Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jul;4(3):460–484. doi: 10.1016/j.nurt.2007.05.004

Magnetic resonance imaging of myelin

Cornelia Laule 1,, Irene M Vavasour 1, Shannon H Kolind 2, David K B Li 1, Tony L Traboulsee 3, G R Wayne Moore 4, Alex L MacKay 1
PMCID: PMC7479725  PMID: 17599712

Summary

The ability to measure myelin in vivo has great consequences for furthering our knowledge of normal development, as well as for understanding a wide range of neurological disorders. The following review summarizes the current state of myelin imaging using MR. We consider five MR techniques that have been used to study myelin: 1) conventional MR, 2) MR spectroscopy, 3) diffusion, 4) magnetization transfer, and 5) T2 relaxation. Fundamental studies involving peripheral nerve and MR/histology comparisons have aided in the interpretation and validation of MR data. We highlight a number of important findings related to myelin development, damage, and repair, and we conclude with a critical summary of the current techniques available and their potential to image myelin in vivo.

Key Words: Myelin, MR, histologic validation, T2, diffusion, magnetization transfer, MR spectroscopy

References

  • 1.Morell P, Quarles RH, Norton W. Formation, structure, and biochemistry of myelin. In: Siegel J, editor. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 4th ed. New York: Raven Press Ltd.; 1989. pp. 109–136. [Google Scholar]
  • 2.Van De Graff KM. Nervous tissue and the central nervous system. In: Van De Graff KM, editor. Human Anatomy. 6th ed. New York: McGraw-Hill; 2002. pp. 351–351. [Google Scholar]
  • 3.Trapp B, Kidd G. Structure of the myelinated axon. In: Lazzarini R, editor. Myelin Biology and Disorders 1. London: Elsevier Academic Press; 2004. pp. 3–27. [Google Scholar]
  • 4.Taylor C, Marta C, Bansal R, Pfeiffer S. The transport, assembly, and function of myelin lipids. In: Lazzarini R, editor. Myelin Biology and Disorders 1. London: Elsevier Academic Press; 2004. pp. 57–88. [Google Scholar]
  • 5.Kirschner DA, Ganser AL, Caspar DLD. Diffraction studies of molecular organization and membrane interactions in myelin. In: Morell P, editor. Myelin. 2nd ed. New York: Plenum Press; 1984. pp. 51–95. [Google Scholar]
  • 6.Edgar JM, McLaughlin M, Yool D, et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol. 2004;166:121–131. doi: 10.1083/jcb.200312012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol. 2001;14:271–278. doi: 10.1097/00019052-200106000-00003. [DOI] [PubMed] [Google Scholar]
  • 8.Kirkpatrick LL, Witt AS, Payne HR, et al. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J Neurosci. 2001;21:2288–2297. doi: 10.1523/JNEUROSCI.21-07-02288.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Edgar JM, Garbern J. The myelinated axon is dependent on the myelinating cell for support and maintenance: molecules involved. J Neurosci Res. 2004;76:593–598. doi: 10.1002/jnr.20063. [DOI] [PubMed] [Google Scholar]
  • 10.Boucher SE, Cypher MA, Carlock LR, Skoff RP. Proteolipid protein gene modulates viability and phenotype of neurons. J Neurosci. 2002;22:1772–1783. doi: 10.1523/JNEUROSCI.22-05-01772.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Dyer CA. The structure and function of myelin: from inert membrane to perfusion pump. Neurochem Res. 2002;27:1279–1292. doi: 10.1023/A:1021611430052. [DOI] [PubMed] [Google Scholar]
  • 12.Tsunoda I, Fujinami RS. Inside-out versus outside-in models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol. 2002;24:105–125. doi: 10.1007/s00281-002-0105-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Mottershead JP, Schmierer K, Clemence M, et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis—a post-mortem study of the spinal cord. J Neurol. 2003;250:1293–1301. doi: 10.1007/s00415-003-0192-3. [DOI] [PubMed] [Google Scholar]
  • 14.Schmierer K, Scaravilli F, Altmann DR, et al. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56:407–415. doi: 10.1002/ana.20202. [DOI] [PubMed] [Google Scholar]
  • 15.Stewart WA, MacKay AL, Whittall KP, et al. Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med. 1993;29:767–775. doi: 10.1002/mrm.1910290608. [DOI] [PubMed] [Google Scholar]
  • 16.Waldman A, Rees JH, Brock CS, et al. MRI of the brain with ultra-short echo-time pulse sequences. Neuroradiology. 2003;45:887–892. doi: 10.1007/s00234-003-1076-z. [DOI] [PubMed] [Google Scholar]
  • 17.Kilby PM, Bolas NM, Radda GK. 31P-NMR study of brain phospholipid structures in vivo. Biochim Biophys Acta. 1991;1085:257–264. doi: 10.1016/0005-2760(91)90102-n. [DOI] [PubMed] [Google Scholar]
  • 18.Barkovich AJ. Magnetic resonance techniques in the assessment of myelin and myelination. J Inherit Metab Dis. 2005;28:311–343. doi: 10.1007/s10545-005-5952-z. [DOI] [PubMed] [Google Scholar]
  • 19.Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg. 1999;90:109–115. doi: 10.3171/jns.1999.90.1.0109. [DOI] [PubMed] [Google Scholar]
  • 20.Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med. 1988;6:265–274. doi: 10.1002/mrm.1910060304. [DOI] [PubMed] [Google Scholar]
  • 21.Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–455. doi: 10.1002/nbm.782. [DOI] [PubMed] [Google Scholar]
  • 22.Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20:1714–1722. doi: 10.1016/j.neuroimage.2003.07.005. [DOI] [PubMed] [Google Scholar]
  • 23.Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17:1429–1436. doi: 10.1006/nimg.2002.1267. [DOI] [PubMed] [Google Scholar]
  • 24.Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10:135–144. doi: 10.1002/mrm.1910100113. [DOI] [PubMed] [Google Scholar]
  • 25.Sled JG, Levesque I, Santos AC, et al. Regional variations in normal brain shown by quantitative magnetization transfer imaging. Magn Reson Med. 2004;51:299–303. doi: 10.1002/mrm.10701. [DOI] [PubMed] [Google Scholar]
  • 26.Ropele S, Strasser-Fuchs S, Augustin M, et al. A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol. 2000;21:1885–1891. [PMC free article] [PubMed] [Google Scholar]
  • 27.Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn Reson Med. 2003;49:864–871. doi: 10.1002/mrm.10427. [DOI] [PubMed] [Google Scholar]
  • 28.Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR. Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging. 2000;11:586–595. doi: 10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  • 29.MacKay A, Whittall K, Adler J, et al. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31:673–677. doi: 10.1002/mrm.1910310614. [DOI] [PubMed] [Google Scholar]
  • 30.Whittall KP, MacKay AL, Graeb DA, et al. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med. 1997;37:34–43. doi: 10.1002/mrm.1910370107. [DOI] [PubMed] [Google Scholar]
  • 31.Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging. 1992;2:541–553. doi: 10.1002/jmri.1880020512. [DOI] [PubMed] [Google Scholar]
  • 32.Vavasour IM, Whittall KP, Li DK, MacKay AL. Different magnetization transfer effects exhibited by the short and long T(2) components in human brain. Magn Reson Med. 2000;44:860–866. doi: 10.1002/1522-2594(200012)44:6<860::AID-MRM6>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 33.Bjarnason T, Vavasour I, Chia C, MacKay A. Characterization of the NMR behaviour of white matter in bovine brain. Magn Reson Med. 2005;54:1072–1081. doi: 10.1002/mrm.20680. [DOI] [PubMed] [Google Scholar]
  • 34.Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM. Characterizing white matter with magnetization transfer and T(2) Magn Reson Med. 1999;42:1128–1136. doi: 10.1002/(SICI)1522-2594(199912)42:6<1128::AID-MRM18>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  • 35.Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging. 2006;24:33–36. doi: 10.1016/j.mri.2005.10.016. [DOI] [PubMed] [Google Scholar]
  • 36.Foltz WD, Al-Kwifi O, Sussman MS, et al. Optimized spiral imaging for measurement of myocardial T2 relaxation. Magn Reson Med. 2003;49:1089–1097. doi: 10.1002/mrm.10467. [DOI] [PubMed] [Google Scholar]
  • 37.Mädler B, MacKay AL. In-vivo 3D multi-component T2-relaxation measurements for quantitative myelin imaging at 3T. 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine, Seattle, 2006:2112.
  • 38.Fenrich FR, Beaulieu C, Allen PS. Relaxation times and microstructures. NMR Biomed. 2001;14:133–139. doi: 10.1002/nbm.685. [DOI] [PubMed] [Google Scholar]
  • 39.Graham SJ, Stanchev PL, Bronskill MJ. Criteria for analysis of multicomponent tissue T2 relaxation data. Magn Reson Med. 1996;35:370–378. doi: 10.1002/mrm.1910350315. [DOI] [PubMed] [Google Scholar]
  • 40.Whittall KP, MacKay AL. Quantitative interpretation of NMR relaxation data. J Magn Reson. 1989;84:64–71. [Google Scholar]
  • 41.Lawson CL, Hanson RJ. Solving least squares problems. Englewood Cliffs, NJ: Prentice-Hall; 1974. pp. 1–311. [Google Scholar]
  • 42.Stanisz GJ, Henkelman RM. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med. 1998;40:405–410. doi: 10.1002/mrm.1910400310. [DOI] [PubMed] [Google Scholar]
  • 43.Jones CK, Xiang QS, Whittall KP, MacKay AL. Linear combination of multiecho data: short T2 component selection. Magn Reson Med. 2004;51:495–502. doi: 10.1002/mrm.10713. [DOI] [PubMed] [Google Scholar]
  • 44.Vidarsson L, Conolly SM, Lim KO, et al. Echo time optimization for linear combination myelin imaging. Magn Reson Med. 2005;53:398–407. doi: 10.1002/mrm.20360. [DOI] [PubMed] [Google Scholar]
  • 45.Does MD, Beaulieu C, Allen PS, Snyder RE. Multi-component T1 relaxation and magnetization transfer in peripheral nerve. Magn Reson Imaging. 1998;16:1033–1041. doi: 10.1016/S0730-725X(98)00139-8. [DOI] [PubMed] [Google Scholar]
  • 46.Tozer DJ, Davies GR, Altmann DR, et al. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis. Magn Reson Med. 2005;53:1415–1422. doi: 10.1002/mrm.20479. [DOI] [PubMed] [Google Scholar]
  • 47.Wu Y, Alexander AL, Fleming JO, et al. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr. 2006;30:304–306. doi: 10.1097/00004728-200603000-00026. [DOI] [PubMed] [Google Scholar]
  • 48.Chia CLL, Bjamason TA, Mackay AL, Pike GB. Cross-site reproducibility of myelin water estimates. 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine, Seattle, 2006:2520.
  • 49.Oakden W, Lobaugh NJ, Black SE, Stanisz GJ. T2 hyperintensity does not always mean demyelination (and neither does decreased fractional anisotropy). Proceedings from Imaging myelin: formation, destruction and repair. Vancouver, Canada, 2006:P41.
  • 50.Dula AN, Does MD, Gochberg DF. Proceedings from Imaging of myelin in ferret brain using magnetic resonance multi-component T2 and qMT. Imaging myelin: formation, destruction and repair. Vancouver, BC, 2006:P39.
  • 51.Du YP, Chu R, Brown MS, et al. Quantitative multi-slice mapping of the myelin water fraction using multi-compartment analysis of T2* relaxation at 3T. 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine, Seattle, 2006:2104.
  • 52.Swift TJ, Fritz OG. A proton spin-echo study of the state of water in frog nerves. Biophys J. 1969;9:54–59. doi: 10.1016/S0006-3495(69)86368-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Vasilescu V, Katona E, Simplaceanu V, Demco D. Water compartments in the myelinated nerve. III. Pulsed NMR results. Experientia. 1978;34:1443–1444. doi: 10.1007/BF01932339. [DOI] [PubMed] [Google Scholar]
  • 54.Does MD, Snyder RE. T2 relaxation of peripheral nerve measured in vivo. Magn Reson Imaging. 1995;13:575–580. doi: 10.1016/0730-725X(94)00138-S. [DOI] [PubMed] [Google Scholar]
  • 55.Menon RS, Rusinko MS, Allen PS. Proton relaxation studies of water compartmentalization in a model neurological system. Magn Reson Med. 1992;28:264–274. doi: 10.1002/mrm.1910280208. [DOI] [PubMed] [Google Scholar]
  • 56.Jolesz FA, Polak JF, Adams DF, Ruenzel PW. Myelinated and nonmyelinated nerves: comparison of proton MR properties. Radiology. 1987;164:89–91. doi: 10.1148/radiology.164.1.3035608. [DOI] [PubMed] [Google Scholar]
  • 57.Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization transfer of white matter lipids at MRI: importance of cerebrosides and pH. Radiology. 1994;192:521–529. doi: 10.1148/radiology.192.2.8029426. [DOI] [PubMed] [Google Scholar]
  • 58.Jolesz FA, Polak JF, Ruenzel PW, Adams DF. Wallerian degeneration demonstrated by magnetic resonance: spectroscopic measurements on peripheral nerve. Radiology. 1984;152:85–87. doi: 10.1148/radiology.152.1.6729140. [DOI] [PubMed] [Google Scholar]
  • 59.Titelbaum DS, Frazier JL, Grossman RI, et al. Wallerian degeneration and inflammation in rat peripheral nerve detected by in vivo MRI. AJNR Am J Neuroradiol. 1989;10:741–746. [PMC free article] [PubMed] [Google Scholar]
  • 60.Does MD, Snyder RE. Multiexponential T2 relaxation in degenerating peripheral nerve. Magn Reson Med. 1996;35:207–213. doi: 10.1002/mrm.1910350212. [DOI] [PubMed] [Google Scholar]
  • 61.Webb S, Munro CA, Midha R, Stanisz GJ. Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med. 2003;49:638–645. doi: 10.1002/mrm.10411. [DOI] [PubMed] [Google Scholar]
  • 62.Wessig C, Bendszus M, Stoll G. In vivo visualization of focal demyelination in peripheral nerves by gadofluorine M-enhanced magnetic resonance imaging. Exp Neurol. 2006;15:15–15. doi: 10.1016/j.expneurol.2006.09.022. [DOI] [PubMed] [Google Scholar]
  • 63.Dousset V, Brochet B, Vital A, et al. Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol. 1995;16:225–231. [PMC free article] [PubMed] [Google Scholar]
  • 64.Dousset V, Grossman RI, Ramer KN, et al. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology. 1992;182:483–491. doi: 10.1148/radiology.182.2.1732968. [DOI] [PubMed] [Google Scholar]
  • 65.Deloire-Grassin MS, Brochet B, Quesson B, et al. In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci. 2000;178:10–16. doi: 10.1016/S0022-510X(00)00331-2. [DOI] [PubMed] [Google Scholar]
  • 66.McGowan JC, Berman JI, Ford JC, et al. Characterization of experimental spinal cord injury with magnetization transfer ratio histograms. J Magn Reson Imaging. 2000;12:247–254. doi: 10.1002/1522-2586(200008)12:2<247::AID-JMRI6>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 67.Brochet B, Dousset V. Pathological correlates of magnetization transfer imaging abnormalities in animal models and humans with multiple sclerosis. Neurology. 1999;53:S12–17. [PubMed] [Google Scholar]
  • 68.Cook LL, Foster PJ, Mitchell JR, Karlik SJ. In vivo 4.0-T magnetic resonance investigation of spinal cord inflammation, demyelination, and axonal damage in chronic-progressive experimental allergic encephalomyelitis. J Magn Reson Imaging. 2004;20:563–571. doi: 10.1002/jmri.20171. [DOI] [PubMed] [Google Scholar]
  • 69.Blezer EL, Bauer J, Brok HP, et al. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed. 2007;20:90–103. doi: 10.1002/nbm.1085. [DOI] [PubMed] [Google Scholar]
  • 70.Gareau PJ, Rutt BK, Bowen CV, et al. In vivo measurements of multi-component T2 relaxation behaviour in guinea pig brain. Magn Reson Imaging. 1999;17:1319–1325. doi: 10.1016/S0730-725X(99)00064-8. [DOI] [PubMed] [Google Scholar]
  • 71.Stanisz GJ, Webb S, Mumo CA, et al. MR properties of excised neural tissue following experimentally induced neuroinflammation. Magn Reson Med. 2004;51:473–479. doi: 10.1002/mrm.20008. [DOI] [PubMed] [Google Scholar]
  • 72.Yung A, Choo A, Liu J, et al. Measurements of myelin water in rat spinal cord in vivo [abstract]. Int Soc Magn Reson Med, Kyoto, Japan, 2004:1537.
  • 73.Pun TW, Odrobina E, Xu QG, et al. Histological and magnetic resonance analysis of sciatic nerves in the tellurium model of neuropathy. J Peripher Nerv Syst. 2005;10:38–46. doi: 10.1111/j.1085-9489.2005.10107.x. [DOI] [PubMed] [Google Scholar]
  • 74.Odrobina EE, Lam TY, Pun T, et al. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed. 2005;18:277–284. doi: 10.1002/nbm.951. [DOI] [PubMed] [Google Scholar]
  • 75.van Waesberghe JH, Kamphorst W, De Groot CJ, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999;46:747–754. doi: 10.1002/1531-8249(199911)46:5<747::AID-ANA10>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 76.Bot JC, Blezer EL, Kamphorst W, et al. The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MRI findings to histopathologic results. Radiology. 2004;233:531–540. doi: 10.1148/radiol.2332031572. [DOI] [PubMed] [Google Scholar]
  • 77.Nagara H, Inoue T, Koga T, et al. Formalin fixed brains are useful for magnetic resonance imaging (MRI) study. J Neurol Sci. 1987;81:67–77. doi: 10.1016/0022-510X(87)90184-5. [DOI] [PubMed] [Google Scholar]
  • 78.Laule C, Leung E, Li DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler. 2006;12:747–753. doi: 10.1177/1352458506070928. [DOI] [PubMed] [Google Scholar]
  • 79.Moore GRW, Leung E, MacKay AL, et al. A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology. 2000;55:1506–1510. doi: 10.1212/wnl.55.10.1506. [DOI] [PubMed] [Google Scholar]
  • 80.Klüver H, Barrera E. A method for the combined staining of cells and fibres in the nervous system. J Neuropathol Exp Neurol. 1953;12:400–403. doi: 10.1097/00005072-195312040-00008. [DOI] [PubMed] [Google Scholar]
  • 81.Segarra J. Histological and Histochemical Staining Methods. In: Teduchi C, editor. Neuropathology Methods and Diagnosis. Boston: Little, Brown and Company; 1970. pp. 233–269. [Google Scholar]
  • 82.Salthouse T. Luxol fast blue ARN: a new solvent azo dye with improved staining qualities for myelin and phospholipids. Stain Technol. 1962;37:313–316. doi: 10.3109/10520296209114492. [DOI] [PubMed] [Google Scholar]
  • 83.Lycette R, Danforth J, Koppel J, Olwin J. The binding of luxol fast blur ARN by various biological lipids. Stain Technol. 1970;45:155–160. doi: 10.3109/10520297009067471. [DOI] [PubMed] [Google Scholar]
  • 84.Teresi LM, Hovda D, Seeley AB, et al. MR imaging of experimental demyelination. AJR Am J Roentgenol. 1989;152:1291–1298. doi: 10.2214/ajr.152.6.1291. [DOI] [PubMed] [Google Scholar]
  • 85.van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 1998;50:1282–1288. doi: 10.1212/wnl.50.5.1282. [DOI] [PubMed] [Google Scholar]
  • 86.Bitsch A, Kuhlmann T, Stadelmann C, et al. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol. 2001;49:793–796. doi: 10.1002/ana.1053. [DOI] [PubMed] [Google Scholar]
  • 87.Bergers E, Bot JC, De Groot CJ, et al. Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology. 2002;59:1766–1771. doi: 10.1212/01.wnl.0000036566.00866.26. [DOI] [PubMed] [Google Scholar]
  • 88.Lycklama a Nijeholt GJ, Uitdehaag BM, Bergers E, et al. Spinal cord magnetic resonance imaging in suspected multiple sclerosis. Eur Radiol. 2000;10:368–376. doi: 10.1007/s003300050058. [DOI] [PubMed] [Google Scholar]
  • 89.Bo L, Geurts JJ, van der Valk P, et al. Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol. 2007;64:76–80. doi: 10.1001/archneur.64.1.76. [DOI] [PubMed] [Google Scholar]
  • 90.Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26:132–140. doi: 10.1016/j.neuroimage.2005.01.028. [DOI] [PubMed] [Google Scholar]
  • 91.Sun SW, Liang HF, Le TQ, et al. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage. 2006;32:1195–1204. doi: 10.1016/j.neuroimage.2006.04.212. [DOI] [PubMed] [Google Scholar]
  • 92.Sun SW, Liang HF, Trinkaus K, et al. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med. 2006;55:302–308. doi: 10.1002/mrm.20774. [DOI] [PubMed] [Google Scholar]
  • 93.Sun SW, Neil JJ, Song SK. Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains. Magn Reson Med. 2003;50:743–748. doi: 10.1002/mrm.10605. [DOI] [PubMed] [Google Scholar]
  • 94.Sun SW, Song SK, Harms MP, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol. 2005;191:77–85. doi: 10.1016/j.expneurol.2004.09.006. [DOI] [PubMed] [Google Scholar]
  • 95.Biton IE, Duncan ID, Cohen Y. High b-value q-space diffusion MRI in myelin-deficient rat spinal cords. Magn Reson Imaging. 2006;24:161–166. doi: 10.1016/j.mri.2005.10.029. [DOI] [PubMed] [Google Scholar]
  • 96.Ford JC, Hackney DB, Alsop DC, et al. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 1994;31:488–494. doi: 10.1002/mrm.1910310504. [DOI] [PubMed] [Google Scholar]
  • 97.Kim JH, Budde MD, Liang HF, et al. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis. 2006;21:626–632. doi: 10.1016/j.nbd.2005.09.009. [DOI] [PubMed] [Google Scholar]
  • 98.Harsan LA, Poulet P, Guignard B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res. 2006;83:392–402. doi: 10.1002/jnr.20742. [DOI] [PubMed] [Google Scholar]
  • 99.Schmierer K, Wheeler-Kingshott CA, Boulby PA, et al. Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage. 2007;35:467–477. doi: 10.1016/j.neuroimage.2006.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Yakovlev P, Lecours A. The myelogenic cycles of regional maturation of the brain. In: Minkowski A, editor. Regional Development of the Brain in Early Life. Oxford: Blackwell; 1967. pp. 3–70. [Google Scholar]
  • 101.Valencia MP, Castillo M. MRI findings in posttraumatic spinal cord Wallerian degeneration. Clin Imaging. 2006;30:431–433. doi: 10.1016/j.clinimag.2006.05.031. [DOI] [PubMed] [Google Scholar]
  • 102.Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol. 1988;47:217–234. doi: 10.1097/00005072-198805000-00003. [DOI] [PubMed] [Google Scholar]
  • 103.Matsumae M, Kurita D, Atsumi H, et al. Sequential changes in MR water proton relaxation time detect the process of rat brain myelination during maturation. Mech Ageing Dev. 2001;122:1281–1291. doi: 10.1016/S0047-6374(01)00265-2. [DOI] [PubMed] [Google Scholar]
  • 104.Barkovich AJ, Kjos BO, Jackson DE, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology. 1988;166:173–180. doi: 10.1148/radiology.166.1.3336675. [DOI] [PubMed] [Google Scholar]
  • 105.Huppi PS, Maier SE, Peled S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res. 1998;44:584–590. doi: 10.1203/00006450-199810000-00019. [DOI] [PubMed] [Google Scholar]
  • 106.Morriss MC, Zimmerman RA, Bilaniuk LT, et al. Changes in brain water diffusion during childhood. Neuroradiology. 1999;41:929–934. doi: 10.1007/s002340050869. [DOI] [PubMed] [Google Scholar]
  • 107.Klingberg T, Vaidya CJ, Gabrieli JD, et al. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport. 1999;10:2817–2821. doi: 10.1097/00001756-199909090-00022. [DOI] [PubMed] [Google Scholar]
  • 108.van der Knaap MS, Valk J. Magnetic resonance of myelin, myelination and myelin disorders. New York: Springer; 1996. pp. 31–38. [Google Scholar]
  • 109.Rayer D, Barkovich AJ, Kirschner DA, et al. Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol. 2001;22:1572–1576. [PMC free article] [PubMed] [Google Scholar]
  • 110.Ashtari M, Cervellione KL, Hasan KM, et al. White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study. Neuroimage. 2007;26:26–26. doi: 10.1016/j.neuroimage.2006.10.047. [DOI] [PubMed] [Google Scholar]
  • 111.Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30:749–761. doi: 10.1016/j.neubiorev.2006.06.002. [DOI] [PubMed] [Google Scholar]
  • 112.Ota M, Obata T, Akine Y, et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage. 2006;31:1445–1452. doi: 10.1016/j.neuroimage.2006.02.008. [DOI] [PubMed] [Google Scholar]
  • 113.Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med. 2000;44:259–268. doi: 10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 114.Salat DH, Tuch DS, Hevelone ND, et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci. 2005;1064:37–49. doi: 10.1196/annals.1340.009. [DOI] [PubMed] [Google Scholar]
  • 115.van Buchem MA, Steens SC, Vrooman HA, et al. Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol. 2001;22:762–766. [PMC free article] [PubMed] [Google Scholar]
  • 116.Engelbrecht V, Rassek M, Preiss S, et al. Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol. 1998;19:1923–1929. [PMC free article] [PubMed] [Google Scholar]
  • 117.Silver NC, Barker GJ, MacManus DG, et al. Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J Neurol Neurosurg Psychiatry. 1997;62:223–228. doi: 10.1136/jnnp.62.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Armstrong CL, Traipe E, Hunter JV, et al. Age-related, regional, hemispheric, and medial-lateral differences in myelin integrity in vivo in the normal adult brain. AJNR Am J Neuroradiol. 2004;25:977–984. [PMC free article] [PubMed] [Google Scholar]
  • 119.Rovaris M, Iannucci G, Cercignani M, et al. Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology. 2003;227:731–738. doi: 10.1148/radiol.2273020721. [DOI] [PubMed] [Google Scholar]
  • 120.Mehta RC, Pike GB, Enzmann DR. Magnetization transfer MR of the normal adult brain. AJNR Am J Neuroradiol. 1995;16:2085–2091. [PMC free article] [PubMed] [Google Scholar]
  • 121.Vavasour IM, Clark CM, Li DK, Mackay AL. Reproducibility and reliability of MR measurements in white matter: clinical implications. Neuroimage. 2006;32:637–642. doi: 10.1016/j.neuroimage.2006.03.036. [DOI] [PubMed] [Google Scholar]
  • 122.Vavasour IM, Whittall KP, MacKay AL, et al. A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med. 1998;40:763–768. doi: 10.1002/mrm.1910400518. [DOI] [PubMed] [Google Scholar]
  • 123.Cady EB, Penrice J, Amess PN, et al. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med. 1996;36:878–886. doi: 10.1002/mrm.1910360610. [DOI] [PubMed] [Google Scholar]
  • 124.Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993;30:424–437. doi: 10.1002/mrm.1910300405. [DOI] [PubMed] [Google Scholar]
  • 125.Barker PB, Soher BJ, Blackband SJ, et al. Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed. 1993;6:89–94. doi: 10.1002/nbm.1940060114. [DOI] [PubMed] [Google Scholar]
  • 126.Brooks JC, Roberts N, Kemp GJ, et al. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex. 2001;11:598–605. doi: 10.1093/cercor/11.7.598. [DOI] [PubMed] [Google Scholar]
  • 127.Schuff N, Ezekiel F, Gamst AC, et al. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med. 2001;45:899–907. doi: 10.1002/mrm.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Leary SM, Brex PA, MacManus DG, et al. A (1)H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn Reson Imaging. 2000;18:455–459. doi: 10.1016/S0730-725X(00)00131-4. [DOI] [PubMed] [Google Scholar]
  • 129.Kreis R, Slotboom J, Hofmann L, Boesch C. Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med. 2005;54:761–768. doi: 10.1002/mrm.20673. [DOI] [PubMed] [Google Scholar]
  • 130.Laule C, Vavasour IM, Moore GRW, et al. Water content and myelin water fraction in multiple sclerosis: a T2 relaxation study. J Neurol. 2004;251:284–293. doi: 10.1007/s00415-004-0306-6. [DOI] [PubMed] [Google Scholar]
  • 131.Flynn SW, Lang DJ, Mackay AL, et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and postmortem with analysis of oligodendrocyte proteins. Mol Psychiatry. 2003;8:811–820. doi: 10.1038/sj.mp.4001337. [DOI] [PubMed] [Google Scholar]
  • 132.Minty E, MacKay A, Whittall KP. Measurement of myelin water in human and bovine spinal cord [abstract]. Int Soc Magn Reson Med Sci, Honolulu, Hawaii, 2002:940.
  • 133.Laule C, Vavasour IM, Vavasour JD, et al. Cervical cord abnormalities in primary progressive multiple sclerosis: atrophy and myelin water changes. Mult Scler. 2003;9(suppl 1):S63–S63. [Google Scholar]
  • 134.Gomez-Anson B, MacManus DG, Parker GJ, et al. In vivo 1H-magnetic resonance spectroscopy of the spinal cord in humans. Neuroradiology. 2000;42:515–517. doi: 10.1007/s002340000323. [DOI] [PubMed] [Google Scholar]
  • 135.Kendi AT, Tan FU, Kendi M, et al. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis. Neuroradiology. 2004;46:764–769. doi: 10.1007/s00234-004-1231-1. [DOI] [PubMed] [Google Scholar]
  • 136.Marliani AF, Clementi V, Albini-Riccioli L, et al. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla. Magn Reson Med. 2007;57:160–163. doi: 10.1002/mrm.21113. [DOI] [PubMed] [Google Scholar]
  • 137.Inglese M, Rovaris M, Bianchi S, et al. Magnetic resonance imaging, magnetisation transfer imaging, and diffusion weighted imaging correlates of optic nerve, brain, and cervical cord damage in Leber’ s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 2001;70:444–449. doi: 10.1136/jnnp.70.4.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Rovaris M, Bozzali M, Rocca MA, et al. An MR study of tissue damage in the cervical cord of patients with migraine. J Neurol Sci. 2001;183:43–46. doi: 10.1016/S0022-510X(00)00473-1. [DOI] [PubMed] [Google Scholar]
  • 139.Inglese M, Salvi F, Iannucci G, et al. Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. AJNR Am J Neuroradiol. 2002;23:267–272. [PMC free article] [PubMed] [Google Scholar]
  • 140.Hickman SJ, Hadjiprocopis A, Coulon O, et al. Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging. 2004;22:891–895. doi: 10.1016/j.mri.2004.01.056. [DOI] [PubMed] [Google Scholar]
  • 141.Renoux J, Facon D, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol. 2006;27:1947–1951. [PMC free article] [PubMed] [Google Scholar]
  • 142.Hesseltine SM, Law M, Babb J, et al. Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol. 2006;27:1189–1193. [PMC free article] [PubMed] [Google Scholar]
  • 143.Agosta F, Rocca MA, Benedetti B, et al. MR imaging assessment of brain and cervical cord damage in patients with neuroborreliosis. AJNR Am J Neuroradiol. 2006;27:892–894. [PMC free article] [PubMed] [Google Scholar]
  • 144.Filley C. The behavioural neurology of white matter. Oxford, NY: Oxford University Press; 2001. [Google Scholar]
  • 145.Keegan BM, Noseworthy JH. Multiple sclerosis. Annu Rev Med. 2002;53:285–302. doi: 10.1146/annurev.med.53.082901.103909. [DOI] [PubMed] [Google Scholar]
  • 146.Lin F, Yu C, Jiang T, et al. Diffusion tensor tractography-based group mapping of the pyramidal tract in relapsing-remitting multiple sclerosis patients. AJNR Am J Neuroradiol. 2007;28:278–282. [PMC free article] [PubMed] [Google Scholar]
  • 147.Larsson HB, Thomsen C, Frederiksen J, et al. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging. 1992;10:7–12. doi: 10.1016/0730-725X(92)90367-9. [DOI] [PubMed] [Google Scholar]
  • 148.Christiansen P, Gideon P, Thomsen C, et al. Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand. 1993;87:195–199. doi: 10.1111/j.1600-0404.1993.tb04100.x. [DOI] [PubMed] [Google Scholar]
  • 149.Bammer R, Augustin M, Strasser-Fuchs S, et al. Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med. 2000;44:583–591. doi: 10.1002/1522-2594(200010)44:4<583::AID-MRM12>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  • 150.Castriota-Scanderbeg A, Sabatini U, Fasano F, et al. Diffusion of water in large demyelinating lesions: a follow-up study. Neuroradiology. 2002;44:764–767. doi: 10.1007/s00234-002-0806-y. [DOI] [PubMed] [Google Scholar]
  • 151.Clark CA, Werring DJ, Miller DH. Diffusion imaging of the spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med. 2000;43:133–152. doi: 10.1002/(SICI)1522-2594(200001)43:1<133::AID-MRM16>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 152.Agosta F, Benedetti B, Rocca MA, et al. Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology. 2005;64:631–635. doi: 10.1212/01.WNL.0000151852.15294.CB. [DOI] [PubMed] [Google Scholar]
  • 153.Campi A, Filippi M, Comi G, et al. Magnetisation transfer ratios of contrast-enhancing and nonenhancing lesions in multiple sclerosis. Neuroradiology. 1996;38:115–119. doi: 10.1007/BF00604792. [DOI] [PubMed] [Google Scholar]
  • 154.Dousset V, Gayou A, Brochet B, Caille JM. Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology. 1998;51:1150–1155. doi: 10.1212/wnl.51.4.1150. [DOI] [PubMed] [Google Scholar]
  • 155.Silver NC, Lai M, Symms MR, et al. Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology. 1998;51:758–764. doi: 10.1212/wnl.51.3.758. [DOI] [PubMed] [Google Scholar]
  • 156.Rocca MA, Mastronardo G, Rodegher M, et al. Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. AJNR Am J Neuroradiol. 1999;20:821–827. [PMC free article] [PubMed] [Google Scholar]
  • 157.Cercignani M, Iannucci G, Rocca MA, et al. Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology. 2000;54:1139–1144. doi: 10.1212/wnl.54.5.1139. [DOI] [PubMed] [Google Scholar]
  • 158.Laule C, Vavasour IM, Whittall KP, et al. Evolution of focal and diffuse magnetisation transfer abnormalities in multiple sclerosis. J Neurol. 2003;250:924–931. doi: 10.1007/s00415-003-1115-z. [DOI] [PubMed] [Google Scholar]
  • 159.Barkhof F, Brack W, De Groot CJ, et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol. 2003;60:1073–1081. doi: 10.1001/archneur.60.8.1073. [DOI] [PubMed] [Google Scholar]
  • 160.Hiehle JF, Grossman RI, Ramer KN, et al. Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonen-hanced T1-weighted images. AJNR Am J Neuroradiol. 1995;16:69–77. [PMC free article] [PubMed] [Google Scholar]
  • 161.Filippi M, Rocca MA, Martino G, et al. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol. 1998;43:809–814. doi: 10.1002/ana.410430616. [DOI] [PubMed] [Google Scholar]
  • 162.Goodkin DE, Rooney WD, Sloan R, et al. A serial study of new MS lesions and the white matter from which they arise. Neurology. 1998;51:1689–1697. doi: 10.1212/wnl.51.6.1689. [DOI] [PubMed] [Google Scholar]
  • 163.Fazekas F, Ropele S, Enzinger C, et al. Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult Scler. 2002;8:479–484. doi: 10.1191/1352458502ms860oa. [DOI] [PubMed] [Google Scholar]
  • 164.Levesque I, Sled JG, Narayanan S, et al. The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study. J Magn Reson Imaging. 2005;21:103–110. doi: 10.1002/jmri.20231. [DOI] [PubMed] [Google Scholar]
  • 165.Davies GR, Tozer DJ, Cercignani M, et al. Estimation of the macromolecular proton fraction and bound pool T2 in multiple sclerosis. Mult Scler. 2004;10:607–613. doi: 10.1191/1352458504ms1105oa. [DOI] [PubMed] [Google Scholar]
  • 166.Wolinsky JS, Narayana PA, Fenstermacher MJ. Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology. 1990;40:1764–1769. doi: 10.1212/wnl.40.11.1764. [DOI] [PubMed] [Google Scholar]
  • 167.Koopmans RA, Li DK, Zhu G, et al. Magnetic resonance spectroscopy of multiple sclerosis: in-vivo detection of myelin breakdown products. Lancet. 1993;341:631–632. doi: 10.1016/0140-6736(93)90391-S. [DOI] [PubMed] [Google Scholar]
  • 168.Davie CA, Hawkins CP, Barker GJ, et al. Detection of myelin breakdown products by proton magnetic resonance spectroscopy. Lancet. 1993;341:630–631. doi: 10.1016/0140-6736(93)90390-3. [DOI] [PubMed] [Google Scholar]
  • 169.Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol. 1998;43:56–71. doi: 10.1002/ana.410430112. [DOI] [PubMed] [Google Scholar]
  • 170.Helms G, Stawiarz L, Kivisakk P, Link H. Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med. 2000;43:102–110. doi: 10.1002/(SICI)1522-2594(200001)43:1<102::AID-MRM12>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 171.Tartaglia MC, Narayanan S, De Stefano N, et al. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol. 2002;249:1382–1390. doi: 10.1007/s00415-002-0846-6. [DOI] [PubMed] [Google Scholar]
  • 172.Cercignani M, Bozzali M, Iannucci G, et al. Magnetisation transfer ratio and mean diffusivity of normal appearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001;70:311–317. doi: 10.1136/jnnp.70.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Kolind SH, Laule C, Li DKB, et al. Identification of destructive lesions in multiple sclerosis: complimentary insights from diffusion and T2 relaxation. Proceedings from the 23rd Annual Scientific Meeting of the European Society of Magnetic Resonance in Medicine and Biology, Warsaw, Poland, 2006:S51.
  • 174.Henry RG, Oh J, Nelson SJ, Pelletier D. Directional diffusion in relapsing-remitting multiple sclerosis: a possible in vivo signature of Wallerian degeneration. J Magn Reson Imaging. 2003;18:420–426. doi: 10.1002/jmri.10379. [DOI] [PubMed] [Google Scholar]
  • 175.Vrenken H, Barkhof F, Uitdehaag BM, et al. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med. 2005;53:256–266. doi: 10.1002/mrm.20366. [DOI] [PubMed] [Google Scholar]
  • 176.Filippi M, Campi A, Dousset V, et al. A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology. 1995;45:478–482. doi: 10.1212/wnl.45.3.478. [DOI] [PubMed] [Google Scholar]
  • 177.Leary SM, Silver NC, Stevenson VL, et al. Magnetisation transfer of normal appearing white matter in primary progressive multiple sclerosis. Mult Scler. 1999;5:313–316. doi: 10.1177/135245859900500502. [DOI] [PubMed] [Google Scholar]
  • 178.Allen IV, Glover G, Anderson R. Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS) Acta Neuropathol Suppl (Berl) 1981;7:176–178. doi: 10.1007/978-3-642-81553-9_53. [DOI] [PubMed] [Google Scholar]
  • 179.Itoyama Y, Stemberger NH, Webster HD, et al. Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol. 1980;7:167–177. doi: 10.1002/ana.410070212. [DOI] [PubMed] [Google Scholar]
  • 180.Tourtellotte W, Parker J. Some spaces and barriers in postmortem multiple sclerosis. Prog Brain Res. 1968;29:493–525. doi: 10.1016/S0079-6123(08)64178-3. [DOI] [PubMed] [Google Scholar]
  • 181.Ailing C, Vanier MT, Svennerholm L. Lipid alterations in apparently normal white matter in multiple sclerosis. Brain Res. 1971;35:325–336. doi: 10.1016/0006-8993(71)90478-1. [DOI] [PubMed] [Google Scholar]
  • 182.Fewster ME, Hirono H, Mead JF. Lipid composition of myelin in multiple sclerosis. J Neurol. 1976;213:119–131. doi: 10.1007/BF00313273. [DOI] [PubMed] [Google Scholar]
  • 183.Suzuki K, Kamoshita S, Eto Y, et al. Myelin in multiple sclerosis. Composition of myelin from normal-appearing white matter. Arch Neurol. 1973;28:293–297. doi: 10.1001/archneur.1973.00490230029002. [DOI] [PubMed] [Google Scholar]
  • 184.Evangelou N, Esiri MM, Smith S, et al. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000;47:391–395. doi: 10.1002/1531-8249(200003)47:3<391::AID-ANA20>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 185.Evangelou N, Konz D, Esiri MM, et al. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain. 2000;123:1845–1849. doi: 10.1093/brain/123.9.1845. [DOI] [PubMed] [Google Scholar]
  • 186.Simon JH, Kinkel RP, Jacobs L, et al. A Wallerian degeneration pattern in patients at risk for MS. Neurology. 2000;54:1155–1160. doi: 10.1212/wnl.54.5.1155. [DOI] [PubMed] [Google Scholar]
  • 187.Fernando MS, O’Brien JT, Perry RH, et al. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol. 2004;30:385–395. doi: 10.1111/j.1365-2990.2004.00550.x. [DOI] [PubMed] [Google Scholar]
  • 188.Sjobeck M, Englund E. Glial levels determine severity of white matter disease in Alzheimer’s disease: a neuropathological study of glial changes. Neuropathol Appl Neurobiol. 2003;29:159–169. doi: 10.1046/j.1365-2990.2003.00456.x. [DOI] [PubMed] [Google Scholar]
  • 189.Bartzokis G, Cummings JL, Sultzer D, et al. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol. 2003;60:393–398. doi: 10.1001/archneur.60.3.393. [DOI] [PubMed] [Google Scholar]
  • 190.Bartzokis G, Sultzer D, Lu PH, et al. Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging. 2004;25:843–851. doi: 10.1016/j.neurobiolaging.2003.09.005. [DOI] [PubMed] [Google Scholar]
  • 191.Bartzokis G, Lu PH, Mintz J. Quantifying age-related myelin breakdown with MRI: novel therapeutic targets for preventing cognitive decline and Alzheimer’s disease. J Alzheimers Dis. 2004;6:S53–59. doi: 10.3233/jad-2004-6s604. [DOI] [PubMed] [Google Scholar]
  • 192.House MJ, St Pierre TG, Foster JK, et al. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol. 2006;27:430–439. [PMC free article] [PubMed] [Google Scholar]
  • 193.Bozzali M, Falini A, Franceschi M, et al. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2002;72:742–746. doi: 10.1136/jnnp.72.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Fellgiebel A, Muller MJ, Wille P, et al. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging. 2005;26:1193–1198. doi: 10.1016/j.neurobiolaging.2004.11.006. [DOI] [PubMed] [Google Scholar]
  • 195.Medina D, DeToledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging. 2006;27:663–672. doi: 10.1016/j.neurobiolaging.2005.03.026. [DOI] [PubMed] [Google Scholar]
  • 196.Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor imaging in early Alzheimer’s disease. Psychiatry Res. 2006;146:243–249. doi: 10.1016/j.pscychresns.2006.01.005. [DOI] [PubMed] [Google Scholar]
  • 197.Choi SJ, Lim KO, Monteiro I, Reisberg B. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer’s disease: a preliminary study. J Geriatr Psychiatry Neurol. 2005;18:12–19. doi: 10.1177/0891988704271763. [DOI] [PubMed] [Google Scholar]
  • 198.Back T, Mockel R, Hirsch JG, et al. Combined MR measurements of magnetization transfer, tissue diffusion and proton spectroscopy. A feasibility study with neurological cases. Neurol Res. 2003;25:292–300. doi: 10.1179/016164103101201373. [DOI] [PubMed] [Google Scholar]
  • 199.van Es AC, van der Flier WM, Admiraal-Behloul F, et al. Magnetization transfer imaging of gray and white matter in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2006;27:1757–1762. doi: 10.1016/j.neurobiolaging.2005.09.042. [DOI] [PubMed] [Google Scholar]
  • 200.Hanyu H, Asano T, Sakurai H, et al. Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci. 1999;167:37–44. doi: 10.1016/S0022-510X(99)00135-5. [DOI] [PubMed] [Google Scholar]
  • 201.Kabani NJ, Sled JG, Chertkow H. Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage. 2002;15:604–610. doi: 10.1006/nimg.2001.0992. [DOI] [PubMed] [Google Scholar]
  • 202.Bozzali M, Franceschi M, Falini A, et al. Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology. 2001;57:1135–1137. doi: 10.1212/wnl.57.6.1135. [DOI] [PubMed] [Google Scholar]
  • 203.van der Flier WM, van den Heuvel DM, Weverling-Rijnsburger AW, et al. Magnetization transfer imaging in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann Neurol. 2002;52:62–67. doi: 10.1002/ana.10244. [DOI] [PubMed] [Google Scholar]
  • 204.Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  • 205.Kuhn MJ, Mikulis DJ, Ayoub DM, et al. Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging. Radiology. 1989;172:179–182. doi: 10.1148/radiology.172.1.2740501. [DOI] [PubMed] [Google Scholar]
  • 206.Lampert PW, Cressman MR. Fine-structural changes of myelin sheaths after axonal degeneration in the spinal cord of rats. Am J Pathol. 1966;49:1139–1155. [PMC free article] [PubMed] [Google Scholar]
  • 207.Johnson AC, Mc NA, Rossiter RJ. Chemistry of wallerian degeneration; a review of recent studies. Arch Neurol Psychiatry. 1950;64:105–121. doi: 10.1001/archneurpsyc.1950.02310250111010. [DOI] [PubMed] [Google Scholar]
  • 208.Englund E. Neuropathology of white matter changes in Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord. 1998;9:6–12. doi: 10.1159/000051183. [DOI] [PubMed] [Google Scholar]
  • 209.Yoshiura T, Mihara F, Koga H, et al. Mapping of subcortical white matter abnormality in Alzheimer’s disease using diffusion-weighted magnetic resonance imaging. Acad Radiol. 2006;13:1460–1464. doi: 10.1016/j.acra.2006.09.042. [DOI] [PubMed] [Google Scholar]
  • 210.Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2:806–819. doi: 10.1038/35097565. [DOI] [PubMed] [Google Scholar]
  • 211.Buss A, Brook GA, Kakulas B, et al. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain. 2004;127:34–44. doi: 10.1093/brain/awh001. [DOI] [PubMed] [Google Scholar]
  • 212.Ramon Y, Cajal S. Degeneration and regeneration of white matter. In: DeFilipe J, Jones E, eds. Cajal’s Degeneration and Regeneration of the Nervous System. New York: Oxford University Press, 199:57-198.
  • 213.Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003;4:703–713. doi: 10.1038/nrn1195. [DOI] [PubMed] [Google Scholar]
  • 214.Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11:572–577. doi: 10.1038/nm1229. [DOI] [PubMed] [Google Scholar]
  • 215.van der Knaap MS, Breiter SN, Naidu S, et al. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology. 1999;213:121–133. doi: 10.1148/radiology.213.1.r99se01121. [DOI] [PubMed] [Google Scholar]
  • 216.Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 2000;21:1099–1109. [PMC free article] [PubMed] [Google Scholar]
  • 217.Patay Z. Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol. 2005;15:2284–2303. doi: 10.1007/s00330-005-2846-2. [DOI] [PubMed] [Google Scholar]
  • 218.Oguz KK, Anlar B, Senbil N, Cila A. Diffusion-weighted imaging findings in juvenile metachromatic leukodystrophy. Neuropediatrics. 2004;35:279–282. doi: 10.1055/s-2004-821301. [DOI] [PubMed] [Google Scholar]
  • 219.Sener RN. Diffusion magnetic resonance imaging patterns in metabolic and toxic brain disorders. Acta Radiol. 2004;45:561–570. doi: 10.1080/02841850410006128. [DOI] [PubMed] [Google Scholar]
  • 220.Farina L, Bizzi A, Finocchiaro G, et al. MR imaging and proton MR spectroscopy in adult Krabbe disease. AJNR Am J Neuroradiol. 2000;21:1478–1482. [PMC free article] [PubMed] [Google Scholar]
  • 221.Zarifi MK, Tzika AA, Astrakas LG, et al. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe’s disease. J Child Neurol. 2001;16:522–526. doi: 10.1177/088307380101600713. [DOI] [PubMed] [Google Scholar]
  • 222.Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol. 2003;250:300–306. doi: 10.1007/s00415-003-0995-2. [DOI] [PubMed] [Google Scholar]
  • 223.Brockmann K, Dechent P, Wilken B, et al. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology. 2003;60:819–825. doi: 10.1212/01.wnl.0000049469.29011.e9. [DOI] [PubMed] [Google Scholar]
  • 224.Sener RN. Metachromatic leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiol. 2003;44:440–443. doi: 10.1080/j.1600-0455.2003.00094.x. [DOI] [PubMed] [Google Scholar]
  • 225.Austin SJ, Connelly A, Gadian DG, et al. Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases. Magn Reson Med. 1991;19:439–445. doi: 10.1002/mrm.1910190235. [DOI] [PubMed] [Google Scholar]
  • 226.Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging. 1996;6:889–893. doi: 10.1002/jmri.1880060609. [DOI] [PubMed] [Google Scholar]
  • 227.Groenendaal F, Bianchi MC, Battini R, et al. Proton magnetic resonance spectroscopy (1H-MRS) of the cerebrum in two young infants with Zellweger syndrome. Neuropediatrics. 2001;32:23–27. doi: 10.1055/s-2001-12218. [DOI] [PubMed] [Google Scholar]
  • 228.Kingsley PB, Shah TC, Woldenberg R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed. 2006;19:435–462. doi: 10.1002/nbm.1039. [DOI] [PubMed] [Google Scholar]
  • 229.Poser CM, Van Bogaert L. Neuro-pathologic observations in phenylketonuria. Brain. 1959;82:1–9. doi: 10.1093/brain/82.1.1-a. [DOI] [PubMed] [Google Scholar]
  • 230.Bechar M, Bornstein B, Elian M, Sandbank U. Phenylketonuria presenting an intermittent progressive course. J Neurol Neurosurg Psychiatry. 1965;28:165–170. doi: 10.1136/jnnp.28.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Malamud N. Neuropathology of phenylketonuria. J Neuropathol Exp Neurol. 1966;25:254–268. doi: 10.1097/00005072-196604000-00006. [DOI] [PubMed] [Google Scholar]
  • 232.Bauman ML, Kemper TL. Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol (Berl) 1982;58:55–63. doi: 10.1007/BF00692698. [DOI] [PubMed] [Google Scholar]
  • 233.Shah SN, Peterson NA, McKean CM. Lipid composition of human cerebral white matter and myelin in phenylketonuria. J Neurochem. 1972;19:2369–2376. doi: 10.1111/j.1471-4159.1972.tb01291.x. [DOI] [PubMed] [Google Scholar]
  • 234.Sirrs SM, Laule C, Maedler B, et al. Normal appearing white matter in subjects with phenylketonuria: water content, myelin water fraction, and metabolite concentrations. Radiology. 2007;242:236–243. doi: 10.1148/radiol.2421051758. [DOI] [PubMed] [Google Scholar]
  • 235.Dezortova M, Hajek M, Tintera J, et al. MR in phenylketonuria-related brain lesions. Acta Radiologica. 2001;42:459–466. doi: 10.1080/028418501127347179. [DOI] [PubMed] [Google Scholar]
  • 236.Dezortova M, Hejcmanova L, Hajek M. Decreasing choline signal—a marker of phenylketonuria? MAGMA. 1996;4:181–186. doi: 10.1007/BF01772005. [DOI] [PubMed] [Google Scholar]
  • 237.Johannik K, Van Hecke P, Francois B, et al. Localized brain proton NMR spectroscopy in young adult phenylketonuria patients. Magn Reson Med. 1994;31:53–57. doi: 10.1002/mrm.1910310108. [DOI] [PubMed] [Google Scholar]
  • 238.Kono K, Okano Y, Nakayama K, et al. Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology. 2005;236:630–636. doi: 10.1148/radiol.2362040611. [DOI] [PubMed] [Google Scholar]
  • 239.Peng SS, Tseng WY, Chien YH, et al. Diffusion tensor images in children with early-treated, chronic, malignant phenylketonuric: correlation with intelligence assessment. AJNR Am J Neuroradiol. 2004;25:1569–1574. [PMC free article] [PubMed] [Google Scholar]
  • 240.Leuzzi V, Tosetti M, Montanaro D, et al. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy ([1]H MRS) study. J Inherit Metab Dis. 2007;23:23–23. doi: 10.1007/s10545-006-0399-4. [DOI] [PubMed] [Google Scholar]
  • 241.Hakak Y, Walker JR, Li C, et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 2001;98:4746–4751. doi: 10.1073/pnas.081071198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Uranova N, Orlovskaya D, Vikhreva O, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001;55:597–610. doi: 10.1016/S0361-9230(01)00528-7. [DOI] [PubMed] [Google Scholar]
  • 243.Tkachev D, Mimmack ML, Huffaker SJ, et al. Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int J Neuropsychopharmacol 2007:1-7. [DOI] [PubMed]
  • 244.Bartzokis G, Nuechterlein KH, Lu PH, et al. Dysregulated brain development in adult men with schizophrenia: a magnetic resonance imaging study. Biol Psychiatry. 2003;53:412–421. doi: 10.1016/S0006-3223(02)01835-8. [DOI] [PubMed] [Google Scholar]
  • 245.Lui S, Ouyang L, Deng W, et al. Global gray/white matter ratio and gray matter volume reflect abnormal aging neurodevelopment in treatment naive schizophrenics. 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine. Seattle, 2006:2078.
  • 246.Fukuzako H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J Biol Psychiatry. 2001;2:70–82. doi: 10.3109/15622970109027496. [DOI] [PubMed] [Google Scholar]
  • 247.Berger GE, Wood SJ, Pantelis C, et al. Implications of lipid biology for the pathogenesis of schizophrenia. Aust N Z J Psychiatry. 2002;36:355–366. doi: 10.1046/j.1440-1614.2001.01021.x. [DOI] [PubMed] [Google Scholar]
  • 248.Tanaka Y, Obata T, Sassa T, et al. Quantitative magnetic resonance spectroscopy of schizophrenia: relationship between decreased N-acetylaspartate and frontal lobe dysfunction. Psychiatry Clin Neurosci. 2006;60:365–372. doi: 10.1111/j.1440-1819.2006.01515.x. [DOI] [PubMed] [Google Scholar]
  • 249.Sigmundsson T, Maier M, Toone BK, et al. Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res. 2003;64:63–71. doi: 10.1016/S0920-9964(02)00533-9. [DOI] [PubMed] [Google Scholar]
  • 250.Lim KO, Hedehus M, Moseley M, et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry. 1999;56:367–374. doi: 10.1001/archpsyc.56.4.367. [DOI] [PubMed] [Google Scholar]
  • 251.Agartz I, Andersson JL, Skare S. Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. Neuroreport. 2001;12:2251–2254. doi: 10.1097/00001756-200107200-00041. [DOI] [PubMed] [Google Scholar]
  • 252.Kubicki M, Park H, Westin CF, et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005;26:1109–1118. doi: 10.1016/j.neuroimage.2005.03.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Foong J, Maier M, Clark CA, et al. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry. 2000;68:242–244. doi: 10.1136/jnnp.68.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Brambilla P, Cerini R, Gasparini A, et al. Investigation of corpus callosum in schizophrenia with diffusion imaging. Schizophr Res. 2005;79:201–210. doi: 10.1016/j.schres.2005.04.012. [DOI] [PubMed] [Google Scholar]
  • 255.Kitamura H, Matsuzawa H, Shioiri T, et al. Diffusion tensor analysis in chronic schizophrenia. A preliminary study on a high-field (3.0T) system. Eur Arch Psychiatry Clin Neurosci. 2005;255:313–318. doi: 10.1007/s00406-005-0564-z. [DOI] [PubMed] [Google Scholar]
  • 256.Pfefferbaum A, Sullivan EV, Hedehus M, et al. Brain gray and white matter transverse relaxation time in schizophrenia. Psychiatry Res. 1999;91:93–100. doi: 10.1016/S0925-4927(99)00023-2. [DOI] [PubMed] [Google Scholar]
  • 257.Foong J, Maier M, Barker GJ, et al. In vivo investigation of white matter pathology in schizophrenia with magnetisation transfer imaging. J Neurol Neurosurg Psychiatry. 2000;68:70–74. doi: 10.1136/jnnp.68.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Bagary MS, Symms MR, Barker GJ, et al. Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch Gen Psychiatry. 2003;60:779–788. doi: 10.1001/archpsyc.60.8.779. [DOI] [PubMed] [Google Scholar]
  • 259.Brück W, Kuhlmann T, Stadelmann C. Remyelination in multiple sclerosis. J Neurol Sci. 2003;206:181–185. doi: 10.1016/S0022-510X(02)00191-0. [DOI] [PubMed] [Google Scholar]
  • 260.Moore GRW. Neuropathology and pathophysiology of the multiple sclerosis lesion. In: Paty D, Ebers GC, editors. Multiple Sclerosis. Philadelphia: F.A. Davis; 1998. [Google Scholar]
  • 261.Yu O, Steibel J, Mauss Y, et al. Remyelination assessment by MRI texture analysis in a cuprizone mouse model. Magn Reson Imaging. 2004;22:1139–1144. doi: 10.1016/j.mri.2004.08.017. [DOI] [PubMed] [Google Scholar]
  • 262.Merkler D, Boretius S, Stadelmann C, et al. Multicontrast MRI of remyelination in the central nervous system. NMR Biomed. 2005;18:395–403. doi: 10.1002/nbm.972. [DOI] [PubMed] [Google Scholar]
  • 263.Blakemore WF. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 1977;266:68–69. doi: 10.1038/266068a0. [DOI] [PubMed] [Google Scholar]
  • 264.Dunning MD, Lakatos A, Loizou L, et al. Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci. 2004;24:9799–9810. doi: 10.1523/JNEUROSCI.3126-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Brück W, Bitsch A, Kolenda H, et al. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol. 1997;42:783–793. doi: 10.1002/ana.410420515. [DOI] [PubMed] [Google Scholar]
  • 266.Degaonkar MN, Khubchandhani M, Dhawan JK, et al. Sequential proton MRS study of brain metabolite changes monitored during a complete pathological cycle of demyelination and remyelination in a lysophosphatidyl choline (LPC)-induced experimental demyelinating lesion model. NMR Biomed. 2002;15:293–300. doi: 10.1002/nbm.771. [DOI] [PubMed] [Google Scholar]
  • 267.Vavasour IM, MacKay AL, Whittall KP, et al. A serial magnetic resonance study of multiple sclerosis: T2 relaxation, T1 relaxation and magnetization transfer. Proceedings from the 51st Annual Meeting of the American Academy of Neurology, Toronto, Canada, 1999:A360
  • 268.Chen JT, Collins DL, Freedman MS, et al. Local magnetization transfer ratio signal inhomogeneity is related to subsequent change in MTR in lesions and normal-appearing white-matter of multiple sclerosis patients. Neuroimage. 2005;25:1272–1278. doi: 10.1016/j.neuroimage.2004.12.046. [DOI] [PubMed] [Google Scholar]
  • 269.Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R. Iron in chronic brain disorders: Imaging and neurotherapeutic implications. Neurotherapeutics. 2007;4:371–386. doi: 10.1016/j.nurt.2007.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001;14:57–64. doi: 10.1002/nbm.683. [DOI] [PubMed] [Google Scholar]
  • 271.Suzuki S, Sakai O, Jara H. Combined volumetric T1, T2 and secular-T2 quantitative MRI of the brain: age-related global changes (preliminary results) Magn Reson Imaging. 2006;24:877–887. doi: 10.1016/j.mri.2006.04.011. [DOI] [PubMed] [Google Scholar]
  • 272.Ding XQ, Kucinski T, Wittkugel O, et al. Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol. 2004;39:740–746. doi: 10.1097/00004424-200412000-00005. [DOI] [PubMed] [Google Scholar]
  • 273.Moore GRW. MRI—clinical correlations: more than inflammation alone—what can MRI contribute to improve the understanding of pathological processes in MS. J Neurol Sci. 2003;206:175–179. doi: 10.1016/S0022-510X(02)00347-7. [DOI] [PubMed] [Google Scholar]
  • 274.Larsson HB, Frederiksen J, Kjaer L, et al. In vivo determination of Tl and T2 in the brain of patients with severe but stable multiple sclerosis. Magn Reson Med. 1988;7:43–55. doi: 10.1002/mrm.1910070106. [DOI] [PubMed] [Google Scholar]
  • 275.van Walderveen MA, van Schijndel RA, Pouwels PJ, et al. Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J Magn Reson Imaging. 2003;18:656–664. doi: 10.1002/jmri.10417. [DOI] [PubMed] [Google Scholar]
  • 276.Whittall KP, MacKay AL, Li DK, et al. Normal-appearing white matter in multiple sclerosis has heterogeneous, diffusely prolonged T(2) Magn Reson Med. 2002;47:403–408. doi: 10.1002/mrm.10076. [DOI] [PubMed] [Google Scholar]
  • 277.Sweet RA, Panchalingam K, Pettegrew JW, et al. Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging. 2002;23:547–553. doi: 10.1016/S0197-4580(02)00009-X. [DOI] [PubMed] [Google Scholar]
  • 278.Kantarci K, Petersen RC, Boeve BF, et al. 1H MR spectroscopy in common dementias. Neurology. 2004;63:1393–1398. doi: 10.1212/01.wnl.0000141849.21256.ac. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Catani M, Mecocci P, Tarducci R, et al. Proton magnetic resonance spectroscopy reveals similar white matter biochemical changes in patients with chronic hypertension and early Alzheimer’s disease. J Am Geriatr Soc. 2002;50:1707–1710. doi: 10.1046/j.1532-5415.2002.50465.x. [DOI] [PubMed] [Google Scholar]
  • 280.Firbank MJ, Harrison RM, O’Brien JT. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson’s disease. Dement Geriatr Cogn Disord. 2002;14:64–76. doi: 10.1159/000064927. [DOI] [PubMed] [Google Scholar]
  • 281.Melberg A, Hallberg L, Kalimo H, Raininko R. MR characteristics and neuropathology in adult-onset autosomal dominant leukodystrophy with autonomic symptoms. AJNR Am J Neuroradiol. 2006;27:904–911. [PMC free article] [PubMed] [Google Scholar]
  • 282.Young RS, Osbakken MD, Alger PM, et al. Magnetic resonance imaging in leukodystrophies of childhood. Pediatr Neurol. 1985;1:15–19. doi: 10.1016/0887-8994(85)90003-7. [DOI] [PubMed] [Google Scholar]
  • 283.Ono J, Kodaka R, Imai K, et al. Evaluation of myelination by means of the T2 value on magnetic resonance imaging. Brain Dev. 1993;15:433–438. doi: 10.1016/0387-7604(93)90083-K. [DOI] [PubMed] [Google Scholar]
  • 284.Spaniel F, Herynek V, Hajek T, et al. Magnetic resonance relaxometry in monozygotic twins discordant and concordant for schizophrenia. Eur Psychiatry. 2005;20:41–44. doi: 10.1016/j.eurpsy.2004.11.004. [DOI] [PubMed] [Google Scholar]
  • 285.Andreasen NC, Ehrhardt JC, Swayze VW, et al. T1 and T2 relaxation times in schizophrenia as measured with magnetic resonance imaging. Schizophr Res. 1991;5:223–232. doi: 10.1016/0920-9964(91)90080-B. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES