnas.252249999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–455. doi: 10.1002/nbm.782. [DOI] [PubMed] [Google Scholar]
  • 4.Basser P, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–267. doi: 10.1016/S0006-3495(94)80775-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol. 1998;274:H1627–H1634. doi: 10.1152/ajpheart.1998.274.5.H1627. [DOI] [PubMed] [Google Scholar]
  • 6.Lin CP, Tseng WY, Cheng HC, Chen JH. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage. 2001;14:1035–1047. doi: 10.1006/nimg.2001.0882. [DOI] [PubMed] [Google Scholar]
  • 7.Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: Magnetic susceptibility of bone. Magn Reson Med. 1997;37:494–500. doi: 10.1002/mrm.1910370404. [DOI] [PubMed] [Google Scholar]
  • 8.Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motions. Radiology. 1990;177:407–414. doi: 10.1148/radiology.177.2.2217777. [DOI] [PubMed] [Google Scholar]
  • 9.Summers P, Staempfli P, Jaermann T, Kwiecinski S, Kollias S. A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. AJNR Am J Neuroradiol. 2006;27:1952–1961. [PMC free article] [PubMed] [Google Scholar]
  • 10.Clark CA, Barker GJ, Tofts PS. Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo. Magn Reson Med. 1999;41:1269–1273. doi: 10.1002/(SICI)1522-2594(199906)41:6<1269::AID-MRM26>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 11.Bammer R, Fazekas F, Augustin M, et al. Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol. 2000;21:587–591. [PMC free article] [PubMed] [Google Scholar]
  • 12.Ries M, Jones RA, Dousset V, Moonen CT. Diffusion tensor MRI of the spinal cord. Magn Reson Med. 2000;44:884–892. doi: 10.1002/1522-2594(200012)44:6<884::AID-MRM9>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 13.Holder CA, Muthupillai R, Mukundan SJ, Eastwood JD, Hudgins P. Diffusion-weighted MR imaging of the normal human spinal cord in vivo. AJNR Am J Neuroradiol. 2000;21:1799–1806. [PMC free article] [PubMed] [Google Scholar]
  • 14.Demir A, Ries M, Moonen CT, et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology. 2003;229:37–43. doi: 10.1148/radiol.2291020658. [DOI] [PubMed] [Google Scholar]
  • 15.Zhang J, Huan Y, Qian Y, Sun L, Ge Y. Multishot diffusion-weighted imaging features in spinal cord infarction. J Spinal Disord Tech. 2005;18:277–282. [PubMed] [Google Scholar]
  • 16.Nagayoshi K, Kimura S, Ochi M, et al. Diffusion-weighted echo planar imaging of the normal human cervical spinal cord. J Comput Assist Tomogr. 2000;24:482–485. doi: 10.1097/00004728-200005000-00023. [DOI] [PubMed] [Google Scholar]
  • 17.Voss HU, Watts R, Ulug AM, Ballon D. Fiber tracking in cervical spine and inferior brain regions with reversed gradient diffusion tensor imaging. Magn Reson Imaging. 2006;24:231–239. doi: 10.1016/j.mri.2005.12.007. [DOI] [PubMed] [Google Scholar]
  • 18.Le Roux P, Darquie A, Carlier PG, Clark CA. Feasibility study of non Carr Purcell Meiboom Gill single shot fast spin echo in spinal cord diffusion imaging. MAGMA. 2002;14:243–247. doi: 10.1007/BF02668218. [DOI] [PubMed] [Google Scholar]
  • 19.Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45:90–94. doi: 10.1007/s00234-002-0898-4. [DOI] [PubMed] [Google Scholar]
  • 20.Bammer R, Augustin M, Prokesch R, Stollberger R, Fazekas F. Diffusion-weighted imaging of the spinal cord: interleaved echoplanar imaging is superior to fast spin-echo. J Magn Reson Imaging. 2002;15:364–373. doi: 10.1002/jmri.10075. [DOI] [PubMed] [Google Scholar]
  • 21.Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med. 1996;36:509–519. doi: 10.1002/mrm.1910360403. [DOI] [PubMed] [Google Scholar]
  • 22.Maier SE, Gudbjartsson H, Patz S, et al. Line scan diffusion imaging: characterization in healthy subjects and stroke patients. AJR Am J Roentgen. 1998;17:85–93. doi: 10.2214/ajr.171.1.9648769. [DOI] [PubMed] [Google Scholar]
  • 23.Robertson RL, Maier SE, Mulkem RV, Vajapayam S, Robson CD, Barnes PD. MR line-scan diffusion imaging of the spinal cord in children. AJNR Am J Neuroradiol. 2000;21:1344–1348. [PMC free article] [PubMed] [Google Scholar]
  • 24.Hori M, Okubo T, Aoki S, et al. Line scan diffusion weighted imaging (LSDI) on 0.2 Tesla MRI of the normal cervical cord in vivo: preliminary study. Nippon Igaku Hoshasen Gakkai Zasshi. 2002;62:221–223. [PubMed] [Google Scholar]
  • 25.Mamata H, Jolesz FA, Maier SE. Characterization of central nervous system structures by magnetic resonance diffusion anisotropy. Neurochem Int. 2004;45:553–560. doi: 10.1016/j.neuint.2003.11.014. [DOI] [PubMed] [Google Scholar]
  • 26.Maier SE. Slab scan diffusion imaging. Magn Reson Med. 2001;46:1136–1143. doi: 10.1002/mrm.1310. [DOI] [PubMed] [Google Scholar]
  • 27.Wheeler-Kingshott CA, Hickman SJ, Parker GJ, et al. Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage. 2002;16:93–102. doi: 10.1006/nimg.2001.1022. [DOI] [PubMed] [Google Scholar]
