Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Sep 14;63(11):1634–1650. doi: 10.1007/s11427-020-1799-y

Natural product sciences: an integrative approach to the innovations of plant natural products

Yuemao Shen 1, Xiaojiang Hao 2,
PMCID: PMC7504874  PMID: 32955660

Abstract

The study on plant natural products not only helps us understand that their structural diversity is the inevitable result of plant species diversity, but also helps us understand certain rules and unity of the inevitable connection between the two. The diversity and complexity of chemical structures of many natural products are beyond imagination before we elucidated their structures. The question that follows is what is the biological significance of these natural products. Intrigued by the relationship between plant resources, natural products and biological functions, the Hao laboratory has taken an integrative approach that employs tools and knowledge from multi-disciplines, including natural product chemistry, chemical ecology and chemical biology, to unveil the effects of plant natural products on plant resistance to diseases, and environmental acclimations. Collaborating with cell biologists, the research has resulted in discovery of new mechanisms of cellular signaling and lead compounds.

Keywords: plant natural product, chemical structure, biological significance

Footnotes

Compliance and ethics

The author(s) declare that they have no conflict of interest.

References

  1. Cai JY, Zhang Y, Luo SH, Chen DZ, Tang GH, Yuan CM, Di Y T, Li SH, Hao XJ, He HP. Aphanamixoid A, a potent defensive limonoid, with a new carbon skeleton from Aphanamixis polystachya. Org Lett. 2012;14:2524–2527. doi: 10.1021/ol3008149. [DOI] [PubMed] [Google Scholar]
  2. Cao MM, Huang SD, Di YT, Yuan CM, Zuo GY, Gu YC, Zhang Y, Hao XJ. Myrifabine, the first dimeric Myrioneuron alkaloid from Myrioneuron faberi. Org Lett. 2014;16:528–531. doi: 10.1021/ol403408m. [DOI] [PubMed] [Google Scholar]
  3. Cao MM, Zhang Y, Li XH, Peng ZG, Jiang JD, Gu YC, Di YT, Li XN, Chen DZ, Xia CF, et al. Cyclohexane-fused octahydroquinolizine alkaloids from Myrioneuron faberi with activity against hepatitis C virus. J Org Chem. 2014;79:7945–7950. doi: 10.1021/jo501076x. [DOI] [PubMed] [Google Scholar]
  4. Chattopadhyay AK, Hanessian S. Recent progress in the chemistry of Daphniphyllum alkaloids. Chem Rev. 2017;117:4104–4146. doi: 10.1021/acs.chemrev.6b00412. [DOI] [PubMed] [Google Scholar]
  5. Chen DZ, Jing CX, Cai JY, Wu JB, Wang S, Yin JL, Li XN, Li L, Hao XJ. Design, synthesis, and structural optimization of lycorine-derived phenanthridine derivatives as Wnt/β-catenin signaling pathway agonists. J Nat Prod. 2016;79:180–188. doi: 10.1021/acs.jnatprod.5b00825. [DOI] [PubMed] [Google Scholar]
  6. Chen Q, Jiang T, Liu YX, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J, et al. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci. 2019;62:947–958. doi: 10.1007/s11427-019-9521-2. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. Benzoylisothiocyanate as a reagent for the identification of alcohols. Acta Chim Sin. 1953;19:153–155. [Google Scholar]
  8. Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep. 2017;7:12504. doi: 10.1038/s41598-017-12249-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chi YF, Kao YS, Chang KJ. The alkaloids of Fritillaria roylei. I. Isolation of peimine1. J Am Chem Soc. 1936;58:1306–1307. [Google Scholar]
  10. Chou TQ. The alkaloids of Chinese Corydalis ambigua Cham. et Seh. (Yen-Hu-Suo). Part I. Chin J Physiol. 1928;2:203–218. [Google Scholar]
  11. Chu JH. An alkaloid of Chinese Aconitum, A. delavayi French. Acta Chim Sin. 1955;19:332–335. [Google Scholar]
  12. Chu TT, Hwang WK, Loh JY. A study of Fritillaria alkaloids III. Determination of the skeleton of peimine and peiminine by zinc dust distillation and selenium dehydrogenation. Acta Chim Sin. 1955;19:232–240. [Google Scholar]
  13. Chu TT, Chou TQ. Conversion of peimine into peiminine and vice versa. J Am Chem Soc. 1947;69:1257. [Google Scholar]
  14. Di YT, He HP, Liu HY, Du ZZ, Tian JM, Yang XW, Wang YH, Hao XJ. Calycilactone A, a novel hexacyclic alkaloid from Daphniphyllum calycillum. Tetrahedron Lett. 2006;47:5329–5331. [Google Scholar]
  15. Di YT, He HP, Lu Y, Yi P, Li L, Wu L, Hao XJ. Alkaloids from the leaves of Daphniphyllum longeracemosum. J Nat Prod. 2006;69:1074–1076. doi: 10.1021/np060088f. [DOI] [PubMed] [Google Scholar]
  16. Di YT, Wee CS, Li CS, Kong NC, Wang JS, Fang X, Zhu HJ, Wu YD, Hao XJ. Longphyllinesides A and B: natural Diels-Alder adducts from Daphniphyllum longeracemosum? Tetrahedron. 2014;70:4017–4021. [Google Scholar]
  17. Di YT, He HP, Wang YS, Li LB, Lu Y, Gong JB, Fang X, Kong NC, Li SL, Zhu HJ, et al. Isolation, X-ray crystallography, and computational studies of calydaphninone, a new alkaloid from Daphniphyllum calycillum. Org Lett. 2007;9:1355–1358. doi: 10.1021/ol070218r. [DOI] [PubMed] [Google Scholar]
  18. Fang S, Xiao-tian L, Dequan Y, Chang-fu X, Clardy J. The structures of spirasine V and spirasine VI. Tetrahedron Lett. 1986;27:275–278. [Google Scholar]
  19. Fang X, Di Y, Geng Z, Tan C, Guo J, Ning J, Hao X. Trichiliton A, a novel limonoid from Trichilia connaroides. Eur J Org Chem. 2010;2010(7):1381–1387. [Google Scholar]
  20. Fang X, Di YT, Hao XJ. The advances in the limonoid chemistry of the Meliaceae family. Curr Org Chem. 2011;15:1363–1391. [Google Scholar]
  21. Fang X, Di YT, He HP, Liu HY, Zhang Z, Ren YL, Gao ZL, Gao S, Hao XJ. Cipadonoid A, a novel limonoid with an unprecedented skeleton, from Cipadessa cinerasecns. Org Lett. 2008;10:1905–1908. doi: 10.1021/ol800415n. [DOI] [PubMed] [Google Scholar]
  22. Fang X, Zhang Q, Tan CJ, Mu SZ, Lű Y, Lu YB, Zheng QT, Di YT, Hao XJ. Cipadonoids B—G, six new limonoids from Cipadessa cinerascens. Tetrahedron. 2009;65:7408–7414. [Google Scholar]
  23. Fu Y, Zhang Y, He H, Hou L, Di Y, Li S, Luo X, Hao X. Strynuxlines A and B, alkaloids with an unprecedented carbon skeleton from Strychnos nux-vomica. J Nat Prod. 2012;75:1987–1990. doi: 10.1021/np300339r. [DOI] [PubMed] [Google Scholar]
  24. Gao S, Liu HY, Wang YH, He HP, Wang JS, Di YT, Li CS, Fang X, Hao XJ. Lathyranone A: a diterpenoid possessing an unprecedented skeleton from Euphorbia lathyris. Org Lett. 2007;9:3453–3455. doi: 10.1021/ol701501p. [DOI] [PubMed] [Google Scholar]
  25. Ge Y, Liu K, Zhang J, Mu S, Hao X. The limonoids and their antitobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv. J Agric Food Chem. 2012;60:4289–4295. doi: 10.1021/jf205362d. [DOI] [PubMed] [Google Scholar]
  26. Ge YH, Zhang JX, Mu SZ, Chen Y, Yang FM, Lű Y, Hao X J. Munronoids A-J, ten new limonoids from Munronia unifoliolata Oliv. Tetrahedron. 2012;68:566–572. [Google Scholar]
  27. Goerig M, Schulte am Esch J. Friedrich Wilhelm Adam Sertürner — dem Entdecker des Morphins zum 150. Todestag. Anästhesiol Intensivmed Notfallmed Schmerzther. 1991;26:492–498. doi: 10.1055/s-2007-1000624. [DOI] [PubMed] [Google Scholar]
  28. Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. 1996;8:629–643. doi: 10.1105/tpc.8.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gravel E, Poupon E. Biosynthesis and biomimetic synthesis of alkaloids isolated from plants of the Nitraria and Myrioneuron genera: an unusual lysine-based metabolism. Nat Prod Rep. 2010;27:32–56. doi: 10.1039/b911866g. [DOI] [PubMed] [Google Scholar]
  30. Artemisinin Structure Research Collaboration Group A new sesquiterpene lactone—artemisinin. Chin Sci Bull. 1977;22:142. [Google Scholar]
  31. Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep. 2012;29:683–696. doi: 10.1039/c2np20021j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Guo J, He HP, Fang X, Di YT, Li SL, Zhang Z, Leng Y, Hua H M, Hao XJ. Kansuinone, a novel euphane-type triterpene from Euphorbia kansui. Tetrahedron Lett. 2010;51:6286–6289. [Google Scholar]
  33. Guo LL, He HP, Di YT, Li SF, Cheng YY, Yang W, Li Y, Yu J P, Zhang Y, Hao XJ. Indole alkaloids from Ervatamia chinensis. Phytochemistry. 2012;74:140–145. doi: 10.1016/j.phytochem.2011.11.002. [DOI] [PubMed] [Google Scholar]
  34. Hao XJ, Zhou J, Manabu N, Kaoru F. Calycinine A, a new alkaloid from the seed of Daphniphyllum calycinum. Acta Bot Yunnan. 1993;15:205–207. [Google Scholar]
  35. Hao X. Chemical and biological study of Spiraea japonica Complex (in Chinese) Prog Chem. 2009;21:84–99. [Google Scholar]
  36. Hao X, Shen Y, Li L, He H. The chemistry and biochemistry of Spiraea japonica complex. Curr Med Chem. 2003;10:2253–2263. doi: 10.2174/0929867033456684. [DOI] [PubMed] [Google Scholar]
  37. Hao X, Yang C, Chen S, Zhou J. The chemotaxonomy of Chinese species of the genus Aconitum L. (Ranunculaceae) Acta Phytotaxon Sin. 1985;23:321–335. [Google Scholar]
  38. Harvey AL, Edrada-Ebel RA, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–129. doi: 10.1038/nrd4510. [DOI] [PubMed] [Google Scholar]
  39. He X, Zhang W, Yan C, Nie F, Li C, Liu X, Fei C, Li S, Song X, Jia Y, et al. Chemical biology reveals CARF as a positive regulator of canonical Wnt signaling by promoting TCF/β-catenin transcriptional activity. Cell Discov. 2017;3:17003. doi: 10.1038/celldisc.2017.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hu XJ, Wang YH, Kong LY, He HP, Gao S, Liu HY, Ding J, Xie H, Di YT, Hao XJ. New phenanthrenes from Trigonostemon lii Y.T. Chang. Tetrahedron Lett. 2009;50:2917–2919. [Google Scholar]
  41. Hu ZX, An Q, Tang HY, Yuan CM, Li YN, Zhang Y, Hao X J. Stemtuberolines A—G, new alkaloids from Stemona tuberosa and their anti-TMV activity. Fitoterapia. 2020;143:104572. doi: 10.1016/j.fitote.2020.104572. [DOI] [PubMed] [Google Scholar]
  42. Hu ZX, Tang HY, Guo J, Aisa HA, Zhang Y, Hao XJ. Alkaloids from the roots of Stemona tuberosa and their anti-tobacco mosaic virus activities. Tetrahedron. 2019;75:1711–1716. [Google Scholar]
  43. Huang SD, Zhang Y, Cao MM, Di YT, Tang GH, Peng ZG, Jiang JD, He HP, Hao XJ. Myriberine A, a new alkaloid with an unprecedented heteropentacyclic skeleton from Myrioneuron faberi. Org Lett. 2013;15:590–593. doi: 10.1021/ol3034065. [DOI] [PubMed] [Google Scholar]
  44. Kong NC, Zhang Y, Gao S, Lu Y, Zheng QT, Sun QY, Yang FM, Di YT, Hao XJ. Structural elucidation ofdaphniacetal A, a new oxa-cage compound isolated from Daphniphyllum macropodum Miq. Tetrahedron Lett. 2009;50:957–959. [Google Scholar]
  45. Kumar MS, Narla A, Nonami A, Mullally A, Dimitrova N, Ball B, McAuley JR, Poveromo L, Kutok JL, Galili N, et al. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q— syndrome. Blood. 2011;118:4666–4673. doi: 10.1182/blood-2010-12-324715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Li CS, Di YT, Mu SZ, He HP, Zhang Q, Fang X, Zhang Y, Li S L, Lu Y, Gong YQ, et al. Daphniphyllum and diterpenoid alkaloids from Daphniphyllum longeracemosum. J Nat Prod. 2008;71:1202–1206. doi: 10.1021/np8001332. [DOI] [PubMed] [Google Scholar]
  47. Li CS, Di YT, He HP, Gao S, Wang YH, Lu Y, Zhong JL, Hao XJ. Daphlongeranines A and B, two novel alkaloids possessing unprecedented skeletons from Daphniphyllum longeracemosum. Org Lett. 2007;9:2509–2512. doi: 10.1021/ol070942+. [DOI] [PubMed] [Google Scholar]
  48. Li L, He H, Di Y, Gao S, Hao X. Daphnilongerine, an unprecedented fused pentacyclic ring system alkaloid from Daphniphyllum longeracemosum Rosenth. Tetrahedron Lett. 2006;47:6259–6262. [Google Scholar]
  49. Li M, Du XB, Shen YM, Wang BG, Hao XJ. New diterpenoid alkaloids from Spiraea fritschiana var. parvifolia. Chin Chem Lett. 1999;10:827–830. [Google Scholar]
  50. Li XH, Zhang Y, Zhang JH, Li XN, Cao MM, Di YT, Peng ZG, Jiang JD, Hao XJ. Myritonines A—C, alkaloids from Myrioneuron tonkinensis based on a novel hexacyclic skeleton. J Nat Prod. 2016;79:1203–1207. doi: 10.1021/acs.jnatprod.5b01130. [DOI] [PubMed] [Google Scholar]
  51. Li Y, Hao X, Li S, He H, Yan X, Chen Y, Dong J, Zhang Z, Li S. Eudesmanolides from Wedelia trilobata (L.) Hitchc. as potential inducers of plant systemic acquired resistance. J Agric Food Chem. 2013;61:3884–3890. doi: 10.1021/jf400390e. [DOI] [PubMed] [Google Scholar]
  52. Li Y, Jia Y, Zhang Z, Chen X, He H, Fang R, Hao X. Purification and characterization of a new ribosome inactivating protein from cinchonaglycoside C-treated tobacco leaves. J Integrat Plant Biol. 2007;49:1327–1333. [Google Scholar]
  53. Li Y, Wang L, Li S, Chen X, Shen Y, Zhang Z, He H, Xu W, Shu Y, Liang G, et al. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses. Proc Natl Acad Sci USA. 2007;104:8083–8088. doi: 10.1073/pnas.0702398104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, Huang X, Wang X, Jian Y, Tang G, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol. 2016;18:1065–1077. doi: 10.1038/ncb3407. [DOI] [PubMed] [Google Scholar]
  55. Li Y, Zhang Y, Gan Q, Xu M, Ding X, Tang G, Liang J, Liu K, Liu X, Wang X, et al. C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death. Protein Cell. 2018;9:1013–1026. doi: 10.1007/s13238-018-0520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Li Y, Zhang Z, Jia Y, Shen Y, He H, Fang R, Chen X, Hao X. 3-Acetonyl-3-hydroxyoxindole: a new inducer of systemic acquired resistance in plants. Plant Biotech J. 2008;6:301–308. doi: 10.1111/j.1467-7652.2008.00322.x. [DOI] [PubMed] [Google Scholar]
  57. Liang XT. The structure of securinine. Sci China Ser A. 1963;12:1525–1539. [Google Scholar]
  58. Liu CP, Xu JB, Han YS, Wainberg MA, Yue JM. Trichiconins A—C, limonoids with new carbon skeletons from Trichilia connaroides. Org Lett. 2014;16:5478–5481. doi: 10.1021/ol5027552. [DOI] [PubMed] [Google Scholar]
  59. Liu J, Mu C, Yue W, Li J, Ma B, Zhao L, Liu L, Chen Q, Yan C, Liu H, et al. A diterpenoid derivate compound targets selenocysteine of thioredoxin reductases and induces Bax/Bak-independent apoptosis. Free Rad Biol Med. 2013;63:485–494. doi: 10.1016/j.freeradbiomed.2013.05.038. [DOI] [PubMed] [Google Scholar]
  60. Liu M, Wang WG, Sun HD, Pu JX. Diterpenoids from Isodon species: an update. Nat Prod Rep. 2017;34:1090–1140. doi: 10.1039/c7np00027h. [DOI] [PubMed] [Google Scholar]
  61. Liu T, Xia L, Yao Y, Yan C, Fan Y, Gajendran B, Yang J, Li YJ, Chen J, Filmus J, et al. Identification of diterpenoid compounds that interfere with Fli-1 DNA binding to suppress leukemogenesis. Cell Death Dis. 2019;10:117. doi: 10.1038/s41419-019-1363-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Liu Z, Qanmber G, Lu L, Qin W, Liu J, Li J, Ma S, Yang Z, Yang Z. Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling. Sci China Life Sci. 2018;61:1566–1582. doi: 10.1007/s11427-018-9412-x. [DOI] [PubMed] [Google Scholar]
  63. Lu King, M., Chiang, C.C., Ling, H.C., Fujita, E., Ochiai, M., and McPhail, A.T. (1982). X-Ray crystal structure of rocaglamide, a novel antileulemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun, 1150–1151.
  64. Lv C, Yan X, Tu Q, Di Y, Yuan C, Fang X, Ben-David Y, Xia L, Gong J, Shen Y, et al. Isolation and asymmetric total synthesis of perforanoid A. Angew Chem Int Ed. 2016;55:7539–7543. doi: 10.1002/anie.201602783. [DOI] [PubMed] [Google Scholar]
  65. Ma Y, Mao XY, Huang LJ, Fan YM, Gu W, Yan C, Huang T, Zhang JX, Yuan CM, Hao XJ. Diterpene alkaloids and diterpenes from Spiraea japonica and their anti-tobacco mosaic virus activity. Fitoterapia. 2016;109:8–13. doi: 10.1016/j.fitote.2015.11.019. [DOI] [PubMed] [Google Scholar]
  66. Oostendorp M, Kunz W, Dietrich B, Staub T. Induced disease resistance in plants by chemicals. Eur J Plant Pathol. 2001;107:19–28. [Google Scholar]
  67. Osbourn A, Goss RJM, Field RA. The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep. 2011;28:1261–1268. doi: 10.1039/c1np00015b. [DOI] [PubMed] [Google Scholar]
  68. Qiao YJ, Shang JH, Wang D, Zhu HT, Yang CR, Zhang YJ. Research of Panax spp. in Kunming Institute of Botany, CAS. Nat Prod Bioprospect. 2018;8:245–263. doi: 10.1007/s13659-018-0176-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Riggi N, Suvà ML, De Vito C, Provero P, Stehle JC, Baumer K, Cironi L, Janiszewska M, Petricevic T, Suvà D, et al. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev. 2010;24:916–932. doi: 10.1101/gad.1899710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sang X, Chen Y, Chen W, Xie J, Meng G, Zhong J, Li T, Lu A. Celastrol specifically inhibits the activation of NLRP3 inflammasome. Sci China Life Sci. 2018;61:355–357. doi: 10.1007/s11427-017-9048-8. [DOI] [PubMed] [Google Scholar]
  71. Savini M, Zhao Q, Wang MC. Lysosomes: signaling hubs for metabolic sensing and longevity. Trends Cell Biol. 2019;29:876–887. doi: 10.1016/j.tcb.2019.08.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Shikano I. Evolutionary ecology of multitrophic interactions between plants, insect herbivores and entomopathogens. J Chem Ecol. 2017;43:586–598. doi: 10.1007/s10886-017-0850-z. [DOI] [PubMed] [Google Scholar]
  73. Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao X, Gajendran B, Xu D, Li YJ, Wang C, et al. Novel flavagline-like compounds with potent Fli-1 inhibitory activity suppress diverse types of leukemia. FEBS J. 2018;285:4631–4645. doi: 10.1111/febs.14690. [DOI] [PubMed] [Google Scholar]
  74. Sun HD, Huang SX, Han QB. Diterpenoids from Isodon species and their biological activities. Nat Prod Rep. 2006;23:673–698. doi: 10.1039/b604174d. [DOI] [PubMed] [Google Scholar]
  75. Tan C, Di Y, Wang Y, Wang Y, Mu S, Gao S, Zhang Y, Kong N, He H, Zhang J, et al. Oldhamine A, a novel alkaloid from Daphniphyllum oldhami. Tetrahedron Lett. 2008;49:3376–3379. [Google Scholar]
  76. Tan CJ, Di YT, Wang YH, Zhang Y, Si YK, Zhang Q, Gao S, Hu XJ, Fang X, Li SF, et al. Three new indole alkaloids from Trigonostemon lii. Org Lett. 2010;12:2370–2373. doi: 10.1021/ol100715x. [DOI] [PubMed] [Google Scholar]
  77. Tan QG, Luo XD. Meliaceous limonoids: chemistry and biological activities. Chem Rev. 2011;111:7437–7522. doi: 10.1021/cr9004023. [DOI] [PubMed] [Google Scholar]
  78. Tang GH, He HP, Gu YC, Di YT, Wang YH, Li SF, Li SL, Zhang Y, Hao XJ. 3,4-seco-Diterpenoids from Trigonostemon flavidus. Tetrahedron. 2012;68:9679–9684. [Google Scholar]
  79. Tian DS, Yi P, Xia L, Xiao X, Fan YM, Gu W, Huang LJ, BenDavid Y, Di YT, Yuan CM, et al. Garmultins A—G, biogenetically related polycyclic acylphloroglucinols from Garcinia multiflora. Org Lett. 2016;18:5904–5907. doi: 10.1021/acs.orglett.6b03004. [DOI] [PubMed] [Google Scholar]
  80. Tong L, Zhang Y, He H, Hao X. Four new limonoids from Aphanamixis grandifolia. Chin J Chem. 2012;30:1261–1264. [Google Scholar]
  81. Vergara F, Rymen B, Kuwahara A, Sawada Y, Sato M, Hirai M Y. Autopolyploidization, geographic origin, and metabolome evolution in Arabidopsis thaliana. Am J Bot. 2017;104:905–914. doi: 10.3732/ajb.1600419. [DOI] [PubMed] [Google Scholar]
  82. Wang J, He H, Shen Y, Hao X. Sulfur-containing and dimeric flavanols from Glycosmis montana. Tetrahedron Lett. 2005;46:169–172. [Google Scholar]
  83. Wang L, He HP, Di YT, Zhang Y, Hao XJ. Catharoseumine, a new monoterpenoid indole alkaloid possessing a peroxy bridge from Catharanthus roseus. Tetrahedron Lett. 2012;53:1576–1578. [Google Scholar]
  84. Wang P, Niu B. Plant specialized metabolites modulate root microbiomes. Sci China Life Sci. 2019;62:1111–1113. doi: 10.1007/s11427-019-9579-6. [DOI] [PubMed] [Google Scholar]
  85. Wang S, Yin J, Chen D, Nie F, Song X, Fei C, Miao H, Jing C, Ma W, Wang L, et al. Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction. Nat Chem Biol. 2013;9:579–585. doi: 10.1038/nchembio.1309. [DOI] [PubMed] [Google Scholar]
  86. Wang W, Liu H, Wang S, Hao X, Li L. A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis. Cell Res. 2011;21:730–740. doi: 10.1038/cr.2011.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wang XN, Yin S, Fan CQ, Wang FD, Lin LP, Ding J, Yue J M. Turrapubesins A and B, first examples of halogenated and maleimide-bearing limonoids in nature from Turraea pubescens. Org Lett. 2006;8:3845–3848. doi: 10.1021/ol061466a. [DOI] [PubMed] [Google Scholar]
  88. Wang YH, Zhang ZK, Yang FM, Sun QY, He HP, Di YT, Mu S Z, Lu Y, Chang Y, Zheng QT, et al. Benzylphenethylamine alkaloids from Hosta plantaginea with inhibitory activity against tobacco mosaic virus and acetylcholinesterase. J Nat Prod. 2007;70:1458–1461. doi: 10.1021/np0702077. [DOI] [PubMed] [Google Scholar]
  89. Wang YH, Gao S, Yang FM, Sun QY, Wang JS, Liu HY, Li CS, Di YT, Li SL, He HP, et al. Structure elucidation and biomimetic synthesis of hostasinine A, a new benzylphenethylamine alkaloid from Hosta plantaginea. Org Lett. 2007;9:5279–5281. doi: 10.1021/ol702438h. [DOI] [PubMed] [Google Scholar]
  90. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 1991;3:1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Wu SH, Luo XD, Ma YB, Hao XJ, Zhou J, Wu DG. Two new germacranolides from Magnolia grandiflora. J Asian Nat Prod Res. 2001;3:95–102. doi: 10.1080/10286020108041376. [DOI] [PubMed] [Google Scholar]
  92. Xiang GX, Hu HZ, Chen JR, Chen WX, Wu LS. A new agricultural antibiotic-ningnanmycin. Acta Microbiol Sin. 1995;36:368–374. [Google Scholar]
  93. Yan C, Huang L, Liu HC, Chen DZ, Liu HY, Li XH, Zhang Y, Geng MY, Chen Q, Hao XJ. Spiramine derivatives induce apoptosis of Bax−/−/Bak−/− cell and cancer cells. Biroorg Med Chem Lett. 2014;24:1884–1888. doi: 10.1016/j.bmcl.2014.03.019. [DOI] [PubMed] [Google Scholar]
  94. Yan XH, Di YT, Fang X, Yang SY, He HP, Li SL, Lu Y, Hao XJ. Chemical constituents from fruits of Harrisonia perforata. Phytochemistry. 2011;72:508–513. doi: 10.1016/j.phytochem.2011.01.010. [DOI] [PubMed] [Google Scholar]
  95. Yan XH, Chen J, Di YT, Fang X, Dong JH, Sang P, Wang YH, He HP, Zhang ZK, Hao XJ. Anti tobacco mosaic virus (TMV) quassinoids from Brucea javanica (L.) Merr. J Agric Food Chem. 2010;58:1572–1577. doi: 10.1021/jf903434h. [DOI] [PubMed] [Google Scholar]
  96. Yan Y, Tang L, Hu J, Wang J, Adelakun TA, Yang D, Di Y, Zhang Y, Hao X. Munronin O, a potential activator for plant resistance. Pesticide Biochem Physiol. 2018;146:13–18. doi: 10.1016/j.pestbp.2018.02.001. [DOI] [PubMed] [Google Scholar]
  97. Yan Y, Zhang JX, Huang T, Mao XY, Gu W, He HP, Di YT, Li SL, Chen DZ, Zhang Y, et al. Bioactive limonoid constituents of Munronia henryi. J Nat Prod. 2015;78:811–821. doi: 10.1021/np501057f. [DOI] [PubMed] [Google Scholar]
  98. Yang WQ, Shao XH, Deng F, Hu LJ, Xiong Y, Huang XJ, Fan C L, Jiang RW, Ye WC, Wang Y. Unprecedented quassinoids from Eurycoma longifolia: biogenetic evidence and antifeedant effects. J Nat Prod. 2020;83:1674–1683. doi: 10.1021/acs.jnatprod.0c00244. [DOI] [PubMed] [Google Scholar]
  99. Yang XW, Grossman RB, Xu G. Research progress of polycyclic polyprenylated acylphloroglucinols. Chem Rev. 2018;118:3508–3558. doi: 10.1021/acs.chemrev.7b00551. [DOI] [PubMed] [Google Scholar]
  100. Yao R, Li J, Xie D. Recent advances in molecular basis for strigolactone action. Sci China Life Sci. 2018;61:277–284. doi: 10.1007/s11427-017-9195-x. [DOI] [PubMed] [Google Scholar]
  101. Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, Yan C, Wu H, Du L, Wang Y, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 2014;24:482–496. doi: 10.1038/cr.2014.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Zhang Q, Di YT, Li CS, Fang X, Tan CJ, Zhang Z, Zhang Y, He HP, Li SL, Hao XJ. Daphenylline, a new alkaloid with an unusual skeleton, from Daphniphyllum longeracemosum. Org Lett. 2009;11:2357–2359. doi: 10.1021/ol9007958. [DOI] [PubMed] [Google Scholar]
  103. Zhang T, Zhang Y, Jiang N, Zhao X, Sang X, Yang N, Feng Y, Chen R, Chen Q. Dihydroartemisinin regulates the immune system by promotion of CD8+ T lymphocytes and suppression of B cell responses. Sci China Life Sci. 2020;63:737–749. doi: 10.1007/s11427-019-9550-4. [DOI] [PubMed] [Google Scholar]
  104. Zhang Y, Di Y, He H, Li S, Lu Y, Gong N, Hao X. Daphmalenines A and B: two new alkaloids with unusual skeletons from Daphniphyllum himalense. Eur J Org Chem. 2011;2011(22):4103–4107. [Google Scholar]
  105. Zhang Y, Di YT, Zhang Q, Mu SZ, Tan CJ, Fang X, He HP, Li SL, Hao XJ. Daphhimalenine A, a new alkaloid with an unprecedented skeleton, from Daphniphyllum himalense. Org Lett. 2009;11:5414–5417. doi: 10.1021/ol902262g. [DOI] [PubMed] [Google Scholar]
  106. Zhang Y, Ding X, Shao S, Guo LL, Zhao Q, Hao XJ, He HP. Melocochines A and B, two alkaloids from the fruits of Melodinus cochinchinensis. Org Lett. 2019;21:9272–9275. doi: 10.1021/acs.orglett.9b03785. [DOI] [PubMed] [Google Scholar]
  107. Zhang ZY, Sun H, Gu ZJ. Karyomorphological study of the Spiraea japonica complex (Rosaceae) Brittonia. 2002;54:168–174. [Google Scholar]
  108. Zhang Z, Fan L, Yang J, Hao X, Gu Z. Alkaloid polymorphism and ITS sequence variation in the Spiraea japonica complex (Rosaceae) in China: traces of the biological effects of the Himalaya-Tibet Plateau uplift. Am J Bot. 2006;93:762–769. doi: 10.3732/ajb.93.5.762. [DOI] [PubMed] [Google Scholar]
  109. Zhao L, He F, Liu H, Zhu Y, Tian W, Gao P, He H, Yue W, Lei X, Ni B, et al. Natural diterpenoid compound elevates expression of Bim Protein, which interacts with antiapoptotic protein Bcl-2, converting it to proapoptotic Bax-like molecule. J Biol Chem. 2012;287:1054–1065. doi: 10.1074/jbc.M111.264481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Zhao ND, Ding X, Song Y, Yang DQ, Yu HL, Adelakun TA, Qian WD, Zhang Y, Di YT, Gao F, et al. Identification of ingol and rhamnofolane diterpenoids from Euphorbia resinifera and their abilities to induce lysosomal biosynthesis. J Nat Prod. 2018;81:1209–1218. doi: 10.1021/acs.jnatprod.7b00981. [DOI] [PubMed] [Google Scholar]
  111. Zhao Q, Gao JJ, Qin XJ, Hao XJ, He HP, Liu HY. Hedychins A and B, 6,7-dinorlabdane diterpenoids with a peroxide bridge from Hedychium forrestii. Org Lett. 2018;20:704–707. doi: 10.1021/acs.orglett.7b03836. [DOI] [PubMed] [Google Scholar]
  112. Zhou J. Studies on the saponin components of plants in Yunnan I. Steroid saponins of Reineckea yunnanensis W. W. Smith. Acta Pharm Sin. 1964;11:407–411. [PubMed] [Google Scholar]
  113. Zhou J, Huang W, Wu M, Yang C, Feng G, Wu Z. Triterpenoids from Panax Linn. and their relationship with taxonomy and geographical distribution. Acta Phytotaxon Sin. 1975;13:29–48. [Google Scholar]
  114. Zhu X, Yuan C, Tian C, Li C, Nie F, Song X, Zeng R, Wu D, Hao X, Li L. The plant sesquiterpene lactone parthenolide inhibits Wnt/β-catenin signaling by blocking synthesis of the transcriptional regulators TCF4/LEF1. J Biol Chem. 2018;293:5335–5344. doi: 10.1074/jbc.M117.819300. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES