Abstract
Coagulopathy is associated with both inflammation and infection, including infection with the novel SARS-CoV-2 (COVID-19). Endothelial cells (ECs) fine tune hemostasis via cAMP-mediated secretion of von Willebrand factor (vWF), which promote the process of clot formation. The e xchange p rotein directly a ctivated by c AMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a key role in stabilizing ECs and suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1 -null mouse model and revealed an increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1 −/− phenotype. EPAC1 regulated TNFα-triggered vWF secretion from human umbilical vein endothelial cells (HUVECs) in a phosphoinositide 3-kinases (PI3K)/endothelial nitric oxide synthase (eNOS)-dependent manner. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro . Our data delineate a novel regulatory role of EPAC1 in vWF secretion and shed light on potential development of new strategies to controlling thrombosis during inflammation.
Key Point
PI3K/eNOS pathway-mediated, inflammation-triggered vWF secretion is the target of the pharmacological manipulation of the cAMP-EPAC system.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.