  • 28.Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS. Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med. 2007;57:625–630. doi: 10.1002/mrm.21167. [DOI] [PubMed] [Google Scholar]
  • 29.Cercignani M, Horsfield MA, Agosta F, Filippi M. Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol. 2003;24:1254–1256. [PMC free article] [PubMed] [Google Scholar]
  • 30.Tsuchiya K, Fujikawa A, Suzuki Y. Diffusion tractography of the cervical spinal cord by using parallel imaging. AJNR Am J Neuroradiol. 2005;26:398–400. [PMC free article] [PubMed] [Google Scholar]
  • 31.Falconer JC, Narayana PA. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain. Magn Reson Med. 1997;37:119–123. doi: 10.1002/mrm.1910370117. [DOI] [PubMed] [Google Scholar]
  • 32.Bastin M, Armitage P, Marshall I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging. 1998;16:773–785. doi: 10.1016/S0730-725X(98)00098-8. [DOI] [PubMed] [Google Scholar]
  • 33.Dietrich O, Heiland S, Sartor K. Noise collection for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med. 2001;45:448–453. doi: 10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  • 34.Hakyemez B, Aksoy U, Yildiz H, Elgin N. Intracranial epidermoid cysts: diffusion-weighted, FLAIR and conventional MR findings. Eur J Radiol. 2005;54:214–220. doi: 10.1016/j.ejrad.2004.06.018. [DOI] [PubMed] [Google Scholar]
  • 35.Schwartz ED, Cooper ET, Fan Y, et al. MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport. 2005;16:73–76. doi: 10.1097/00001756-200501190-00017. [DOI] [PubMed] [Google Scholar]
  • 36.Golabchi F, Brooks D, Hoge W, Mamata H, Maier SE. Book of Abstracts, Fourteenth Annual Meeting. Seattle: Society of Magnetic Resonance, Berkeley California; 2006. Comparison of MR diffusion anisotropy with axon density. [Google Scholar]
  • 37.Murphy BP, Zientara GP, Huppi PS, et al. Line scan diffusion tensor MRI of the cervical spinal cord in preterm infants. J Magn Reson Imaging. 2001;13:949–953. doi: 10.1002/jmri.1136. [DOI] [PubMed] [Google Scholar]
  • 38.Mamata H, Jolesz FA, Maier SE. Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical-spondy-losis related changes. J Magn Reson Imaging. 2005;22:38–43. doi: 10.1002/jmri.20357. [DOI] [PubMed] [Google Scholar]
  • 39.Maier SE, Mamata H. Diffusion tensor imaging of the spinal cord. Ann NY Acad Sci. 2005;1064:50–60. doi: 10.1196/annals.1340.011. [DOI] [PubMed] [Google Scholar]
  • 40.Huppi PS, Maier SE, Peled SS, et al. Microstructural development of the human newborn cerebral white matter assessed in vivo by diffusion tensor MRI. Pediatr Res. 1998;44:584–590. doi: 10.1203/00006450-199810000-00019. [DOI] [PubMed] [Google Scholar]
  • 41.Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med. 2000;44:259–268. doi: 10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 42.Mulkem RV, Davis PE, Haker SJ, et al. Complementary aspects of diffusion imaging and fMRI; I: structure and function. Magn Reson Imaging. 2006;24:463–474. doi: 10.1016/j.mri.2006.01.007. [DOI] [PubMed] [Google Scholar]
  • 43.Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–582. doi: 10.1002/mrm.10268. [DOI] [PubMed] [Google Scholar]
  • 44.Valsasina P, Rocca MA, Agosta F, et al. Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage. 2005;26:822–828. doi: 10.1016/j.neuroimage.2005.02.033. [DOI] [PubMed] [Google Scholar]
  • 45.Teksam M, Casey SO, Michel E, Benson M, Truwit CL. Intraspinal epidermoid cyst: diffusion-weighted MRI. Neuroradiology. 2001;43:572–574. doi: 10.1007/s002340000526. [DOI] [PubMed] [Google Scholar]
  • 46.Shinoyama M, Takahashi T, Shimizu H, Tominaga T, Suzuki M. Spinal cord infarction demonstrated by diffusion-weighted magnetic resonance imaging. J Clin Neurosci. 2005;12:466–468. doi: 10.1016/j.jocn.2004.01.010. [DOI] [PubMed] [Google Scholar]
  • 47.Facon D, Ozanne A, Fillard P, Lepeintre JF, Toumoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26:1587–1594. [PMC free article] [PubMed] [Google Scholar]
  • 48.Bilgen M. A new device for experimental modeling of central nervous system injuries. Neurorehabil Neural Repair. 2005;19:219–226. doi: 10.1177/1545968305278635. [DOI] [PubMed] [Google Scholar]
  • 49.Deo AA, Grill RJ, Hasan KM, Narayana PA. In vivo serial diffusion tensor imaging of experimental spinal cord injury. J Neurosci Res. 2006;83:801–810. doi: 10.1002/jnr.20783. [DOI] [PubMed] [Google Scholar]
  • 50.Banasik T, Jasiński A, Pilc A, Majcher K, Brzegowy P. Application of magnetic resonance diffusion anisotropy imaging for the assessment of neuroprotecting effects of MPEP, a selective mGluR5 antagonist, on the rat spinal cord injury in vivo. Pharmacol Rep. 2005;57:861–866. [PubMed] [Google Scholar]
  • 51.Bilgen M. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil. J Neurosci Methods. 2007;159:93–97. doi: 10.1016/j.jneumeth.2006.06.024. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES