Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Jul;4(3):485–498. doi: 10.1016/j.nurt.2007.05.008

Time-series modeling of multiple sclerosis disease activity: A promising window on disease progression and repair potential?

Dominik S Meier 1,, Howard L Weiner 2, Charles R G Guttmann 1
PMCID: PMC7479736  PMID: 17599713

Summary

This article discusses and reviews advanced forms of serial morphometry in the context of a disease progression model in multiple sclerosis (MS). This model of disease activity distinguishes between overall disease activity and the proportion thereof that becomes permanent damage. This translates into a progression model that features a repair potential, which, when exhausted, marks the conversion or progression from relapsing to progressive disease. The level of repair capacity at a given time determines the rate of progression. Both clinical and MRI variables appear to be in support of such a model. We examine possible MRI markers for this repair capacity, particularly the short-term behavior of new MRI lesions, quantified by methods of time-series analysis—that is, capturing lesion dynamics in the form of MRI intensity change directly, rather than shape or volume change. Lower rates of individual lesion recovery may represent lower repair and greater proximity to a progressive stage. Individuals with low transient lesion turnover appear to undergo more rapid progression and atrophy. Because disease-modifying therapies aim to alter the pathophysiological chain of inflammation, demyelination, and axonal loss, a therapeutic effect may therefore be more readily apparent as a change in lesion dynamics and recovery rate and level, rather than a change in total lesion burden or enhancing lesion number.

Key Words: Multiple sclerosis, disease modeling, serial MRI, morphometry, lesion evolution, repair

References

  • 1.Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989;112:133–146. doi: 10.1093/brain/112.1.133. [DOI] [PubMed] [Google Scholar]
  • 2.Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993;116:117–134. doi: 10.1093/brain/116.1.117. [DOI] [PubMed] [Google Scholar]
  • 3.Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–2712. doi: 10.1093/brain/awh641. [DOI] [PubMed] [Google Scholar]
  • 4.Prineas JW, Kwon EE, Cho ES, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol. 2001;50:646–657. doi: 10.1002/ana.1255. [DOI] [PubMed] [Google Scholar]
  • 5.Filippi M, Rovaris M, Iannucci G, et al. Whole brain volume changes in patients with progressive MS treated with cladribine. Neurology. 2000;55:1714–1718. doi: 10.1212/wnl.55.11.1714. [DOI] [PubMed] [Google Scholar]
  • 6.Molyneux PD, Kappos L, Polman C, et al. European Study Group on Interferon β-1b in Secondary Progressive Multiple Sclerosis. The effect of interferon β-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. Brain. 2000;123:2256–2263. doi: 10.1093/brain/123.11.2256. [DOI] [PubMed] [Google Scholar]
  • 7.Paolillo A, Coles AJ, Molyneux PD, et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology. 1999;53:751–757. doi: 10.1212/wnl.53.4.751. [DOI] [PubMed] [Google Scholar]
  • 8.Tremlett H, Devonshire V. Is late-onset multiple sclerosis associated with a worse outcome? Neurology. 2006;67:954–959. doi: 10.1212/01.wnl.0000237475.01655.9d. [DOI] [PubMed] [Google Scholar]
  • 9.Tintore M, Rovira A, Rio J, et al. Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology. 2006;67:968–972. doi: 10.1212/01.wnl.0000237354.10144.ec. [DOI] [PubMed] [Google Scholar]
  • 10.Chard DT, Brex PA, Ciccarelli O, et al. The longitudinal relation between brain lesion load and atrophy in multiple sclerosis: a 14 year follow up study. J Neurol Neurosurg Psychiatry. 2003;74:1551–1554. doi: 10.1136/jnnp.74.11.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003;126:770–782. doi: 10.1093/brain/awg081. [DOI] [PubMed] [Google Scholar]
  • 12.Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain. 1989;112:1419–1428. doi: 10.1093/brain/112.6.1419. [DOI] [PubMed] [Google Scholar]
  • 13.Kappos L, Traboulsee A, Constantinescu C, et al. Long-term subcutaneous interferonβ-1a therapy in patients with relapsing—remitting MS. Neurology. 2006;67:944–953. doi: 10.1212/01.wnl.0000237994.95410.ce. [DOI] [PubMed] [Google Scholar]
  • 14.Minneboo A, Uitdehaag BM, Adèr HJ, et al. Patterns of enhancing lesion evolution in multiple sclerosis are uniform within patients. Neurology. 2005;65:56–61. doi: 10.1212/01.wnl.0000167538.24338.bb. [DOI] [PubMed] [Google Scholar]
  • 15.Truyen L, van Waesberghe JH, van Walderveen MA, et al. Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996;47:1469–1476. doi: 10.1212/wnl.47.6.1469. [DOI] [PubMed] [Google Scholar]
  • 16.van Waesberghe JH, van Walderveen MA, Castelijns JA, et al. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol. 1998;19:675–683. [PMC free article] [PubMed] [Google Scholar]
  • 17.Rudick RA, Lee JC, Simon J, Fisher E. Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study. Ann Neurol. 2006;60:236–242. doi: 10.1002/ana.20883. [DOI] [PubMed] [Google Scholar]
  • 18.Cotton F, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology. 2003;60:640–646. doi: 10.1001/archneur.60.4.640-a. [DOI] [PubMed] [Google Scholar]
  • 19.Kalkers NF, Ameziane N, Bot JC, et al. Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch Neurol. 2002;59:1572–1576. doi: 10.1001/archneur.59.10.1572. [DOI] [PubMed] [Google Scholar]
  • 20.Kappos L, Moeri D, Radue EW, et al. Gadolinium MRI Metaanalysis Group. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet. 1999;353:964–969. doi: 10.1016/S0140-6736(98)03053-0. [DOI] [PubMed] [Google Scholar]
  • 21.Agosta F, Rovaris M, Pagani E, et al. Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain. 2006;129:2620–2627. doi: 10.1093/brain/awl208. [DOI] [PubMed] [Google Scholar]
  • 22.Schmierer K, Scaravilli F, Altmann DR, et al. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56:407–415. doi: 10.1002/ana.20202. [DOI] [PubMed] [Google Scholar]
  • 23.van Waesberghe JH, Kamphorst W, De Groot CJ, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999;46:747–754. doi: 10.1002/1531-8249(199911)46:5<747::AID-ANA10>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 24.Miller DH, Albert PS, Barkhof F, et al. US National MS Society Task Force. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Ann Neurol. 1996;39:6–16. doi: 10.1002/ana.410390104. [DOI] [PubMed] [Google Scholar]
  • 25.Filippi M, Horsfield MA, Adèr HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol. 1998;43:499–506. doi: 10.1002/ana.410430414. [DOI] [PubMed] [Google Scholar]
  • 26.Erskine MK, Cook LL, Riddle KE, et al. Resolution-dependent estimates of multiple sclerosis lesion loads. Can J Neurol Sci. 2005;32:205–212. doi: 10.1017/s031716710000398x. [DOI] [PubMed] [Google Scholar]
  • 27.Filippi M, Rovaris M, Capra R, et al. A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for phase II clinical trials. Brain. 1998;121:2011–2020. doi: 10.1093/brain/121.10.2011. [DOI] [PubMed] [Google Scholar]
  • 28.Ingle GT, Sastre-Garriga J, Miller DH, Thompson AJ. Is inflammation important in early PPMS? a longitudinal MRI study. J Neurol Neurosurg Psychiatry. 2005;76:1255–1258. doi: 10.1136/jnnp.2004.036590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Molyneux PD, Filippi M, Barkhof F, et al. Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol. 1998;43:332–339. doi: 10.1002/ana.410430311. [DOI] [PubMed] [Google Scholar]
  • 30.Miller DH, Molyneux PD, Barker GJ, et al. European Study Group on Interferon-β1b in Secondary Progressive Multiple Sclerosis. Effect of interferon-β1b on magnetic resonance imaging outcomes in secondary progressive multiple sclerosis: results of a European multicenter, randomized, double-blind, placebo-controlled trial. Ann Neurol. 1999;46:850–859. doi: 10.1002/1531-8249(199912)46:6<850::AID-ANA7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 31.Jacobs LD, Cookfair DL, Rudick RA, et al. Multiple Sclerosis Collaborative Research Group (MSCRG). Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 1996;39:285–294. doi: 10.1002/ana.410390304. [DOI] [PubMed] [Google Scholar]
  • 32.IFNB Multiple Sclerosis Study Group; University of British Columbia MS/MRI Analysis Group Interferon β-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology. 1995;45:1277–1285. [PubMed] [Google Scholar]
  • 33.Li DK, Paty DW. Prevention of Relapses and Disability by Interferon-β1a Subcutaneously in Multiple Sclerosis. Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferon-β1a in relapsing-remitting multiple sclerosis. Ann Neurol. 1999;46:197–206. doi: 10.1002/1531-8249(199908)46:2<197::AID-ANA9>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 34.Filippi M, Horsfield MA, Tofts PS, et al. Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain. 1995;118:1601–1612. doi: 10.1093/brain/118.6.1601. [DOI] [PubMed] [Google Scholar]
  • 35.Isaac C, Li DK, Genton M, et al. Multiple sclerosis: a serial study using MRI in relapsing patients. Neurology. 1988;38:1511–1515. doi: 10.1212/wnl.38.10.1511. [DOI] [PubMed] [Google Scholar]
  • 36.Willoughby EW, Grochowski E, Li DK, et al. Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann Neurol. 1989;25:43–49. doi: 10.1002/ana.410250107. [DOI] [PubMed] [Google Scholar]
  • 37.Lee MA, Smith S, Palace J, Matthews PM. Defining multiple sclerosis disease activity using MRI T2-weighted difference imaging. Brain. 1998;121:2095–2102. doi: 10.1093/brain/121.11.2095. [DOI] [PubMed] [Google Scholar]
  • 38.Brex PA, Ciccarelli O, O’Riordan JI, et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med. 2002;346:158–164. doi: 10.1056/NEJMoa011341. [DOI] [PubMed] [Google Scholar]
  • 39.Weiner HL, Guttmann CR, Khoury SJ, et al. Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage. J Neuroimmunol. 2000;104:164–173. doi: 10.1016/S0165-5728(99)00273-8. [DOI] [PubMed] [Google Scholar]
  • 40.Khoury SJ, Guttmann CR, Orav EJ, et al. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch Neurol. 2000;57:1183–1189. doi: 10.1001/archneur.57.8.1183. [DOI] [PubMed] [Google Scholar]
  • 41.Bitsch A, Kuhlmann T, Stadelmann C, et al. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol. 2001;49:793–796. doi: 10.1002/ana.1053. [DOI] [PubMed] [Google Scholar]
  • 42.Bagnato F, Jeffries N, Richert ND, et al. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain. 2003;126:1782–1789. doi: 10.1093/brain/awg182. [DOI] [PubMed] [Google Scholar]
  • 43.Meier DS, Guttmann CR. Time-series analysis of MRI intensity patterns in multiple sclerosis. Neuroimage. 2003;20:1193–1209. doi: 10.1016/S1053-8119(03)00354-9. [DOI] [PubMed] [Google Scholar]
  • 44.Meier DS, Guttmann CR. Time-series modeling of MS lesion development. Neuroimage. 2006;32:531–537. doi: 10.1016/j.neuroimage.2006.04.181. [DOI] [PubMed] [Google Scholar]
  • 45.Lucchinetti C, Bruck W, Parisi J, et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions: a study of 113 cases. Brain. 1999;122:2279–2295. doi: 10.1093/brain/122.12.2279. [DOI] [PubMed] [Google Scholar]
  • 46.Lucchinetti C, Bruck W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 47.Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–3172. doi: 10.1093/brain/awl217. [DOI] [PubMed] [Google Scholar]
  • 48.Lassmann H. Recent neuropathological findings in MS—implications for diagnosis and therapy. J Neurol. 2004;251(Suppl 4):IV2–IV5. doi: 10.1007/s00415-004-1402-3. [DOI] [PubMed] [Google Scholar]
  • 49.Schwartz M, Kipnis J. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J Neurol Sci. 2005;233:163–166. doi: 10.1016/j.jns.2005.03.014. [DOI] [PubMed] [Google Scholar]
  • 50.van Waesberghe JH, van Walderveen MA, Castelijns JA, et al. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol. 1998;19:675–683. [PMC free article] [PubMed] [Google Scholar]
  • 51.Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes.”. Neurology. 2001;57:731–733. doi: 10.1212/wnl.57.4.731. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES