Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Sep 8:2020.09.08.287482. [Version 1] doi: 10.1101/2020.09.08.287482

Antibody binding to SARS-CoV-2 S glycoprotein correlates with, but does not predict neutralization

Shilei Ding, Annemarie Laumaea, Romain Gasser, Halima Medjahed, Marie Pancera, Leonidas Stamatatos, Andrew McGuire, Renée Bazin, Andrés Finzi
PMCID: PMC7491507  PMID: 32935094

Abstract

Convalescent plasma from SARS-CoV-2 infected individuals and monoclonal antibodies were shown to potently neutralize viral and pseudoviral particles carrying the S glycoprotein. However, a non-negligent proportion of plasma samples from infected individuals as well as S-specific monoclonal antibodies were reported to be non-neutralizing despite efficient interaction with the S glycoprotein in different biochemical assays using soluble recombinant forms of S or when expressed at the cell surface. How neutralization relates to binding of S glycoprotein in the context of viral particles remains to be established. Here we developed a pseudovirus capture assay (VCA) to measure the capacity of plasma samples or antibodies immobilized on ELISA plates to bind to membrane-bound S glycoproteins from SARS-CoV-2 expressed at the surface of lentiviral particles. By performing VCA and neutralization assays we observed a strong correlation between these two parameters. However, while we found that plasma samples unable to capture viral particles did not neutralize, capture did not guarantee neutralization, indicating that the capacity of antibodies to bind to the S glycoprotein at the surface of viral particles is required but not sufficient to mediate neutralization. Altogether, our results highlights the importance of better understanding the inactivation of S by plasma and neutralizing antibodies.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES