Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2020 Jun 5;59(32):13451–13457. doi: 10.1002/anie.202003826

Enantioselective Pallada‐Electrocatalyzed C−H Activation by Transient Directing Groups: Expedient Access to Helicenes

Uttam Dhawa 1, Cong Tian 1, Tomasz Wdowik 1, João C A Oliveira 1, Jiping Hao 1, Lutz Ackermann 1,2,
PMCID: PMC7497116  PMID: 32243685

Abstract

Asymmetric pallada‐electrocatalyzed C−H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C−H activations were realized with high position‐, diastereo‐, and enantio‐control under mild reaction conditions to obtain highly enantiomerically‐enriched biaryls and fluorinated N−C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.

Keywords: asymmetric C−H activation, biaryls, helicene, palladium, transient directing group


EE: E nantioselective E lectrocatalysis was realized in terms of asymmetric C−H activation through transient directing group (TDG)‐enabled pallada‐electrocatalysis. Experiments and calculations rationalize the key transition states, while asymmetric electrocatalysis provided step‐economical access to axially chiral bi(hetero)aryl diols, diacids and helicenes.

graphic file with name ANIE-59-13451-g010.jpg

Introduction

In recent years, organic electrosynthesis has undergone a remarkable renaissance, with notable advances in homogeneous electrocatalysis.1 Significant momentum was particularly gained by the merger of electrosynthesis with organometallic C−H activation,2 enabling the use of electrons as sustainable redox equivalents towards improved resource economy.3 While major progress was thus represented by elegant studies from inter alia Jutand, and Mei via strong N‐directing groups in palladium catalysis,4 Ackermann,5 Mei,1a, 1g Lei,6 and Xu7 among others, made progress towards electrochemical C−H activation using both N‐chelation assistance8 or weak O‐coordination.9 Despite these indisputable advances, full selectivity control in terms of enantioselective10 electrochemical C−H activations11 are thus far unfortunately unknown. This can be attributed to the major challenges in asymmetric metalla‐electrocatalysis, including a) cathodic catalyst reduction, b) electrochemical degradation of chiral ligands, and c) unfavorable interactions of the electrolyte within the enantio‐determining transition state. Hence, it is noteworthy that asymmetric electrochemical transformations11 generally continue to be underdeveloped.11, 12

Axially chiral biaryls feature prominently as key structural motifs in privileged catalysts,13 ligands,14 and natural products15 as well as in material sciences.16 Since an early, albeit moderately selective report on rhodium(I)‐catalyzed C−H alkylations of arylpyridines,17 atroposelective syntheses of axially chiral biaryls have been established, most notably by You,18 Wencel‐Delord/Colobert,19 Yang20 and Shi,21 among others. In this context, Shi elegantly exploited transient directing groups for the synthesis of axially chiral biaryls.22 Yet, despite of considerable progress, the synthesis of axially chiral biaryls largely requires stoichiometric amounts of often toxic oxidants, which lead to the formation of undesired byproducts. In sharp contrast, enantioselective C−H activations that employ electricity as formal redox‐equivalents are as of yet unprecedented. Within our program on sustainable C−H activation,23 we have now unraveled the first electrochemical enantioselective synthesis of axially chiral biaryls with the aid of a transient directing group (TDG, Figure 1),24 on which we report herein. Notably, our strategy set the stage for the assembly of highly enantio‐enriched [n]helicenes. Additional salient features of our findings include a) first enantioselective electrochemical organometallic C−H activation, b) unprecedented use of transient directing groups in electrochemical C−H activations, c) electrocatalytic access to axially chiral biaryls, d) mechanistic insights by computation e) assembly of N−C axially chiral compounds, and f) late‐stage diversification towards chiral BINOLs, helicenes and dicarboxylic acids.

Figure 1.

Figure 1

Enantioselective electrocatalytic C−H activation enabled by TDG.

Results and Discussion

We initiated our studies by evaluating TDGs24 for the envisioned atroposelective electrocatalyzed C−H olefination of biaryls 1 a with n‐butyl acrylate (2 a) (Table 1 and Table S1 in the Supporting Information).25 We were delighted to observe that initial experimentation with l‐valine provided the desired olefinated product 3 aa indeed in 35 % yield and 48 % ee (entry 1). Initial optimization studies indicated that the redox mediator benzoquinone did not improve the performance. Probing alternative TDGs failed to provide a significant improvement in chemical and optical yields (entries 2–6). Pleasingly, ltert‐leucine afforded a 53 % yield with 97 % ee (entry 7). Other electrolyte additives, such as NaOAc, KOAc, NaOPiv and nBu4PF6 showed inferior efficiency as compared with LiOAc (entries 8–11), emphasizing tight interplay of the additive serving both as electrolyte and for carboxylate‐assisted strong bond cleavage (vide infra). Notably, other reaction media did not improve the catalyst's performance (entries 12–13). Slightly prolonging the reaction time delivered the desired product 3 aa with synthetically useful 71 % yield and 97 % ee (entries 14 and 15), while the metalla‐electrocatalysis also occurred in the absence of air, albeit with reduced efficacy (entry 16). It is noteworthy that, in contrast to the use of chemical oxidants,22e a redox mediator was not required for efficient metalla‐electrocatalysis. Control experiments confirmed the necessity of the TDG, the electricity and the palladium catalyst (entries 17–19). Mass balance was accounted for by unreacted starting material 1.25

Table 1.

Optimization of the atroposelective electrocatalyzed C−H olefination.[a] Inline graphic

Entry

TDG

Additive

Solvent

Yield

[%]

ee

[%]

1

l‐valine

LiOAc

AcOH

35

48

2

l‐phenylalanine

LiOAc

AcOH

43

18

3

l‐proline

LiOAc

AcOH

47

20

4

l‐aspartic acid

LiOAc

AcOH

23

28

5

l‐tryptophan

LiOAc

AcOH

21

68

6

l‐histidine

LiOAc

AcOH

45

24

7

ltert‐leucine

LiOAc

AcOH

53

97

8

ltert‐leucine

NaOAc

AcOH

47

99

9

ltert‐leucine

KOAc

AcOH

45

98

10

ltert‐leucine

NaOPiv

AcOH

50

96

11

ltert‐leucine

nBu4PF6

AcOH

48

99

12

ltert‐leucine

TFE

13

ltert‐leucine

TFE/AcOH

46

99

14[b]

ltert‐leucine

LiOAc

AcOH

71

97

15[b,c]

ltert‐leucine

LiOAc

AcOH

66

97

16[b,d]

ltert‐leucine

LiOAc

AcOH

43

97

17

LiOAc

AcOH

18[e]

ltert‐leucine

LiOAc

AcOH

25

97

19[f]

ltert‐leucine

LiOAc

AcOH

[a] Reaction conditions: Undivided cell, 1 a (0.20 mmol), 2 a (0.60 mmol), [Pd] (10 mol %), TDG (20 mol %), additive (2.0 equiv), solvent (4.5 mL), 60 °C, constant current at 1.0 mA, 14 h, graphite felt (GF) anode, Pt‐plate cathode, isolated yields. [b] 20 h. [c] 2 a (2.0 equiv). [d] Under N2. [e] Without electricity. [f] No palladium. TFE=2,2,2‐Trifluoroethanol.25

With the optimized reaction conditions in hand, we explored the versatility of the enantioselective pallada‐electrocatalysis (Scheme 1). A number of biaryls containing electron‐rich (1 d, 1 e) and electron‐withdrawing groups (1 f) provided the desired axially chiral biaryls 3 with excellent enantioselectivities.

Scheme 1.

Scheme 1

Atroposelective electrocatalyzed C−H olefination of biaryls 1.25

Next, a wide range of alkenes (2) was explored (Scheme 2). Here, fluoro‐ (2 i), bromo‐ (2 j), nitro‐ (2 k) and carbonyl (2 l) substituents on the arene were well tolerated in the electrochemical atroposelective C−H olefination, which should prove instrumental for further late‐stage modification. Moreover, vinyl sulfone (2 e) and vinyl phosphonate (2 f) were efficiently converted, delivering the desired products 3 ae and 3 af, respectively, with good yields and excellent enantioselectivities. The reaction proceeded likewise well with methyl vinyl ketone 2 g and acrylamide 2 m to furnish the axially chiral biaryls 3 with very high levels of enantio‐induction.

Scheme 2.

Scheme 2

Atroposelective pallada‐electrocatalysis with alkenes 2.25

The pallada‐electrocatalysis was not limited to the conversion of biaryls. Indeed, the strategy also set the stage for the synthesis of N−C22a, 26 axially chiral motifs by pallada‐electrocatalysis. Under otherwise identical reaction conditions, we were able to access N−C axially chiral N‐aryl pyrroles in a site‐ and enantioselective fashion. We were delighted to realize unprecedented C−H perfluoroalkenylations in a highly enantioselective fashion to deliver the synthetically useful axially chiral fluorinated heterobiaryls 5 an5 ao. Likewise, vinyl sulfone 5 ae, vinyl phosphonate 5 af and cholesterol derivative 5 ap mirrored the versatility towards N−C axially chiral scaffolds (Scheme 3).

Scheme 3.

Scheme 3

Atroposelective pallada‐electrocatalyzed C−H olefination of N‐aryl pyrroles.25

Intrigued by the outstanding efficacy of the atroposelective pallada‐electrocatalyzed C−H activation, we became attracted to unravelling its mode of action. First, H/D scrambling was not observed when AcOD was used as the reaction medium (Scheme 4 a). Second, kinetic studies with isotopically‐labeled substrates revealed a KIE value of ≈1.8 (Scheme 4 b). These experiments are suggestive of the C−H activation being the rate‐determining step. Third, we did not observe a non‐linear‐effect (NLE), being indicative of the enantio‐determining step involving a metal to ligand ratio of 1:1 (Scheme 4 c).

Scheme 4.

Scheme 4

Summary of key mechanistic findings.

Subsequently, we probed the catalyst's mode of action by means of computational studies at the PW6B95‐D4/def2‐TZVP+SMD(AcOH)//PBE0‐D3BJ/def2‐SVP level of theory (Figure 2).25 A detailed analysis of the C−H activation process revealed that the intermediate that leads to the formation of the seven‐membered intermediate I‐17 is 12.0 kcal mol−1 more favorable than the formation of the five‐membered intermediate I‐15. Interestingly, this stabilization is dominated by attractive non‐covalent interactions between the tert‐butyl group of the TDG and the substrate's naphthalene moiety as well as the arene π‐system and the palladium (Figure 3). These secondary dispersive forces thus allow for a favorable square‐planar coordination geometry. The migratory insertion of the alkene gives preference to the formation of the linear product in lieu of the branched product by 4.7 kcal mol−1 (TS4‐5).

Figure 2.

Figure 2

Computed relative Gibbs free energies (ΔG 333.15) in kcal mol−1 for the key C−H activation and migratory insertion elementary steps at the PW6B95‐D4/def2‐TZVP+SMD(AcOH)//PBE0‐D3BJ/def2‐SVP level of theory. Superscripts 5 and 7 relate to structures, which lead to the formation of the 7‐membered versus the 5‐membered cyclometallated intermediates. B and L correspond to the branched and linear products.

Figure 3.

Figure 3

Visualization of the non‐covalent interactions calculated with the help of the NCIPLOT program, for the intermediates I‐17 and I‐15. In the plotted surfaces, red correspond to strong repulsive interactions, while green and blue correspond to weak and strong attractive interactions, respectively.

Finally, we explored the late‐stage diversification of the thus‐obtained highly enantiomerically‐enriched biaryls towards chiral helicene. While significant advances in the synthesis of chiral helicenes have been noted,27 asymmetric C−H activation‐based electrocatalysis has thus far not been employed in the assembly of enantiopure helicenes. Upon performing a kinetic resolution on conformationally stable aldehyde 1 h under the optimized reaction condition, the olefinated product 3 ha was obtained with 95 % ee. Further modification provided the [5]helicene 6 with overall high chemical and optical yield (Scheme 5 a). The synthesis of [6]helicenes 8 and [6]helimers ent8 was accomplished likewise. The recovered starting material 1 i was next submitted to asymmetric pallada‐electrocatalysis, giving the other enantiomer (−)3 ia with 96 % ee (Scheme 5 b). The synthetic utility of our approach was further reflected by providing the chiral dialdehyde 7. Dialdehyde 7 itself was converted through a Pinnick oxidation into chiral dicarboxylic acid 9, whilst Baeyer–Villiger oxidation gave the chiral BINOL 10 (Scheme 5 c). These new chiral molecules should find multiple applications as privileged ligands for asymmetric catalysis.

Scheme 5.

Scheme 5

Electrochemical access to chiral helicenes. (a) K2OsO4⋅2 H2O (15 mol %), NaIO4 (10 equiv), THF/H2O (2/1), 50 °C, 24 h; (b) MePPh3Br (4 equiv), nBuLi (3.8 equiv), THF, −78 °C to rt, 1 h; (c) Grubbs II (10 mol %), CH2Cl2, MW, 95 °C.

Conclusion

In summary, we have reported on the first asymmetric metalla‐electrocatalyzed C−H activation. The atroposelective organometallic C−H activation was realized by a transient directing group manifold. The pallada‐electrocatalysis was characterized by high enantioselectivities under mild reaction conditions28 for the synthesis of enantioenriched axially chiral biaryls and heterobiaryls being devoid of chemical oxidants. Experimental, kinetic and computational studies on the metalla‐electrocatalysis unraveled key elements of the catalyst's working mode. Our strategy also set the stage for the efficient assembly of novel enantioenriched BINOLs, dicarboxylic acids and helicenes.

Conflict of interest

The authors declare no conflict of interest.

Supporting information

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary

Acknowledgements

Generous support by the DFG (Gottfried‐Wilhelm‐Leibniz award and SPP 1807), the DAAD (fellowship to U.D.), and the CSC (scholarships to C.T. and J.H.) is gratefully acknowledged.

U. Dhawa, C. Tian, T. Wdowik, J. C. A. Oliveira, J. Hao, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 13451.

Contributor Information

Uttam Dhawa, http://www.ackermann.chemie.uni‐goettingen.de/.

Prof. Dr. Lutz Ackermann, Email: Lutz.Ackermann@chemie.uni-goettingen.de, http://wisch.chemie.uni‐goettingen.de/.

References

  • 1. 
  • 1a. Jiao K.-J., Xing Y.-K., Yang Q.-L., Qiu H., Mei T.-S., Acc. Chem. Res. 2020, 53, 300–310; [DOI] [PubMed] [Google Scholar]
  • 1b. Kärkäs M. D., Chem. Soc. Rev. 2018, 47, 5786–5865; [DOI] [PubMed] [Google Scholar]
  • 1c. Sauermann N., Meyer T. H., Ackermann L., Chem. Eur. J. 2018, 24, 16209–16217; [DOI] [PubMed] [Google Scholar]
  • 1d. Tang S., Liu Y., Lei A., Chem 2018, 4, 27–45; [Google Scholar]
  • 1e. Sauermann N., Meyer T. H., Qiu Y., Ackermann L., ACS Catal. 2018, 8, 7086–7103; [Google Scholar]
  • 1f. Moeller K. D., Chem. Rev. 2018, 118, 4817–4833; [DOI] [PubMed] [Google Scholar]
  • 1g. Ma C., Fang P., Mei T.-S., ACS Catal. 2018, 8, 7179–7189; [Google Scholar]
  • 1h. Wiebe A., Gieshoff T., Möhle S., Rodrigo E., Zirbes M., Waldvogel S. R., Angew. Chem. Int. Ed. 2018, 57, 5594–5619; [DOI] [PMC free article] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 5694–5721; [Google Scholar]
  • 1i. Yan M., Kawamata Y., Baran P. S., Chem. Rev. 2017, 117, 13230–13319; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1j. Horn E. J., Rosen B. R., Baran P. S., ACS Cent. Sci. 2016, 2, 302–308; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1k. Jutand A., Chem. Rev. 2008, 108, 2300–2347. [DOI] [PubMed] [Google Scholar]
  • 2. 
  • 2a. Rej S., Ano Y., Chatani N., Chem. Rev. 2020, 120, 1788–1887; [DOI] [PubMed] [Google Scholar]
  • 2b. Loup J., Dhawa U., Pesciaioli F., Wencel-Delord J., Ackermann L., Angew. Chem. Int. Ed. 2019, 58, 12803–12818; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 12934–12949; [Google Scholar]
  • 2c. Dey A., Sinha S. K., Achar T. K., Maiti D., Angew. Chem. Int. Ed. 2019, 58, 10820–10843; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 10934–10958; [Google Scholar]
  • 2d. Xu Y., Dong G., Chem. Sci. 2018, 9, 1424–1432; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2e. Park Y., Kim Y., Chang S., Chem. Rev. 2017, 117, 9247–9301; [DOI] [PubMed] [Google Scholar]
  • 2f. Newton C. G., Wang S.-G., Oliveira C. C., Cramer N., Chem. Rev. 2017, 117, 8908–8976; [DOI] [PubMed] [Google Scholar]
  • 2g. He J., Wasa M., Chan K. S. L., Shao Q., Yu J.-Q., Chem. Rev. 2017, 117, 8754–8786; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2h. Agasti S., Dey A., Maiti D., Chem. Commun. 2017, 53, 6544–6556; [DOI] [PubMed] [Google Scholar]
  • 2i. Daugulis O., Roane J., Tran L. D., Acc. Chem. Res. 2015, 48, 1053–1064; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2j. Rouquet G., Chatani N., Angew. Chem. Int. Ed. 2013, 52, 11726–11743; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2013, 125, 11942–11959; [Google Scholar]
  • 2k. Colby D. A., Tsai A. S., Bergman R. G., Ellman J. A., Acc. Chem. Res. 2012, 45, 814–825; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2l. Ackermann L., Vicente R., Kapdi A. R., Angew. Chem. Int. Ed. 2009, 48, 9792–9826; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2009, 121, 9976–10011. [Google Scholar]
  • 3. Meyer T. H., Finger L. H., Gandeepan P., Ackermann L., Trends Chem. 2019, 1, 63–76. [Google Scholar]
  • 4. 
  • 4a. Yang Q.-L., Wang X.-Y., Wang T.-L., Yang X., Liu D., Tong X., Wu X.-Y., Mei T.-S., Org. Lett. 2019, 21, 2645–2649; [DOI] [PubMed] [Google Scholar]
  • 4b. Shrestha A., Lee M., Dunn A. L., Sanford M. S., Org. Lett. 2018, 20, 204–207; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4c. Yang Q.-L., Li Y.-Q., Ma C., Fang P., Zhang X.-J., Mei T.-S., J. Am. Chem. Soc. 2017, 139, 3293–3298; [DOI] [PubMed] [Google Scholar]
  • 4d. Ma C., Zhao C.-Q., Li Y.-Q., Zhang L.-P., Xu X.-T., Zhang K., Mei T.-S., Chem. Commun. 2017, 53, 12189–12192; [DOI] [PubMed] [Google Scholar]
  • 4e. Li Y.-Q., Yang Q.-L., Fang P., Mei T.-S., Zhang D., Org. Lett. 2017, 19, 2905–2908; [DOI] [PubMed] [Google Scholar]
  • 4f. Konishi M., Tsuchida K., Sano K., Kochi T., Kakiuchi F., J. Org. Chem. 2017, 82, 8716–8724; [DOI] [PubMed] [Google Scholar]
  • 4g. Saito F., Aiso H., Kochi T., Kakiuchi F., Organometallics 2014, 33, 6704–6707; [Google Scholar]
  • 4h. Aiso H., Kochi T., Mutsutani H., Tanabe T., Nishiyama S., Kakiuchi F., J. Org. Chem. 2012, 77, 7718–7724; [DOI] [PubMed] [Google Scholar]
  • 4i. Kakiuchi F., Kochi T., Mutsutani H., Kobayashi N., Urano S., Sato M., Nishiyama S., Tanabe T., J. Am. Chem. Soc. 2009, 131, 11310–11311; [DOI] [PubMed] [Google Scholar]
  • 4j. Amatore C., Cammoun C., Jutand A., Adv. Synth. Catal. 2007, 349, 292–296. [Google Scholar]
  • 5. Qiu Y., Struwe J., Ackermann L., Synlett 2019, 30, 1164–1173. [Google Scholar]
  • 6. Wang P., Gao X., Huang P., Lei A., ChemCatChem 2020, 12, 27–40. [Google Scholar]
  • 7. Xiong P., Xu H.-C., Acc. Chem. Res. 2019, 52, 3339–3350. [DOI] [PubMed] [Google Scholar]
  • 8.Selected references:
  • 8a. Yang Q.-L., Wang X.-Y., Lu J.-Y., Zhang L.-P., Fang P., Mei T.-S., J. Am. Chem. Soc. 2018, 140, 11487–11494; [DOI] [PubMed] [Google Scholar]
  • 8b. Xu F., Li Y.-J., Huang C., Xu H.-C., ACS Catal. 2018, 8, 3820–3824; [Google Scholar]
  • 8c. Tian C., Massignan L., Meyer T. H., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 2383–2387; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 2407–2411; [Google Scholar]
  • 8d. Sauermann N., Mei R., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 5090–5094; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 5184–5188; [Google Scholar]
  • 8e. Gao X., Wang P., Zeng L., Tang S., Lei A., J. Am. Chem. Soc. 2018, 140, 4195–4199; [DOI] [PubMed] [Google Scholar]
  • 8f. Sauermann N., Meyer T. H., Tian C., Ackermann L., J. Am. Chem. Soc. 2017, 139, 18452–18455; [DOI] [PubMed] [Google Scholar]
  • 8g. Kong W.-J., Shen Z., Finger L. H., Ackermann L., Angew. Chem. Int. Ed. 2020, 59, 5551–5556; [DOI] [PMC free article] [PubMed] [Google Scholar]; Angew. Chem. 2020, 132, 5596–5601. [Google Scholar]
  • 9.Selected references:
  • 9a. Yang Q.-L., Xing Y.-K., Wang X.-Y., Ma H.-X., Weng X.-J., Yang X., Guo H.-M., Mei T.-S., J. Am. Chem. Soc. 2019, 141, 18970–18976; [DOI] [PubMed] [Google Scholar]
  • 9b. Qiu Y., Tian C., Massignan L., Rogge T., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 5818–5822; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 5920–5924; [Google Scholar]
  • 9c. Qiu Y., Stangier M., Meyer T. H., Oliveira J. C. A., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 14179–14183; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 14375–14379; [Google Scholar]
  • 9d. Qiu Y., Kong W.-J., Struwe J., Sauermann N., Rogge T., Scheremetjew A., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 5828–5832; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 5930–5934. [Google Scholar]
  • 10.Selected references:
  • 10a. Nguyen Q.-H., Guo S.-M., Royal T., Baudoin O., Cramer N., J. Am. Chem. Soc. 2020, 142, 2161–2167; [DOI] [PubMed] [Google Scholar]
  • 10b. Ozols K., Jang Y.-S., Cramer N., J. Am. Chem. Soc. 2019, 141, 5675–5680; [DOI] [PubMed] [Google Scholar]
  • 10c. Loup J., Müller V., Ghorai D., Ackermann L., Angew. Chem. Int. Ed. 2019, 58, 1749–1753; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 1763–1767; [Google Scholar]
  • 10d. Diesel J., Grosheva D., Kodama S., Cramer N., Angew. Chem. Int. Ed. 2019, 58, 11044–11048; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 11160–11164; [Google Scholar]
  • 10e. Cai Z.-J., Liu C.-X., Wang Q., Gu Q., You S.-L., Nat. Commun. 2019, 10, 4168; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10f. Cai Z.-J., Liu C.-X., Gu Q., Zheng C., You S.-L., Angew. Chem. Int. Ed. 2019, 58, 2149–2153; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 2171–2175; [Google Scholar]
  • 10g. Jerhaoui S., Djukic J.-P., Wencel-Delord J., Colobert F., ACS Catal. 2019, 9, 2532–2542; [Google Scholar]
  • 10h. Yoo C.-J., Rackl D., Liu W., Hoyt C. B., Pimentel B., Lively R. P., Davies H. M. L., Jones C. W., Angew. Chem. Int. Ed. 2018, 57, 10923–10927; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 11089–11093; [Google Scholar]
  • 10i. Pesciaioli F., Dhawa U., Oliveira J. C. A., Yin R., John M., Ackermann L., Angew. Chem. Int. Ed. 2018, 57, 15425–15429; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 15651–15655; [Google Scholar]
  • 10j. Loup J., Zell D., Oliveira J. C. A., Keil H., Stalke D., Ackermann L., Angew. Chem. Int. Ed. 2017, 56, 14197–14201; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2017, 129, 14385–14389; [Google Scholar]
  • 10k. Liao K., Pickel T. C., Boyarskikh V., Bacsa J., Musaev D. G., Davies H. M. L., Nature 2017, 551, 609–613. For reviews: [DOI] [PubMed] [Google Scholar]
  • 10l. Saint-Denis T. G., Zhu R.-Y., Chen G., Wu Q.-F., Yu J.-Q., Science 2018, 359, eaao4798; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10m. Ye B., Cramer N., Acc. Chem. Res. 2015, 48, 1308–1318; [DOI] [PubMed] [Google Scholar]
  • 10n. Wencel-Delord J., Colobert F., Chem. Eur. J. 2013, 19, 14010–14017, and references therein. [DOI] [PubMed] [Google Scholar]
  • 11. 
  • 11a. Lin Q., Li L., Luo S., Chem. Eur. J. 2019, 25, 10033–10044; [DOI] [PubMed] [Google Scholar]
  • 11b. Ghosh M., Shinde V. S., Rueping M., Beilstein J. Org. Chem. 2019, 15, 2710–2746; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11c. Chang X., Zhang Q., Guo C., Angew. Chem. Int. Ed. 2020, 10.1002/anie.202000016; [DOI] [Google Scholar]; Angew. Chem. 2020, 10.1002/ange.202000016. [DOI] [Google Scholar]
  • 12. 
  • 12a. Huang X., Zhang Q., Lin J., Harms K., Meggers E., Nat. Catal. 2019, 2, 34–40; [Google Scholar]
  • 12b. DeLano T. J., Reisman S. E., ACS Catal. 2019, 9, 6751–6754; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12c. Kise N., Hamada Y., Sakurai T., Org. Lett. 2014, 16, 3348–3351; [DOI] [PubMed] [Google Scholar]
  • 12d. Kise N., Ozaki H., Moriyama N., Kitagishi Y., Ueda N., J. Am. Chem. Soc. 2003, 125, 11591–11596. [DOI] [PubMed] [Google Scholar]
  • 13. 
  • 13a. Wang Q., Gu Q., You S.-L., Angew. Chem. Int. Ed. 2019, 58, 6818–6825; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2019, 131, 6890–6897; [Google Scholar]
  • 13b. Min C., Seidel D., Chem. Soc. Rev. 2017, 46, 5889–5902; [DOI] [PubMed] [Google Scholar]
  • 13c. Parmar D., Sugiono E., Raja S., Rueping M., Chem. Rev. 2014, 114, 9047–9153; [DOI] [PubMed] [Google Scholar]
  • 13d. Yu J., Shi F., Gong L.-Z., Acc. Chem. Res. 2011, 44, 1156–1171; [DOI] [PubMed] [Google Scholar]
  • 13e. Brunel J. M., Chem. Rev. 2008, 108, 1170; [Google Scholar]
  • 13f. Akiyama T., Itoh J., Fuchibe K., Adv. Synth. Catal. 2006, 348, 999–1010. [Google Scholar]
  • 14. 
  • 14a. Teichert J. F., Feringa B. L., Angew. Chem. Int. Ed. 2010, 49, 2486–2528; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2010, 122, 2538–2582; [Google Scholar]
  • 14b. Chen Y., Yekta S., Yudin A. K., Chem. Rev. 2003, 103, 3155–3212; [DOI] [PubMed] [Google Scholar]
  • 14c. Noyori R., Takaya H., Acc. Chem. Res. 1990, 23, 345–350. [Google Scholar]
  • 15. 
  • 15a. Bringmann G., Gulder T., Gulder T. A. M., Breuning M., Chem. Rev. 2011, 111, 563–639; [DOI] [PubMed] [Google Scholar]
  • 15b. Kozlowski M. C., Morgan B. J., Linton E. C., Chem. Soc. Rev. 2009, 38, 3193–3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. 
  • 16a. Smyth J. E., Butler N. M., Keller P. A., Nat. Prod. Rep. 2015, 32, 1562–1583; [DOI] [PubMed] [Google Scholar]
  • 16b. Clayden J., Moran W. J., Edwards P. J., LaPlante S. R., Angew. Chem. Int. Ed. 2009, 48, 6398–6401; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2009, 121, 6516–6520. [Google Scholar]
  • 17. Kakiuchi F., Le Gendre P., Yamada A., Ohtaki H., Murai S., Tetrahedron: Asymmetry 2000, 11, 2647–2651. [Google Scholar]
  • 18. 
  • 18a. Wang Q., Cai Z.-J., Liu C.-X., Gu Q., You S.-L., J. Am. Chem. Soc. 2019, 141, 9504–9510; [DOI] [PubMed] [Google Scholar]
  • 18b. Zheng J., Cui W.-J., Zheng C., You S.-L., J. Am. Chem. Soc. 2016, 138, 5242–5245; [DOI] [PubMed] [Google Scholar]
  • 18c. Zheng J., You S.-L., Angew. Chem. Int. Ed. 2014, 53, 13244–13247; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2014, 126, 13460–13463; [Google Scholar]
  • 18d. Gao D.-W., Gu Q., You S.-L., ACS Catal. 2014, 4, 2741–2745. [Google Scholar]
  • 19. 
  • 19a. Dherbassy Q., Djukic J.-P., Wencel-Delord J., Colobert F., Angew. Chem. Int. Ed. 2018, 57, 4668–4672; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 4758–4762; [Google Scholar]
  • 19b. Dherbassy Q., Schwertz G., Chessé M., Hazra C. K., Wencel-Delord J., Colobert F., Chem. Eur. J. 2016, 22, 1735–1743; [DOI] [PubMed] [Google Scholar]
  • 19c. Hazra C. K., Dherbassy Q., Wencel-Delord J., Colobert F., Angew. Chem. Int. Ed. 2014, 53, 13871–13875; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2014, 126, 14091–14095; [Google Scholar]
  • 19d. Wesch T., Leroux F. R., Colobert F., Adv. Synth. Catal. 2013, 355, 2139–2144. [Google Scholar]
  • 20. 
  • 20a. Li S.-X., Ma Y.-N., Yang S.-D., Org. Lett. 2017, 19, 1842–1845; [DOI] [PubMed] [Google Scholar]
  • 20b. Ma Y.-N., Zhang H.-Y., Yang S.-D., Org. Lett. 2015, 17, 2034–2037; see also: [DOI] [PubMed] [Google Scholar]
  • 20c. Yamaguchi K., Yamaguchi J., Studer A., Itami K., Chem. Sci. 2012, 3, 2165–2169; [Google Scholar]
  • 20d. Yamaguchi K., Kondo H., Yamaguchi J., Itami K., Chem. Sci. 2013, 4, 3753–3757. [Google Scholar]
  • 21. 
  • 21a. Jin L., Yao Q.-J., Xie P.-P., Li Y., Zhan B.-B., Han Y.-Q., Hong X., Shi B.-F., Chem 2020, 6, 497–511; [Google Scholar]
  • 21b. Liao G., Zhou T., Yao Q.-J., Shi B.-F., Chem. Commun. 2019, 55, 8514–8523. [DOI] [PubMed] [Google Scholar]
  • 22. 
  • 22a. Zhang S., Yao Q.-J., Liao G., Li X., Li H., Chen H.-M., Hong X., Shi B.-F., ACS Catal. 2019, 9, 1956–1961; [Google Scholar]
  • 22b. Fan J., Yao Q.-J., Liu Y.-H., Liao G., Zhang S., Shi B.-F., Org. Lett. 2019, 21, 3352–3356; [DOI] [PubMed] [Google Scholar]
  • 22c. Liao G., Yao Q.-J., Zhang Z.-Z., Wu Y.-J., Huang D.-Y., Shi B.-F., Angew. Chem. Int. Ed. 2018, 57, 3661–3665; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 3723–3727; [Google Scholar]
  • 22d. Liao G., Li B., Chen H.-M., Yao Q.-J., Xia Y.-N., Luo J., Shi B.-F., Angew. Chem. Int. Ed. 2018, 57, 17151–17155; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2018, 130, 17397–17401; [Google Scholar]
  • 22e. Yao Q.-J., Zhang S., Zhan B.-B., Shi B.-F., Angew. Chem. Int. Ed. 2017, 56, 6617–6621; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2017, 129, 6717–6721; [Google Scholar]
  • 22f. Song H., Li Y., Yao Q.-J., Jin L., Liu L., Liu Y.-H., Shi B.-F., Angew. Chem. Int. Ed. 2020, 59, 6576–6580; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2020, 132, 6638–6642. [Google Scholar]
  • 23. 
  • 23a. Ackermann L., Acc. Chem. Res. 2020, 53, 84–104; [DOI] [PubMed] [Google Scholar]
  • 23b. Ackermann L., Acc. Chem. Res. 2014, 47, 281–295. [DOI] [PubMed] [Google Scholar]
  • 24. 
  • 24a. Gandeepan P., Ackermann L., Chem 2018, 4, 199–222; [Google Scholar]
  • 24b. Zhao Q., Poisson T., Pannecoucke X., Besset T., Synthesis 2017, 49, 4808–4826. [Google Scholar]
  • 25.For detailed information, see the Supporting Information.
  • 26. 
  • 26a. Zhang J., Xu Q., Wu J., Fan J., Xie M., Org. Lett. 2019, 21, 6361–6365; [DOI] [PubMed] [Google Scholar]
  • 26b.see also: Wencel-Delord J., Frey J., Malekafzali A., Delso I., Choppin S., Colobert F., Angew. Chem. Int. Ed. 2020, 10.1002/anie.201914876; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2020, 10.1002/ange.201914876. [DOI] [Google Scholar]
  • 27.Representative progress:
  • 27a. Stará I. G., Starý I., Acc. Chem. Res. 2020, 53, 144–158; [DOI] [PubMed] [Google Scholar]
  • 27b. Hartung T., Machleid R., Simon M., Golz C., Alcarazo M., Angew. Chem. Int. Ed. 2020, 59, 5660–5664; [DOI] [PMC free article] [PubMed] [Google Scholar]; Angew. Chem. 2020, 132, 5709–5713; [Google Scholar]
  • 27c. Nejedlý J., Šámal M., Rybáček J., Sánchez I. G., Houska V., Warzecha T., Vacek J., Sieger L., Buděšínský M., Bednárová L., Fiedler P., Císařová I., Starý I., Stará I. G., J. Org. Chem. 2020, 85, 248–276; [DOI] [PubMed] [Google Scholar]
  • 27d. Dhbaibi K., Favereau L., Crassous J., Chem. Rev. 2019, 119, 8846–8953; [DOI] [PubMed] [Google Scholar]
  • 27e. Jančařík A., Rybáček J., Cocq K., Vacek Chocholoušová J., Vacek J., Pohl R., Bednárová L., Fiedler P., Císařová I., Stará I. G., Starý I., Angew. Chem. Int. Ed. 2013, 52, 9970–9975; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2013, 125, 10154–10159; [Google Scholar]
  • 27f. Gingras M., Chem. Soc. Rev. 2013, 42, 1051–1095; [DOI] [PubMed] [Google Scholar]
  • 27g. Žádný J., Jančařík A., Andronova A., Šámal M., Vacek Chocholoušová J., Vacek J., Pohl R., Šaman D., Císařová I., Stará I. G., Starý I., Angew. Chem. Int. Ed. 2012, 51, 5857–5861; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2012, 124, 5959–5963; [Google Scholar]
  • 27h. Shen Y., Chen C.-F., Chem. Rev. 2012, 112, 1463–1535; [DOI] [PubMed] [Google Scholar]
  • 27i. Grandbois A., Collins S. K., Chem. Eur. J. 2008, 14, 9323–9329; [DOI] [PubMed] [Google Scholar]
  • 27j. Urbano A., Angew. Chem. Int. Ed. 2003, 42, 3986–3989; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2003, 115, 4116–4119. [Google Scholar]
  • 28. Bergman R. G., Nature 2007, 446, 391–393. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary


Articles from Angewandte Chemie (International Ed. in English) are provided here courtesy of Wiley

RESOURCES