Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2020 Sep 17;9(38):e00622-20. doi: 10.1128/MRA.00622-20

Assembly of Bacterial Genomes from the Metagenomes of Three Lichen Species

Wisnu Adi Wicaksono a,, Tomislav Cernava a, Martin Grube b, Gabriele Berg a
Editor: Frank J Stewartc
PMCID: PMC7498425  PMID: 32943559

Bacteria have recently emerged as important constituents of lichen holobionts. Here, 29 bacterial metagenome-assembled genome (MAG) sequences were reconstructed from lichen metagenomes and taxonomically classified in four phyla. These results provide a pivotal resource for further exploration of the ecological roles played by bacterial symbionts in lichen holobionts.

ABSTRACT

Bacteria have recently emerged as important constituents of lichen holobionts. Here, 29 bacterial metagenome-assembled genome (MAG) sequences were reconstructed from lichen metagenomes and taxonomically classified in four phyla. These results provide a pivotal resource for further exploration of the ecological roles played by bacterial symbionts in lichen holobionts.

ANNOUNCEMENT

Lichenized fungi are known as symbiotic associations of a mycobiont (fungus) and a photobiont (green alga and/or cyanobacterium). Recently, evidence was found for the presence of bacterial communities that play important roles in this symbiotic system (14). Surprisingly little is known about the genomes of dominant but so far uncultured bacteria in these miniature ecosystems. Here, we present bacterial metagenome-assembled genomes (MAGs) that were reconstructed from three lichen metagenome samples, i.e., Lobaria pulmonaria (L.) Hoffm., Cladonia furcata (Huds.) Schrad., and Peltigera polydactylon (Neck.) Hoffm. (3, 5). The selected lichens represent variants of symbiotic associations of the mycobiont with one or two types of photobionts. The lung lichen L. pulmonaria includes a green alga (Dictyochloropsis reticulata) and a cyanobacterium (Nostoc sp.) as photobionts (6), and P. polydactylon includes a cyanobacterium (Nostoc sp.) (7). In contrast, the genus Cladonia includes only a green alga (Asterochloris sp.) (8).

Lichen samples were obtained from three locations in Austria (3, 5). Metagenomic DNA was extracted using the MO BIO PowerSoil DNA isolation kit. The metagenomic DNA was sequenced by GATC Biotech (Konstanz, Germany) after libraries were prepared with the Illumina TruSeq DNA library kit. The Illumina HiSeq 2000 (L. pulmonaria) and HiSeq 2500 (C. furcata and P. polydactylon) instruments were used for paired-end 100- or 150-bp sequencing, resulting in >35 million reads per metagenome. Community-level assessments of bacterial functioning using these metagenome data sets were reported elsewhere (3, 5).

Default parameters were used for all software unless otherwise noted. Illumina adaptor removal and initial filtering of low-quality reads (Phred scores of <20) were performed using Trimmomatic v0.39 and VSEARCH v2.14.2 (9, 10). Metagenome data sets were then de novo assembled using metaSPAdes v3.14.0 (11). Totals of 103,819, 135,511, and 68,049 contigs with a length of >1 kb were generated from the Cladonia, Lobaria, and Peltigera metagenome data sets, respectively. The generated contigs were binned using MaxBin2 v2.2.7, MetaBAT2 v2.12.1, and CONCOCT v1.1.0 (1214) and were further dereplicated and aggregated into MAGs using DAS Tool v1.1.1 (15). The completeness and the percentage of contaminations in the MAGs were estimated using CheckM v1.0.13 (16). The quality of the MAGs was classified according to the Minimum Information about a Metagenome-Assembled Genome (MIMAG) standards (17). The Bin Annotation Tool v4.6 was used to obtain the taxonomic classification for each MAG (18).

Twenty-nine MAGs with contamination of <10% were recovered. Among them, 7, 17, and 5 MAGs originated from the Cladonia, Lobaria, and Peltigera metagenomes, respectively. The MAGs were assigned to Proteobacteria (20 MAGs), Acidobacteria (3 MAGs), Bacteroidetes (3 MAGs), and Verrumicrobia (1 MAG) (Table 1). One MAG each was classified in the candidate phylum “Candidatus Parcubacteria” and the superphylum Terrabacteria. We recovered 8 high-quality, 18 medium-quality, and 3 low-quality draft MAGs. The estimated completeness of the MAGs ranged from 26.9 to 98.9%, and genome sizes ranged from 492,776 to 5,800,883 bp. To the best of our knowledge, our data present the first MAGs recovered from lichen metagenomes. They provide an extended basis for further exploration of the symbiotic function of lichen-associated bacteria that will be conducted in follow-up studies.

TABLE 1.

Detailed taxonomic classification, assembly characteristics, and GenBank accession numbers for bacterial MAGs

MAG alias Taxonomic classification Completeness (%) Contamination (%) Genome size (bp) GC content (%) MIMAG classification GenBank accession no.
Lichen_MAGs_cladonia1 Caulobacter sp. strain S45 95.2 2.5 3,258,825 68.8 High CAHJWH000000000
Lichen_MAGs_cladonia2 Sphingomonas 96.9 0.4 3,049,150 66.2 High CAHJWJ000000000
Lichen_MAGs_cladonia3 Sphingomonadaceae 70.6 0.4 2,507,990 68.6 Medium CAHJWP000000000
Lichen_MAGs_cladonia4 Burkholderiaceae 86.0 2.1 5,800,883 60.4 Medium CAHJWQ000000000
Lichen_MAGs_cladonia5 Rhodospirillales 72.9 4.7 4,389,355 65.7 Medium CAHJWS000000000
Lichen_MAGs_cladonia6 Acetobacteraceae 70.4 6.3 4,076,907 68.1 Medium CAHJXI010000000
Lichen_MAGs_cladonia7 Acidobacteriaceae 97.2 6.2 4,643,711 57.8 Medium CAHJWN000000000
Lichen_MAGs_lobaria1 Acidobacteriaceae 98.9 3.6 3,786,442 61.3 High CAHJWL010000000
Lichen_MAGs_lobaria2 Myxococcales 90.8 3.1 5,830,418 63.7 High CAHJWM010000000
Lichen_MAGs_lobaria3 Sphingobacteriaceae 97.0 3.0 3,839,488 39.2 High CAHJWG010000000
Lichen_MAGs_lobaria4 Acidobacteriaceae 96.2 1.7 3,656,062 60.4 High CAHJWI010000000
Lichen_MAGs_lobaria5 Verrucomicrobia 91.3 2.0 4,381,859 63.2 High CAHJWO010000000
Lichen_MAGs_lobaria6 Chitinophagaceae 97.4 2.6 4,287,644 35.8 High CAHJWK010000000
Lichen_MAGs_lobaria7 Terrabacteria group 52.4 0.2 2,887,644 62.1 Medium CAHJWR010000000
Lichen_MAGs_lobaria8 Rhizobiales 76.7 0.9 3,213,075 68.9 Medium CAHJXE010000000
Lichen_MAGs_lobaria9 Sphingobacteriaceae 87.1 1.1 4,667,688 42.1 Medium CAHJXH010000000
Lichen_MAGs_lobaria10 Sphingomonas 77.7 2.4 2,792,940 68.1 Medium CAHJXA010000000
Lichen_MAGs_lobaria11 Betaproteobacteria 87.8 2.2 3,713,330 68.9 Medium CAHJXF000000000
Lichen_MAGs_lobaria12 Sphingomonas 66.5 2.1 2,627,184 69.0 Medium CAHJWX010000000
Lichen_MAGs_lobaria13 Sphingomonas 77.5 1.3 2,846,736 68.8 Medium CAHJWW010000000
Lichen_MAGs_lobaria14 Rhodospirillales 80.7 1.2 3,128,862 67.0 Medium CAHJWU010000000
Lichen_MAGs_lobaria15 Sphingomonadaceae 82.1 0.0 2,472,747 69.6 Medium CAHJWT010000000
Lichen_MAGs_lobaria16 Deltaproteobacteria 26.9 1.5 880,962 69.6 Low CAHJWZ000000000
Lichen_MAGs_lobaria17 Candidatus Parcubacteria” 40.0 1.1 492,776 48.0 Low CAHJXB000000000
Lichen_MAGs_peltigera1 Burkholderiales 83.8 5.5 4,417,129 63.3 Medium CAHJWV010000000
Lichen_MAGs_peltigera2 Rhodospirillales 63.7 1.0 3,333,202 69.5 Medium CAHJXG010000000
Lichen_MAGs_peltigera3 Sphingomonadaceae 54.1 0.9 1,837,053 68.5 Medium CAHJXC010000000
Lichen_MAGs_peltigera4 Sphingomonas 83.7 1.1 2,414,019 67.0 Medium CAHJXD010000000
Lichen_MAGs_peltigera5 Comamonadaceae 27.5 1.7 1,671,302 65.3 Low CAHJWY010000000

Data availability.

This shotgun metagenome project with three lichen metagenomes has been deposited in the European Nucleotide Archive (ENA) database under the study number PRJEB38505 and accession numbers ERR4179389 to ERR4179391 for the data sets. The MAG sequences are accessible under the accession numbers provided in Table 1.

ACKNOWLEDGMENT

This work was supported by a grant from the Austrian Science Fund (FWF) to G.B. and M.G. (FWF project I882).

REFERENCES

  • 1.Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314. doi: 10.1128/AEM.02257-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G. 2017. Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82. doi: 10.1186/s40168-017-0303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G. 2015. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424. doi: 10.1038/ismej.2014.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Cernava T, Aschenbrenner IA, Soh J, Sensen CW, Grube M, Berg G. 2019. Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME J 13:547–556. doi: 10.1038/s41396-018-0286-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cernava T, Vasfiu Q, Erlacher A, Aschenbrenner IA, Francesconi K, Grube M, Berg G. 2018. Adaptions of lichen microbiota functioning under persistent exposure to arsenic contamination. Front Microbiol 9:2959. doi: 10.3389/fmicb.2018.02959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Cornejo C, Scheidegger C. 2013. New morphological aspects of cephalodium formation in the lichen Lobaria pulmonaria (Lecanorales, Ascomycota). Lichenologist 45:77–87. doi: 10.1017/S0024282912000631. [DOI] [Google Scholar]
  • 7.Jüriado I, Kaasalainen U, Jylhä M, Rikkinen J. 2019. Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecol 39:45–54. doi: 10.1016/j.funeco.2018.11.005. [DOI] [Google Scholar]
  • 8.Yahr R, Vilgalys R, Depriest PT. 2004. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378. doi: 10.1111/j.1365-294X.2004.02350.x. [DOI] [PubMed] [Google Scholar]
  • 9.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. doi: 10.1101/gr.213959.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. doi: 10.1038/nmeth.3103. [DOI] [PubMed] [Google Scholar]
  • 13.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. doi: 10.1093/bioinformatics/btv638. [DOI] [PubMed] [Google Scholar]
  • 15.Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF. 2018. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843. doi: 10.1038/s41564-018-0171-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium , Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731. doi: 10.1038/nbt.3893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.von Meijenfeldt FB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. 2019. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol 20:217. doi: 10.1186/s13059-019-1817-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This shotgun metagenome project with three lichen metagenomes has been deposited in the European Nucleotide Archive (ENA) database under the study number PRJEB38505 and accession numbers ERR4179389 to ERR4179391 for the data sets. The MAG sequences are accessible under the accession numbers provided in Table 1.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES