Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jul;4(3):499–510. doi: 10.1016/j.nurt.2007.04.011

Parallel magnetic resonance imaging

Ulrich Katscher 1,, Peter Börnert 1
PMCID: PMC7479721  PMID: 17599714

Summary

Parallel MRI started with the introduction of coil arrays in improving radiofrequency (RF) acquisition (what is called parallel imaging) and continued with an analogous development for RF transmission (parallel transmission). Based on differences in the spatial sensitivity distributions of the involved array elements, both techniques try to shorten the respective k-space trajectory. Parallel imaging refers to the acquisition of k-space data, whereas parallel transmission is dealing with the deposition of RF energy packages in the excitation k-space. However, parallel transmission is not simply the reciprocal of parallel imaging. The main goal of parallel imaging is the shortening of the acquisition time. The main goal of parallel transmission is the shortening of the pulse duration of spatially selective RF pulses. The present article describes the basic concept, the state of the art, and the similarities and differences of both technologies.

Key Words: Magnetic resonance imaging, parallel imaging, parallel transmission, RF coil array, RF pulses, inverse problem

References

  • 1.Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192–225. doi: 10.1002/mrm.1910160203. [DOI] [PubMed] [Google Scholar]
  • 2.Carlson JW. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils. J Magn Reson. 1987;74:376–380. [Google Scholar]
  • 3.Hutchinson M, Raff U. Fast MRI data acquisition using multiple detectors. Magn Reson Med. 1988;6:87–91. doi: 10.1002/mrm.1910060110. [DOI] [PubMed] [Google Scholar]
  • 4.Kelton JR, Magin RL, Wright SM. An algorithm for rapid image acquisition using multiple receiver coils. Roc Soc Magn Reson Med 1989;1172.
  • 5.Ra JB, Rim CY. Fast imaging using subencoding data sets from multiple detectors. Magn Reson Med. 1993;30:142–145. doi: 10.1002/mrm.1910300123. [DOI] [PubMed] [Google Scholar]
  • 6.Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603. doi: 10.1002/mrm.1910380414. [DOI] [PubMed] [Google Scholar]
  • 7.Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962. [PubMed] [Google Scholar]
  • 8.Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA) Magn Reson Med. 2002;47:1202–1210. doi: 10.1002/mrm.10171. [DOI] [PubMed] [Google Scholar]
  • 9.Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ. Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med. 1999;41:1009–1022. doi: 10.1002/(sici)1522-2594(199905)41:5<1009::aid-mrm21>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  • 10.Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS) Magn Reson Med. 2000;44:602–609. doi: 10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  • 11.Sodickson DK. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med. 2000;44:243–251. doi: 10.1002/1522-2594(200008)44:2<243::aid-mrm11>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  • 12.Bydder M, Larkman DJ, Hajnal JV. Generalized SMASH imaging. Magn Reson Med. 2002;47:160–170. doi: 10.1002/mrm.10044. [DOI] [PubMed] [Google Scholar]
  • 13.Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46:638–651. doi: 10.1002/mrm.1241. [DOI] [PubMed] [Google Scholar]
  • 14.Kyriakos WE, Panych LP, Kacher DF, et al. Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP) Magn Reson Med. 2000;44:301–308. doi: 10.1002/1522-2594(200008)44:2<301::aid-mrm18>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  • 15.Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50:1031–1042. doi: 10.1002/mrm.10611. [DOI] [PubMed] [Google Scholar]
  • 16.Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med. 2005;54:1172–1184. doi: 10.1002/mrm.20641. [DOI] [PubMed] [Google Scholar]
  • 17.Hardy CJ, Darrow RD, Saranathan M, et al. Large field-of-view real-time MRI with a 32-channel system. Magn Reson Med. 2004;52:878–884. doi: 10.1002/mrm.20225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Fenchel M, Deshpande VS, Nael K, et al. Cardiac cine imaging at 3 tesla: initial experience with a 32-element body-array coil. Invest Radiol. 2006;41:601–608. doi: 10.1097/01.rli.0000223896.70095.49. [DOI] [PubMed] [Google Scholar]
  • 19.Wiggins GC, Potthast A, Triantafyllou C, et al. A 96-channel MRI system with 23- and 90-channel phase array head coils at 1.5 tesla [Abstract] Proc Int Soc Magn Reson Med. 2005;13:671–671. [Google Scholar]
  • 20.Bollenbeck J, Vester M, Oppelt R, Kroeckel H, Schnell W. A high performance multi-channel RF receiver for magnet resonance imaging systems [Abstract] Proc Int Soc Magn Reson Med. 2005;13:860–860. [Google Scholar]
  • 21.Lin FH, Wald LL, Ahlfors SP, Hamalainen MS, Kwong KK, Belliveau JW. Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med. 2006;56:787–802. doi: 10.1002/mrm.20997. [DOI] [PubMed] [Google Scholar]
  • 22.Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. MAGMA. 2002;14:10–19. doi: 10.1007/BF02668182. [DOI] [PubMed] [Google Scholar]
  • 23.Dydak U, Weiger M, Pruessmann KP, Meier D, Boesiger P. Sensitivity-encoded spectroscopic imaging. Magn Reson Med. 2001;46:713–722. doi: 10.1002/mrm.1250. [DOI] [PubMed] [Google Scholar]
  • 24.Sodickson DK, McKenzie CA. A generalized approach to parallel magnetic resonance imaging. Med Phys. 2001;28:1629–1643. doi: 10.1118/1.1386778. [DOI] [PubMed] [Google Scholar]
  • 25.Wang Y. Description of parallel imaging in MRI using multiple coils. Magn Reson Med. 2000;44:495–499. doi: 10.1002/1522-2594(200009)44:3<495::aid-mrm23>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  • 26.Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. MAGMA. 1998;7:42–54. doi: 10.1007/BF02592256. [DOI] [PubMed] [Google Scholar]
  • 27.Heidemann RM, Griswold MA, Haase A, Jakob PM. VD-AUTO-SMASH imaging. Magn Reson Med. 2001;45:1066–1074. doi: 10.1002/mrm.1141. [DOI] [PubMed] [Google Scholar]
  • 28.Yeh EN, Stuber M, McKenzie CA, et al. Inherently self-calibrating non-Cartesian parallel imaging. Magn Reson Med. 2005;54:1–8. doi: 10.1002/mrm.20517. [DOI] [PubMed] [Google Scholar]
  • 29.Heidemann RM, Griswold MA, Seiberlich N, et al. Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med. 2006;56:317–326. doi: 10.1002/mrm.20951. [DOI] [PubMed] [Google Scholar]
  • 30.Tsao J, Pruessmann KP, Boesiger P. Feedback regularization for SENSE reconstruction [Abstract] Proc Int Soc Magn Reson Med. 2002;10:739–739. [Google Scholar]
  • 31.King KF, Angelos L. SENSE image quality improvement using matrix regularization [Abstract] Roc Int Soc Magn Reson Med. 2001;9:1771–1771. [Google Scholar]
  • 32.Liang ZP, Bammer R, Ji J, Pelc NJ, Glover GH. Making better SENSE: wavelet denoising, Tikhonov regularization, and total least squares [Abstract] Proc Int Soc Magn Reson Med. 2002;10:2388–2388. [Google Scholar]
  • 33.Katscher U, Manke D. Underdetermined SENSE using a-priori knowledge [Abstract] Proc Int Soc Magn Reson Med. 2002;10:2396–2396. [Google Scholar]
  • 34.Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallel imaging reconstruction using automatic regularization. Magn Reson Med. 2004;51:559–567. doi: 10.1002/mrm.10718. [DOI] [PubMed] [Google Scholar]
  • 35.Macovski A. Noise in MRI. Magn Reson Med. 1996;36:494–497. doi: 10.1002/mrm.1910360327. [DOI] [PubMed] [Google Scholar]
  • 36.Ruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962. [PubMed] [Google Scholar]
  • 37.Bydder M, Larkman DJ, Hajnal JV. Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med. 2002;47:677–686. doi: 10.1002/mrm.10093. [DOI] [PubMed] [Google Scholar]
  • 38.Bydder M, Atkinson D, Larkman DJ, Hill DL, Hajnal JV. Smash navigators. Magn Reson Med. 2003;49:493–500. doi: 10.1002/mrm.10388. [DOI] [PubMed] [Google Scholar]
  • 39.Atkinson D, Larkman DJ, Batchelor PG, Hill DL, Hajnal JV. Coil-based artifact reduction. Magn Reson Med. 2004;52:825–830. doi: 10.1002/mrm.20226. [DOI] [PubMed] [Google Scholar]
  • 40.Winkelmann R, Börnert P, Nehrke K, Doessel O. Efficient foldover suppression using sense. MAGMA. 2005;18:63–68. doi: 10.1007/s10334-004-0081-5. [DOI] [PubMed] [Google Scholar]
  • 41.Winkelmann R, Börnert P, Doessel O. Ghost artifact removal using a parallel imaging approach. Magn Reson Med. 2005;54:1002–1009. doi: 10.1002/mrm.20640. [DOI] [PubMed] [Google Scholar]
  • 42.Kellman P, McVeigh ER. Ghost artifact cancellation using phased array processing. Magn Reson Med. 2001;46:335–343. doi: 10.1002/mrm.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Kellman P, McVeigh ER. Phased array ghost elimination. NMR Biomed. 2006;19:352–61. doi: 10.1002/nbm.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Golay X, Ruessmann KP, Weiger M, et al. PRESTO-SENSE: an ultrafast whole-brain fMRI technique. Magn Reson Med. 2000;43:779–786. doi: 10.1002/1522-2594(200006)43:6<779::aid-mrm1>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  • 45.Lin FH, Huang TY, Chen NK, et al. Functional MRI using regularized parallel imaging acquisition. Magn Reson Med. 2005;54:343–353. doi: 10.1002/mrm.20555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Moeller S, Van de Moortele PF, Goerke U, Adriany G, Ugurbil K. Application of parallel imaging to fMRI at 7 tesla utilizing a high 1D reduction factor. Magn Reson Med. 2006;56:118–129. doi: 10.1002/mrm.20934. [DOI] [PubMed] [Google Scholar]
  • 47.Lutcke H, Merboldt KD, Frahm J. The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging. 2006;24:1–5. doi: 10.1016/j.mri.2005.10.028. [DOI] [PubMed] [Google Scholar]
  • 48.Dickerson B. Functional magnetic resonance imaging. Neurotherapeutics. 2007;00:000–000. doi: 10.1016/j.nurt.2007.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Alexander A. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;00:000–000. doi: 10.1016/j.nurt.2007.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Maier S. Diffusion tensor imaging of the spinal cord. Neurotherapeutics. 2007;00:000–000. [Google Scholar]
  • 51.Bammer R, Keeling SL, Augustin M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE) Magn Reson Med. 2001;46:548–554. doi: 10.1002/mrm.1226. [DOI] [PubMed] [Google Scholar]
  • 52.Augustin M, Fazekas F, Bammer R. Fast patient workup in acute stroke using parallel imaging. Top Magn Reson Imaging. 2004;15:207–219. doi: 10.1097/01.rmr.0000132790.61835.f7. [DOI] [PubMed] [Google Scholar]
  • 53.Naganawa S, Koshikawa T, Kawai H, et al. Optimization of diffusion-tensor MR imaging data acquisition parameters for brain fiber tracking using parallel imaging at 3 T. Eur Radiol. 2004;14:234–238. doi: 10.1007/s00330-003-2163-6. [DOI] [PubMed] [Google Scholar]
  • 54.Tsuchiya K, Fujikawa A, Suzuki Y. Diffusion tractography of the cervical spinal cord by using parallel imaging. AJNR Am J Neuroradiol. 2005;26:398–400. [PMC free article] [PubMed] [Google Scholar]
  • 55.Tsuchiya K, Fujikawa A, Tateishi H, Nitatori T. Visualization of cervical nerve roots and their distal nerve fibers by diffusion-weighted scanning using parallel imaging. Acta Radiol. 2006;47:599–602. doi: 10.1080/02841850600699638. [DOI] [PubMed] [Google Scholar]
  • 56.Dydak U, Weiger M, Pruessmann KP, Meier D, Boesiger P. Sensitivity-encoded spectroscopic imaging. Magn Reson Med. 2001;46:713–722. doi: 10.1002/mrm.1250. [DOI] [PubMed] [Google Scholar]
  • 57.Golay X, Gillen J, van Zijl PC, Barker PB. Scan time reduction in proton magnetic resonance spectroscopic imaging of the human brain. Magn Reson Med. 2002;47:384–387. doi: 10.1002/mrm.10038. [DOI] [PubMed] [Google Scholar]
  • 58.Lin FH, Tsai SY, Otazo R, et al. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain. Magn Reson Med. 2007;57:249–257. doi: 10.1002/mrm.21119. [DOI] [PubMed] [Google Scholar]
  • 59.Lenkinski B. Magnetic resonance imaging spectroscopy. Neurotherapeutics. 2007;00:000–000. [Google Scholar]
  • 60.Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK. Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson. 1999;1:153–157. doi: 10.3109/10976649909080844. [DOI] [PubMed] [Google Scholar]
  • 61.Tsao J, Kozerke S, Boesiger P, Pruessmann KP. Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession. Magn Reson Med. 2005;53:1372–1382. doi: 10.1002/mrm.20483. [DOI] [PubMed] [Google Scholar]
  • 62.Wintersperger BJ, Reeder SB, Nikolaou K, et al. Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging. 2006;23:222–227. doi: 10.1002/jmri.20484. [DOI] [PubMed] [Google Scholar]
  • 63.Park J, Larson AC, Zhang Q, Simonetti O, Li D. High-resolution steady-state free precession coronary magnetic resonance angiography within a breath-hold: parallel imaging with extended cardiac data acquisition. Magn Reson Med. 2005;54:1100–1106. doi: 10.1002/mrm.20664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Nehrke K, Bömert P, Mazurkewitz P, Winkelmann R, Graesslin I. Free-breathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging. 2006;23:752–756. doi: 10.1002/jmri.20559. [DOI] [PubMed] [Google Scholar]
  • 65.Weiger M, Pruessmann KP, Kassner A, et al. Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging. 2000;12:671–677. doi: 10.1002/1522-2586(200011)12:5<671::aid-jmri3>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  • 66.Lin J, Chen B, Wang JH, Zeng MS, Wang YX. Whole-body three-dimensional contrast-enhanced magnetic resonance (MR) angiography with parallel imaging techniques on a multichannel MR system for the detection of various systemic arterial diseases. Heart Vessels. 2006;21:395–398. doi: 10.1007/s00380-006-0918-0. [DOI] [PubMed] [Google Scholar]
  • 67.Nikolaou K, Kramer H, Grosse C, et al. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006;241:861–872. doi: 10.1148/radiol.2413060053. [DOI] [PubMed] [Google Scholar]
  • 68.Zech CJ, Herrmann KA, Huber A, et al. High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion collection and respiratory triggering. J Magn Reson Imaging. 2004;20:443–450. doi: 10.1002/jmri.20127. [DOI] [PubMed] [Google Scholar]
  • 69.Winkelmann R, Börnert P, De Becker J, Hoogeveen R, Mazurkewitz P, Dössel O. Dual-contrast single breath-hold 3D abdominal MR imaging. MAGMA. 2006;19:297–304. doi: 10.1007/s10334-006-0057-8. [DOI] [PubMed] [Google Scholar]
  • 70.Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol. 1978;23:630–43. doi: 10.1088/0031-9155/23/4/006. [DOI] [PubMed] [Google Scholar]
  • 71.Röschmann P. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys. 1987;14:922–31. doi: 10.1118/1.595995. [DOI] [PubMed] [Google Scholar]
  • 72.Vaughan T. Ultra-high-field magnetic resonance imaging neuro-imaging. Neurotherapeutics. 2007;00:000–000. [Google Scholar]
  • 73.Sotgiu A, Hyde JS. High-order coils as transmitters for NMR imaging. Magn Reson Med. 1986;3:55–62. doi: 10.1002/mrm.1910030108. [DOI] [PubMed] [Google Scholar]
  • 74.Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PL. Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations. Magn Reson Imaging. 2000;18:733–742. doi: 10.1016/s0730-725x(00)00143-0. [DOI] [PubMed] [Google Scholar]
  • 75.Seifert F, Rinneberg H. Adaptive coil control: SNR optimization of a TR volume coil for single voxel MRS at 3 T [Abstract] Proc Int Soc Magn Reson Med. 2002;10:162–162. [Google Scholar]
  • 76.Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 tesla parallel imaging. Magn Reson Med. 2005;53:434–445. doi: 10.1002/mrm.20321. [DOI] [PubMed] [Google Scholar]
  • 77.Zhu Y, Giaquinto R. Improving flip angle uniformity with parallel excitation [Abstract] Proc Int Soc Magn Reson Med. 2005;13:2752–2752. [Google Scholar]
  • 78.Ullmann P, Junge S, Wick M, Seifert F, Ruhm W, Hennig J. Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med. 2005;54:994–1001. doi: 10.1002/mrm.20646. [DOI] [PubMed] [Google Scholar]
  • 79.Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson. 1989;81:43–56. doi: 10.1016/j.jmr.2011.09.023. [DOI] [PubMed] [Google Scholar]
  • 80.Börnert P, Aldefeld B. On spatially selective RF excitation and its analogy with spiral MR image acquisition. MAGMA. 1998;7:166–178. doi: 10.1007/BF02591334. [DOI] [PubMed] [Google Scholar]
  • 81.Katscher U, Börnert P, Leussler C, van den Brink J. Transmit SENSE. Magn Reson Med. 2003;49:144–150. doi: 10.1002/mrm.10353. [DOI] [PubMed] [Google Scholar]
  • 82.Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med. 2004;51:775–784. doi: 10.1002/mrm.20011. [DOI] [PubMed] [Google Scholar]
  • 83.Hardy VJ, Cline HE. Spatial localization in two dimensions using NMR designer pulses. J Magn Reson. 1989;82:647–654. [Google Scholar]
  • 84.Bottomley PA, Hardy CJ. Progress in efficient 3-dimensional spatially localized in vivo P-31 NMR-spectroscopy using multidimensional spatially selective (Rho) pulses. J Magn Reson. 1987;74:550–556. [Google Scholar]
  • 85.Börnert P, Schäffter T. Curved slice imaging. Magn Reson Med. 1996;36:932–939. doi: 10.1002/mrm.1910360616. [DOI] [PubMed] [Google Scholar]
  • 86.Sachs TS, Meyer CH, Hu BS, Kohli J, Nishimura D, Macovski A. Real-time motion detection in spiral MRI using navigators. Magn Reson Med. 1994;32:639–645. doi: 10.1002/mrm.1910320513. [DOI] [PubMed] [Google Scholar]
  • 87.Pauly JM, Hu BS, Wang SJ, Nishimura DG, Marcovski A. A three-dimensional spin-echo or inversion pulse. Magn Reson Med. 1993;29:2–6. doi: 10.1002/mrm.1910290103. [DOI] [PubMed] [Google Scholar]
  • 88.Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med. 1994;32:778–784. doi: 10.1002/mrm.1910320614. [DOI] [PubMed] [Google Scholar]
  • 89.Saekho S, Boada FE, Noll DC, Stenger VA. Small tip angle three-dimensional tailored radiofrequency slab-select pulse for reduced B1 inhomogeneity at 3 T. Magn Reson Med. 2005;53:479–484. doi: 10.1002/mrm.20358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Ulloa JL, Irarrazaval P, Hajnal JV. Exploring 3D RF shimming for slice selective imaging [Abstract] Proc Int Soc Magn Reson Med. 2005;13:21–21. [Google Scholar]
  • 91.Glover GH, Hayes CE, Pelc NJ, et al. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson. 1985;64:255–270. [Google Scholar]
  • 92.Barker GJ, Simmons A, Arridge SR, Tofts PS. A simple method for investigating the effects of non-uniformity of radiofrequency transmission and radiofrequency reception in MRI. Br J Radiol. 1998;71:59–67. doi: 10.1259/bjr.71.841.9534700. [DOI] [PubMed] [Google Scholar]
  • 93.Griswold MA, Kannengiesser S, Müller M, Jakob PM. Autocalibrated accelerated parallel excitation (Transmit-GRAPPA) [Abstract] Proc Int Soc Magn Reson Med. 2005;13:2435–2435. [Google Scholar]
  • 94.Pauly J, Nishimura D, Macovski A. A linear class of large-tip-angle selective excitation pulses. J Magn Reson. 1989;82:571–587. [Google Scholar]
  • 95.Grissom W, Yip CY, Zhang Z, Stenger VA, Fessier JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med. 2006;56:620–629. doi: 10.1002/mrm.20978. [DOI] [PubMed] [Google Scholar]
  • 96.Yip CY, Fessier JA, Noll DC. A novel, fast and adaptive trajectory in three-dimensional excitation k-space [Abstract] Proc Int Soc Magn Reson Med. 2005;13:2350–2350. [Google Scholar]
  • 97.Conolly S, Nishimura DG, Macovski A, Glover G. Variable-rate selective excitation. J Magn Reson. 1988;78:440–458. [Google Scholar]
  • 98.Graesslin I, Niemann M, Harvey P, Vemickel P, Katscher U. SAR and RF power reduction with parallel excitation using non-Cartesian trajectories [Abstract] MAGMA. 2005;18:S251–S251. [Google Scholar]
  • 99.Katscher U, Börnert P, van den Brink JS. Theoretical and numerical aspects of Transmit SENSE. IEEE Trans Med Imaging. 2004;23:520–525. doi: 10.1109/TMI.2004.824151. [DOI] [PubMed] [Google Scholar]
  • 100.Yip CY, Fessier JA, Noll DC. Iterative RF pulse design for multidimensional, small-tip-angle selective excitation. Magn Reson Med. 2005;54:908–917. doi: 10.1002/mrm.20631. [DOI] [PubMed] [Google Scholar]
  • 101.Saekho S, Boada FE, Noll DC, Stenger VA. Small tip angle three-dimensional tailored radiofrequency slab-select pulse for reduced B1 inhomogeneity at 3 T. Magn Reson Med. 2005;53:479–484. doi: 10.1002/mrm.20358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Boskamp E, Lee RF. Whole body LPSA tranceive array [Abstract] Proc Int Soc Magn Reson Med. 2002;10:903–903. [Google Scholar]
  • 103.Weyers D, Boskamp E. An 8 channel volume transmit coil [Abstract] Proc Int Soc Magn Reson Med. 2002;10:901–901. [Google Scholar]
  • 104.Lee RF, Giaquinto RO, Hardy CJ. Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med. 2002;48:203–213. doi: 10.1002/mrm.10186. [DOI] [PubMed] [Google Scholar]
  • 105.Vemickel P, Röschmann P, Findeklee C, et al. An eight channel transmit/receive body coil for 3T [Abstract] Proc Int Soc Magn Reson Med. 2006;14:123–123. [Google Scholar]
  • 106.Zhu Y, Watkins R, Giaquinto R, et al. Parallel excitation on an eight transmit-channel MRI system [Abstract] Proc Int Soc Magn Reson Med. 2005;13:14–14. [Google Scholar]
  • 107.Graesslin I, Vemickel P, Schmidt J, et al. Whole body 3T MRI system with eight parallel rf transmission channels [Abstract] Roc Int Soc Magn Reson Med. 2006;14:129–129. [Google Scholar]
  • 108.Setsompop K, Wald LL, Alagappan V, et al. Parallel RF transmission with eight channels at 3 tesla. Magn Reson Med. 2006;56:1163–1171. doi: 10.1002/mrm.21042. [DOI] [PubMed] [Google Scholar]
  • 109.Katscher U, Röhrs J, Börnert P. Basic considerations on the impact of the coil array on the performance of Transmit SENSE. MAGMA. 2005;18:81–88. doi: 10.1007/s10334-004-0096-y. [DOI] [PubMed] [Google Scholar]
  • 110.Zhu Y. RF power deposition and “g-factor” in parallel transmit [Abstract] Proc Int Soc Magn Reson Med. 2006;14:599–599. [Google Scholar]
  • 111.Katscher U, Vemickel P, Overweg J. Basics of RF power behaviour in parallel transmission [Abstract] Proc Int Soc Magn Reson Med. 2005;13:17–17. [Google Scholar]
  • 112.Graesslin I, Falaggis K, Vemickel P, et al. Safety considerations concerning SAR during RF amplifier malfunctions in parallel transmission [Abstract] Roc Int Soc Magn Reson Med. 2006;14:2041–2041. [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES