Skip to main content
Entropy logoLink to Entropy
. 2019 Apr 15;21(4):398. doi: 10.3390/e21040398

A Chaotic Electromagnetic Field Optimization Algorithm Based on Fuzzy Entropy for Multilevel Thresholding Color Image Segmentation

Suhang Song 1, Heming Jia 1,*, Jun Ma 1
PMCID: PMC7514892  PMID: 33267113

Abstract

Multilevel thresholding segmentation of color images is an important technology in various applications which has received more attention in recent years. The process of determining the optimal threshold values in the case of traditional methods is time-consuming. In order to mitigate the above problem, meta-heuristic algorithms have been employed in this field for searching the optima during the past few years. In this paper, an effective technique of Electromagnetic Field Optimization (EFO) algorithm based on a fuzzy entropy criterion is proposed, and in addition, a novel chaotic strategy is embedded into EFO to develop a new algorithm named CEFO. To evaluate the robustness of the proposed algorithm, other competitive algorithms such as Artificial Bee Colony (ABC), Bat Algorithm (BA), Wind Driven Optimization (WDO), and Bird Swarm Algorithm (BSA) are compared using fuzzy entropy as the fitness function. Furthermore, the proposed segmentation method is also compared with the most widely used approaches of Otsu’s variance and Kapur’s entropy to verify its segmentation accuracy and efficiency. Experiments are conducted on ten Berkeley benchmark images and the simulation results are presented in terms of peak signal to noise ratio (PSNR), mean structural similarity (MSSIM), feature similarity (FSIM), and computational time (CPU Time) at different threshold levels of 4, 6, 8, and 10 for each test image. A series of experiments can significantly demonstrate the superior performance of the proposed technique, which can deal with multilevel thresholding color image segmentation excellently.

Keywords: fuzzy entropy, electromagnetic field optimization, chaotic strategy, color image segmentation, multilevel thresholding

1. Introduction

Image segmentation is an important technology in image processing, which is a frontier research direction in computer vision, as well as one of the key preprocessing steps in image analysis [1,2]. It has been widely adopted in medicine, agriculture, industrial production, and various other fields. Image segmentation can be defined as the procedure of dividing an image into different regions [3]. In the subsequent research, the relevant regions can be extracted from the segmented image expediently according to specific requirements. Nowadays, the common image segmentation methods include threshold-based, cluster-based, edge-based methods and so on. Thresholding is extensively applied due to its simplicity, efficiency, and robustness. Depending on the number of thresholds, it can be classified as bi-level segmentation and multilevel segmentation [4]. Bi-level thresholding techniques use one threshold to partition an image into two segments; whereas multilevel segmentation determines several thresholds to separate an image into more than two classes. Many thresholding approaches have been proposed by scholars around the world in the past few years, Otsu’s (between-class variance criterion) [5,6] technique pushes the thresholding segmentation to an upsurge and inspires the scholars constantly in this field. Then diverse entropy-based criteria have emerged in the thresholding segmentation study, such as maximum entropy (Kapur’s) [7], minimum cross entropy [8], fuzzy entropy [9], etc.

Gray-scale image thresholding technology is relatively popular and mature. Compared with the segmentation of gray-scale images, color image segmentation plays a more beneficial role in practical applications, which separates an image into several disjoint and homogenous components based on the information of texture, color or histogram [10]. Color image segmentation is more complex and challenging than gray-scale images. Nevertheless, considering that color images contain more characteristics and they are closer to human visual effects [11], the research of color image segmentation is more meaningful. There will appear some problems when a traditional segmentation method is adopted to segment a color image, for example, the computation is massive and accuracy of segmented images cannot be guaranteed [12,13]. In this paper, fuzzy entropy is one of the research objects with high segmentation accuracy. In the fuzzy entropy thresholding technique, each threshold needs to be determined by three fuzzy parameters. Hence the calculation of thresholds is more accurate, at the same time the process is more complicated and the running time of the program will be longer. With the improvement of the threshold level, the computation of fuzzy entropy will exponentially increase for searching the optimal thresholds and the efficiency of segmentation will gradually decrease [14,15,16]. In order to enhance the practicability of fuzzy entropy thresholding technique, this paper combines fuzzy entropy thresholding with intelligent optimization algorithms to improve the performance with respect to accuracy and efficiency.

Meta-heuristic algorithms are utilized to obtain the optimal solution of the problem [17]. Generally, they are inspired by nature and try to handle the problems from mimicking ethology, biology or physics [18]. For instance, Bird Swarm Algorithm (BSA) [19], Firefly Algorithm (FA) [20], and Flower Pollination Algorithm (FPA) [21] are inspired by ethology or biology; Electromagnetic Optimization (EMO) [22], Wind Driven Optimization (WDO) [23], and Gravitational Search Algorithm (GSA) [24] are inspired by physics. At present, a number of scholars have coupled the optimization algorithms with the field of image segmentation in the literature. For instance, Sowjanya et al. [25] combined a WDO algorithm with Otsu’s method for the segmentation of brain MRI images, it has shown the superior performance in the experiment results. Wasim et al. [26] proposed an improved Bee Algorithm (BA) for multilevel image segmentation, whereby they embedded Levy fight into a Bees Algorithm (the Levy Bees Algorithm, LBA), and the results show that LBA is more stable than BA in this field. Rakoth et al. [27] tried to combine Dragonfly Optimization with Self-Adaptive weight (SADFO) and used SADFO for image segmentation experiments with satisfying results. These references confirm the feasibility of applying optimization algorithms to image thresholding segmentation. However, the above experiments all concentrate on gray-scale images and do not extend the experiments to the analysis of color images. Applying meta-heuristic algorithms to the field of multilevel image segmentation can enhance the convergence speed and efficiency [28]. Therefore, in this paper, Electromagnetic Field Optimization algorithm (EFO) [29] is modified and combined with fuzzy entropy thresholding method to eliminate the complex computation, which is used into the multilevel color image segmentation field for searching the best threshold values.

Electromagnetic Field Optimization is a new meta-heuristic algorithm inspired by the electromagnetic theory developed in physics. EFO algorithm has been applied in several applications, for example, Behnam et al. [30] created a method using EFO for hiding sensitive rules simultaneously, which has fewer lost rules than other well-known algorithms. Bouchekara et al. [31] proposed the optimal coordination of directional overcurrent relays based on EFO, and the results show that EFO is better than other optimization algorithms such as Particle Swarm Optimization (PSO) [32], or the Differential Evolution (DE) algorithm [33], etc. This paper embeds a new chaos strategy into standard EFO algorithm according to the specific problem of color image segmentation named as Chaotic Electromagnetic Field Optimization (CEFO). Employing the CEFO algorithm to optimize the fuzzy parameters which determine the optimal thresholds of an image in fuzzy entropy. To the best of our knowledge, this topic has not been investigated yet. The rest of this paper is organized as follows: in Section 2, the concept of EFO algorithm is elaborated. In Section 3, the chaotic strategy in CEFO algorithm is introduced and explained. In Section 4, the problem definitions and formulas of the Otsu’s, Kapur’s entropy, and the fuzzy entropy are illustrated. In Section 5, the experimental environment is reported. In Section 6, the experimental results and discussions are provided and analyzed. Finally, a brief conclusion of this paper and future works are drawn in Section 7.

2. Electromagnetic Field Optimization

Electromagnetic Field Optimization is a novel meta-heuristic intelligent algorithm proposed by Hosein in 2016 [29]. In contrast to the swarm-based meta-heuristic algorithms widely inspired by biology, the EFO algorithm is based on the electromagnetic field principle used in physics. In the EFO algorithm, due to the forces of attraction and repulsion in the electromagnetic field, the electromagnetic particle (EMP) keeps away from the worst solution and moves towards the best solution. In the end, all the electromagnetic particles (EMPs) gather around the optimal solution.

A magnetic field is generated around the electrified iron core, which is made of an electromagnet. An electromagnet has only one polarity and it is contingent on the direction of the electric current. Hence, an electromagnet has two characteristics of attraction or repulsion, electromagnets with the different polarity attract each other, and those with identical polarity repel each other. The intensity of attraction is 5-10% higher than repulsion and the ratio between attraction and repulsion is set as golden ratio [29,31], which can promote the algorithm to explore the optimal solution effectively in the search space. The essence of the optimization problem is to find the pole (maximum or minimum) about the objective function and the corresponding fitness in the prescriptive range [34]. Each potential solution of the problem is represented with an electromagnetic particle composed of a group of electromagnets. The electromagnetic field comprises several electromagnetic particles and it can be defined as a space in 1-D (dimension), 2-D, 3-D, or hyperdimensional space [35]. The number of electromagnets of an electromagnetic particle corresponds to variables of the optimization problem, as well as the dimension of the electromagnetic space. Moreover, all electromagnets of one electromagnetic particle have the same polarity. Therefore, an electromagnetic particle has the same polarity with its electromagnets. The set of electromagnetic particles can be considered in a matrix as:

EMPs=[P1,1P1,2P1,dP2,1P2,2P2,dPn,1Pn,2Pn,d] (1)

where n is the number of electromagnetic particles and j is the number of variables (dimension).

The mechanism of the EFO algorithm can be described as follows:

  • Step 1:

    A certain number of electromagnetic particles are generated randomly in the electromagnetic field, and the fitness of each electromagnetic particle is evaluated by the objective function. Then the electromagnetic particles are sorted on the basis of their fitness.

  • Step 2:

    The electromagnetic field is divided into three regions: positive, negative and neutral. Then all electromagnetic particles are classified into these three groups. The first group consists of the best particles with positive polarity. The second group consists of the worst particles with negative polarity. The third group consists of neutral particles which have a little negative polarity almost near zero. And all electromagnetic particles are located in the corresponding electromagnetic regions.

  • Step 3:

    In each iteration of the algorithm, a new electromagnetic particle (EMPNew) is generated. If the fitness of EMPNew is better than the original worst particle, the EMPNew will remain and its fitness and polarity will depend on the list of fitness, furthermore, the original worst particle will be eliminated. If else, the will be eliminated directly. This process continues until the algorithm reaches the maximum number of iterations.

The core of the EFO is the method of generating EMPNew in each iteration, and each electromagnet in EMPNew is shaped separately. The main process can be described as follows: three electromagnetic particles are randomly extracted from three electromagnetic regions (one EMP from each region), and then three electromagnets are randomly extracted from three electromagnetic particles obtained just now (one electromagnet from each EMP). Consequently, there are three electromagnets with different polarities. The neutral electromagnet is attracted and repelled by positive and negative electromagnets. Owing to the intensity of attraction is stronger than repulsion and the neutral electromagnet has a slight negative polarity, the neutral electromagnet moves a distance away from the negative electromagnet and approaches towards the positive electromagnet. In other words, each electromagnet in EMPNew is a result of interaction between attraction and repulsion, which is shown in Figure 1.

Figure 1.

Figure 1

Schematic diagram of the electromagnetic field. The relationship between the electromagnetic particle (EMP) and electromagnet. The method of generating the new electromagnetic particle

Figure 1 shows the process of generating EMPNew, in this figure, each electromagnetic particle contains three electromagnets for example, and positive, neutral and negative electromagnets are colored as green, blue and red respectively. In accordance with the above mechanism, three electromagnets of EMPNew is selected from nine original electromagnets, which increases randomness and enhances the strength of the optimization algorithm. Establishing a mathematical model to describe the update mechanism of EMPNew as below:

DjPjKj=EMPjPjEMPjKj (2)
DjNjKj=EMPjNjEMPjKj (3)
EMPjNew=EMPjKj+[(φr)DjPjKj](rDjNjKj) (4)

where j is the number of electromagnets in EMP; EMPjPj is the positive electromagnet; EMPjNj is the negative electromagnet; EMPjKj is the neutral electromagnet; DjPjKj is the distance between positive and neutral electromagnets. DjNjKj is the distance between negative and neutral electromagnets; r is the random value between 0 and 1; φ is the golden ratio of (5+1)/2.

In order to preserve the diversity of particles in the electromagnetic field and reduce the probability of falling into local optima [36], randomness is an indispensable part in EFO algorithm. Therefore, the probability of Ps_rate about the new position is determined by the selected electromagnet from a positive field, which accelerates the convergence rate and improves the accuracy of the optimum. Additionally, the probability of R_rate is used to replace one electromagnet in EMPNew with randomly generated electromagnet within the space. The most important feature of EFO algorithm is the high degree of cooperation among particles. Another pivotal characteristic is high randomization, which avoids obtaining the local optimum. Meanwhile, the application of the golden ratio makes EFO more efficient. All of the above strategies lead EFO to a robust optimization algorithm.

3. Proposed Algorithm

One of the essential points in the EFO algorithm is the degree of chaos about the electromagnetic particles in the electromagnetic field; if the degree of chaos is higher, the search power will be stronger. In the literature, the initial position of electromagnetic particles is processed by a chaotic strategy, which disturbs the distribution of particles and increases the unpredictability of the system.

Chaotic phenomena refer to the external complex behavior in a non-linear deterministic system due to the inherent randomness [37]. Almost all meta-heuristic algorithms need to be initialized randomly, and usually it is achieved by using probability distribution, which can advantageous to replace such randomness with chaotic map [38]. Owing to the dynamic behavior of chaos, chaotic maps have been commonly acknowledged in the field of optimization, which can promote algorithms in exploring optima more effective globally in the search space. Table 1 lists some common chaotic maps, which are expressed by mathematical equations.

Table 1.

Chaotic maps.

Name Chaotic Map
Logistic xi+1=axi(1xi)
Sine xi+1=a4sin(πxi)
Cubic xi+1=axi(1xi2)
Circle xi+1=mod(xi+b(a2π)sin(2πxi),1)
Iterative xi+1=sin(aπxi)
Tent xi+1=a(1a)|xi|

For instance, logistic chaos is widely used because of its simple expression and good performance, and it is shown in Figure 2. As can be seen, the logistic system has missed certain values. In consideration of the multilevel color image segmentation problem, this paper proposes a new chaotic map as follows:

xn+1=rand()×sin(2πxn)+xn (5)

where rand() is the random value between 0 and 1.

Figure 2.

Figure 2

Logistic Chaotic Map.

The new chaotic map is shown in Figure 3 and its distribution is more symmetrical than Logistic chaotic map. Taking advantage of this chaos strategy in EFO, the total performance of the algorithm will be improved and it is known as CEFO. The pseudo-code of the CEFO algorithm is presented in Algorithm 1.

Figure 3.

Figure 3

Chaotic Map in this paper.

Algorithm 1. Pseudo-code of CEFO algorithm
/* Part 1: Algorithm parameters initialization */
N_var: The number of electromagnets in each electromagnetic particle.
N_emp: The number of electromagnetic particles in population.
Ps_rate: The probability of changing one electromagnet with a random electromagnet.
R_rate: The probability of selecting electromagnets from the positive field.
P_field: The portion of particles belonging to positive.
N_field: The portion of particles belonging to negative.
 min = lower boundary; max = upper boundary
/* Part 2: Main loop of the algorithm */
for i = 1 to N_emp do
   for j = 1 to N_var do
    position [i, j] = min + rand ( )(max − min)
   end for
end for
Update position by using the chaotic map of Equation (5)
 fitness = function (position)
while t (current iteration) < max iterations
   Divide the electromagnetic field into three regions
   for i = 1 to N_var do
     if rand (0,1) > Ps_rate
      Generate the EMPNew by Equation (4)
     else
      Generate the EMPNew from positive particles
     end if
     Check if any particle beyond the search space
   end for
   if rand (0,1) < R_rate
     Change one electromagnet of EMPNew randomly
   end if
   Compare the fitness of EMPNew with worst particle
   t = t + 1
end while
 Output the best particle

4. Thresholding Segmentation Methods

The process of multilevel thresholding color image segmentation is to find more than two optimal thresholds to segment three components (red, green, and blue) respectively. In RGB images, each color component consists of P pixels and L number of gray levels. The obtained thresholds are within the range of [0, L1], L is considered as 256 and each gray-level is associated with the histogram representing the frequency of its gray level pixel used by g(x,y).

4.1. Between-Class Variance Thresholding

Between-class variance (Otsu’s) [5] thresholding method can be defined as follows:

Assuming that n1 thresholds form the threshold vector T=[t1,t2,,tn1] to split an image into n classes:

{C1={(x,y)|0g(x,y)t11}C2={(x,y)|t1g(x,y)t21}Cn={(x,y)|tn1g(x,y)L1} (6)

Constructing image histogram {f0,f1,,fL1}, where fi is the frequency of gray-level i. Then, the probability of gray-level i can be represented as:

pi=fii=0L1fi, i=0L1pi=1 (7)

For every class Ck, the cumulative probability ωk and average gray level μk in every region can be defined as:

ωk=iCkpi, μk=iCkipiωk (8)

and Otsu’s function can be expressed as:

σB2=k=0Kωk(μkμT)2, μT=i=0L1ipi (9)

where μk is the average gray intensity of the image.

Therefore, the optimal threshold vector is as follows:

T*=argmax(σB2) (10)

4.2. Kapur’s Entropy Thresholding

Kapur’s entropy method maximizes the entropy value of the segmented histogram such that each separated region has more centralized distribution [39]. Extending Kapur’s entropy for multilevel image segmentation problem:

H1=i=0t11piω1lnpiω1,  ω1=i=0t11piH2=i=t1t21piω2lnpiω2,  ω2=i=t1t21piHj=i=tj1tj1piωjlnpiωj,  ωj=i=tj1tj1piHn=i=tnL1piωnlnpiωn,  ωn=i=tnL1pi (11)

where Hj represents the entropy value of j-th region in the image.

There are n thresholds which can be configured as the n dimensional optimization problem. And the optimal threshold vector is obtained analogously by:

T*=argmax(i=0mHi) (12)

4.3. Fuzzy Entropy Thresholding

In the fuzzy entropy technique, let an original image be D={(i,j)|i=0,,M1;j=0,,N1}, where M and N represent the width and height of an image. Supposed that t1 and t2 are two thresholds to divide the original image into 3 parts named as Ed, Em, Eb [10]. Ed consists of pixels of low gray levels; Em is made of pixels with middle gray levels; Eb is composed of pixels of high gray levels. Usually, using (13) to calculate the image histogram:

hk=nkMN (13)

where k=0,1,,255; nk is the number of the k-th pixel in Dk; hk is the histogram of the image at gray-level k, k=0255hk=1.

Consider Π3={Ed,Em,Eb} as an unknown probabilistic partition of D, whose probability distribution can be expressed as:

pd=P(Ed);      pm=P(Em);     pb=P(Eb) (14)

For each (i,j)D, let:

Dd={(i,j)|0g(i,j)t1},Dm={(i,j)|t1g(i,j)t2},Db={(i,j)|t2g(i,j)L1} (15)

Utilizing μd, μm, μb as the membership functions of Ed, Em, Eb, which is shown in Figure 4 [40]. There are six fuzzy parameters of u1, v1, w1, u2, v2, w2 in the membership functions, in other words, t1 and t2 are determined by these six parameters. According to the above statement, we can have the probability distribution of three regions expressed as:

pd=k=0255pkpd|k=k=0255pkμd(k)pm=k=0255pkpm|k=k=0255pkμm(k)pb=k=0255pkpb|k=k=0255pkμb(k) (16)

where pd|k, pm|k, pb|k are the conditional probability of a pixel partitioned into three classes. Moreover, a pixel of k in an image satisfies the constraint of pd|k+pm|k+pb|k=1.

Figure 4.

Figure 4

Membership function graph.

The three membership functions have been shown in Figure 4. And these mathematical formulas are defined as follows:

μd(k)={1ku11(ku1)2(w1u1)(v1u1)u1kv1(kw1)2(w1u1)(w1v1)v1kw10kw1 (17)
μm(k)={0ku1(ku1)2(w1u1)(v1u1)u1kv11(kw1)2(w1u1)(w1v1)v1kw11w1ku2 (18)
μb(k)={0ku2(ku2)2(w2u2)(v2u2)u2kv21(kw2)2(w2u2)(w21v2)v2kw21kw2 (19)

where u1, v1, w1, u2, v2, w2 should meet the condition of 0u1<v1<w1<u2<v2<w2255.

Then, the fuzzy entropy of each part is as follows:

Hd=k=0255pkμd(k)pdln(pkμd(k)pd)Hm=k=0255pkμm(k)pmln(pkμm(k)pm)Hb=k=0255pkμb(k)pbln(pkμb(k)pb) (20)

The whole fuzzy entropy function is defined as:

H(u1,v1,w1,u2,v2,w2)=Hd+Hm+Hb (21)

Equation (21) is determined by six variables which are called fuzzy parameters. Seeking the optimal group of u1, v1, w1, u2, v2, w2 when (21) reach the maximum value. Therefore, the most applicable threshold can be calculated as:

μd(t1)=μm(t1)=0.5μm(t2)=μb(t2)=0.5 (22)

As is shown in Figure 4, according to the above equation, t1 and t2 can be defined by (17)–(19), and the result is as follows:

t1={u1+(w1u1)(v1u1)/2(u1+w1)/2<v1<w1w1(w1u1)(w1v1)/2u1<v1<(u1+w1)/2t2={u2+(w2u2)(v2u2)/2(u2+w2)/2<v2<w2w2(w1u2)(w2v2)/2u2<v2<(u2+w2)/2 (23)

Fuzzy entropy thresholding can meet the requirement from single threshold segmentation to multiple thresholds segmentation, and the optimal threshold vector obtained is more precise. However, each threshold should be determined by three parameters in fuzzy entropy thresholding, and thresholds need to be defined by 3n fuzzy parameters [41,42].

With the increase of threshold level gradually, the degree of the computation will be significantly risen, which diminish the speed of the process and the practicability will be reduced. In order to improve the convergence efficiency, it is necessary to use the optimization algorithm for searching the optimal threshold vector. This paper takes advantage of the CEFO to ensure the segmentation accuracy and greatly decrease the execution time. The general flow of fuzzy entropy thresholding based on the CEFO algorithm is presented in Figure 5.

Figure 5.

Figure 5

Flow chart of fuzzy entropy thresholding method based on the Chaotic Electromagnetic Field Optimization (CEFO) algorithm.

5. Experimental Environment

In order to verify the superiority of the CEFO algorithm in dealing with the multilevel color image segmentation problem, this section will introduce the description of our benchmark images and then select several other algorithms for comparison. The parameters of each algorithm will be described firstly and a series of quality metrics used to evaluate the quality of segmented images will be calculated at the end.

5.1. Benchmark Images

In this experiment, ten images are chosen from the Berkeley segmentation data set, which is shown in Figure 6. It has presented the histogram of three components about every color image. Among these images, Test 1–3 are animal images; Test 4 and 5 are about human; Test 7 and 8 are landmark buildings; Test 6 and 9 are images related to landscape architecture; Test 10 is the normal scenery image.

Figure 6.

Figure 6

Figure 6

Experimental images of Berkeley. Ten classical images and their histograms of three component (red, green, and blue) are exhibited.

5.2. Experimental Settings

When applied to solve the problem of multilevel color image segmentation, different meta-heuristic algorithms have different optimization performances due to their strategies and mathematical formulations [43]. Therefore, it is essential to compare the CEFO algorithm with other different algorithms such as EFO, ABC [44], BA [10], BSA [19], WDO [23]. Among these algorithms, ABC, BA, and BSA are proposed from biology; EFO and WDO are inspired from physics. The number of maximum iterations of each algorithm is set to 500, and the initial population is set to 15, with a total of 30 runs per algorithm, other specific parameters are presented in Table 2.

Table 2.

Specific values of parameters used in selected algorithms.

Algorithm Parameter Explanation Value
EFO Pfield The portion of particles belonging to the positive field. 0.1
Nfield The portion of particles belonging to the negative field. 0.45
Psfield The probability of selecting electromagnets directly from the positive field. 0.3
Rrate The probability of changing one electromagnet directly from the positive field. 0.2
ABC limit The value of the max trial limit. 10
BA ri The rate of pulse emission. [0, 1]
Ai The value of loudness. [1, 2]
WDO a A constant. 0.4
g The constant of gravitation. 0.2
RT A coefficient. 3
c Coriolis coefficient. 0.4
BSA a1, a2 The values of indirect and direct effects on the birds’ vigilance behaviors. 2
c1, c2 The values of the cognitive coefficient and social coefficient. 2
FL The frequency of birds’ flight behaviors. 0.6

All the algorithms are programmed in Matlab R2016a (The Mathworks Inc., Natick, MA, USA) and implemented on a Windows 7 – 64 bit with 8 GB RAM environment.

5.3. Segmented Image Quality Metrics

To evaluate the quality of segmented images under different algorithms at selected threshold levels, four metrics are selected as follows [45,46]:

  • Peak Signal to Noise Ratio (PSNR)

The index is used to measure the difference between the original image and the segmented image, and a higher value is gained when the segmented image has a better effect. It can be defined as:

PSNR(x,y)=20log10(255MSE)MSE=1MNi=0M1j=0N1x(i,j)y(i,j)2 (24)

where M and N represent the size of the image; x is the original image; y is the segmented image.

  • Mean Structural Similarity (MSSIM)

The index evaluates the overall image quality, which is in the range of [1,1]. The higher value of MSSIM is obtained when it represents the segmented image is more similar to the original image. The MSSIM is the average of every component and SSIM can be calculated as:

SSIM(x,y)=(2μxμy+c1) (2σxy+c2)(μx2+μy2+c1) (σx2+σy2+c2) (25)
  • Feature similarity (FSIM)

The index is in the range of [0,1], and the segmented image is better when the value is closer to 1. The FSIM can be expressed as:

FSIM(x,y)=xΩSL(X)PCm(x)xΩPCm(x) (26)
  • Computation Time (CPU Time)

The index measures the convergence rate of each algorithm. The algorithm is more efficient when the time is shorter.

6. Results and Discussions

6.1. Comparison of Other Meta-Heuristic Algorithms

Utilizing 6 algorithms based on fuzzy entropy criterion to conduct the experiment on 10 images at the threshold level of 4, 6, 8, and 10 (K = 4, 6, 8, 10). The results of the optimal threshold vector are presented in Table 3, Table 4 and Table 5 exhibiting each threshold level of three component about every image. And the results of segmented images are presented in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16, which take each Test image as a group. Furthermore, the results of the four metrics are shown in Table 6 and Table 7.

Table 3.

Comparison of optimal threshold values between Chaotic Electromagnetic Field Optimization (CEFO) and Electromagnetic Field Optimization (EFO) at K = 4, 6, 8, 10 based on fuzzy entropy.

Image K CEFO EFO
R G B R G B
Test 1 4 56 93 153 187 57 88 132 191 59 10 157 197 61 90 144 188 18 74 115 170 58 87 148 202
6 20 59 92 128 167 199 26 47 81 114 161 203 25 48 76 111 138 195 26 60 95 128 162 198 19 47 80 119 171 210 18 57 85 122 154 212
8 11 31 58 82 107 132 168 211 12 42 64 92 114 149 181 210 18 50 73 97 143 168 196 223 17 47 71 90 115 138 171 209 12 39 67 93 130 170 205 223 26 56 78 100 113 162 190 216
10 14 37 55 75 90 111 130 159 182 210 11 41 61 95 122 146 168 185 208 237 14 40 64 80 105 136 161 189 212 231 10 26 56 82 102 133 148 167 192 215 11 32 59 76 90 107 134 166 198 222 24 41 56 72 93 126 156 181 203 229
Test 2 4 10 93 114 171 86 143 194 226 91 110 137 189 80 116 149 183 93 113 146 216 104 124 170 206
6 18 41 75 107 147 177 87 101 133 153 192 234 54 72 97 121 156 192 73 83 108 139 176 219 94 114 135 162 197 231 16 50 85 129 156 199
8 15 27 44 59 96 127 171 204 14 22 43 65 117 144 190 222 39 61 82 117 148 176 195 223 7 34 55 78 107 135 166 199 49 65 76 139 168 193 211 232 45 61 82 101 129 154 182 213
10 32 55 75 108 144 171 195 215 226 239 5 50 65 85 102 121 139 167 197 228 31 47 64 87 108 125 158 179 209 239 4 24 47 67 102 122 147 180 204 223 19 33 53 71 99 119 144 170 195 224 19 36 57 80 108 141 154 177 201 230
Test 3 4 44 92 139 188 31 92 139 188 27 97 138 185 33 80 126 181 37 87 142 206 29 106 154 188
6 32 62 93 128 173 199 19 53 90 119 162 206 36 71 105 136 183 208 32 76 116 150 177 207 50 69 101 143 190 216 15 46 70 113 153 197
8 22 43 68 91 112 138 172 208 17 51 73 98 123 148 181 207 11 36 58 88 106 141 170 213 19 54 94 125 141 164 190 214 25 49 72 96 126 156 192 223 15 49 71 95 128 159 187 214
10 26 39 55 69 86 110 131 154 175 207 42 29 56 79 104 121 141 163 197 219 9 25 49 82 109 132 154 176 199 222 17 31 45 62 93 124 168 194 212 229 14 39 56 76 95 114 148 176 196 224 16 13 34 58 82 115 150 180 199 223
Test 4 4 52 84 127 164 67 102 141 204 49 74 111 155 59 88 129 164 64 105 153 199 61 101 145 203
6 38 62 97 137 172 195 48 71 111 144 175 213 43 77 109 147 178 235 40 65 89 112 147 184 44 67 105 126 167 211 39 63 98 134 160 190
8 13 31 54 92 110 142 175 198 35 60 86 114 137 169 200 226 24 41 64 94 129 156 193 224 15 26 46 68 97 134 160 189 18 43 73 100 128 155 190 225 23 57 105 137 169 195 221 237
10 6 25 43 64 84 106 132 152 172 189 7 27 39 52 75 99 130 157 190 221 15 25 48 78 103 130 157 178 219 240 8 18 31 48 74 100 124 153 181 211 8 23 39 57 80 104 127 157 188 215 10 27 50 87 117 146 171 194 218 234
Test 5 4 52 98 149 198 55 89 164 215 77 125 162 209 87 122 152 190 38 58 106 162 80 120 160 194
6 22 63 93 131 179 225 16 69 97 125 158 204 15 61 97 131 166 207 23 64 90 140 183 213 26 75 114 134 169 211 20 59 84 132 169 205
8 16 59 77 94 116 134 162 199 20 58 75 98 129 155 185 214 19 56 77 115 145 173 196 227 14 56 75 104 127 162 191 225 37 37 60 76 111 135 175 214 17 39 66 97 122 171 205 234
10 13 29 57 77 93 107 130 165 188 214 14 30 62 78 94 126 152 179 205 231 19 44 56 72 89 109 129 159 176 205 11 26 50 72 92 115 149 180 201 224 16 25 48 64 85 106 127 142 175 206 24 41 56 70 96 123 150 177 202 229
Test 6 4 55 97 158 195 64 99 153 190 46 75 131 179 52 100 144 192 56 92 123 178 52 88 149 176
6 43 60 91 118 165 202 25 38 76 119 165 205 47 69 97 133 155 190 44 75 112 150 176 211 60 87 109 135 167 196 32 51 85 125 172 207
8 16 42 73 91 129 157 190 221 10 34 52 79 108 136 168 207 23 39 64 86 120 137 172 202 28 45 74 91 120 150 191 225 15 26 55 85 111 141 176 205 23 38 57 87 119 159 183 214
10 10 32 50 77 99 134 162 192 209 228 13 36 47 69 107 140 164 185 200 223 14 33 60 82 101 130 156 183 208 228 8 30 46 72 99 125 145 166 189 221 10 28 53 72 100 125 146 172 187 206 14 31 51 68 86 115 134 167 190 221
Test 7 4 66 95 139 176 25 66 108 157 23 88 134 220 26 89 132 179 43 89 133 178 30 94 137 208
6 17 33 80 120 168 205 20 80 108 133 164 189 13 59 84 102 128 151 20 41 60 92 131 180 21 54 86 111 144 183 31 67 101 138 196 223
8 20 54 79 106 126 146 169 209 13 50 80 102 132 166 197 223 19 40 63 88 119 148 200 228 14 58 80 98 122 146 167 207 18 55 82 105 128 161 193 228 18 36 67 91 128 149 200 220
10 10 30 41 63 89 110 129 154 178 216 14 54 68 82 106 132 169 197 220 243 15 41 66 85 105 133 151 190 214 233 12 28 59 82 115 146 179 199 215 227 12 31 57 76 92 117 141 168 200 223 10 34 63 95 120 140 157 185 212 232
Test 8 4 48 73 173 212 62 107 141 207 43 79 124 215 22 83 139 199 55 105 149 201 37 102 183 234
6 38 64 101 141 181 224 32 61 85 126 155 196 38 61 91 126 197 218 40 66 96 151 182 212 40 66 97 140 175 209 34 54 88 117 182 230
8 15 41 64 85 110 133 175 213 44 34 74 110 135 158 179 203 25 40 69 104 136 182 207 231 31 55 77 93 108 135 178 217 25 51 80 117 155 179 206 227 30 32 60 103 117 141 179 215
10 18 39 58 87 115 137 172 186 210 230 21 36 63 79 111 129 150 180 208 227 28 47 74 90 116 131 153 178 208 226 22 42 69 84 109 133 158 182 208 227 39 91 103 127 146 159 176 193 208 225 21 35 65 98 119 140 165 184 211 231
Test 9 4 47 74 107 149 55 90 132 167 42 66 117 149 33 67 109 155 53 87 123 165 45 89 155 211
6 13 43 62 92 126 165 15 50 89 125 160 195 19 45 81 115 151 230 12 42 59 96 127 160 24 33 76 115 143 190 28 48 80 116 149 167
8 14 36 53 75 92 123 152 173 11 40 55 77 101 126 151 183 26 41 66 91 128 155 200 233 11 38 54 81 115 139 166 187 17 66 86 105 125 145 172 197 28 51 76 104 132 154 172 207
10 13 23 41 59 82 106 126 158 181 198 11 43 54 72 89 105 134 163 188 213 24 47 71 94 118 140 160 177 208 237 9 41 60 92 116 131 150 167 185 203 13 30 47 67 86 108 131 150 183 212 20 43 71 92 115 155 175 190 226 240
Test 10 4 48 76 132 175 31 69 117 169 53 86 116 200 62 101 132 190 45 70 123 186 52 83 139 193
6 34 57 90 127 166 196 53 90 116 142 180 214 42 56 104 136 169 220 33 56 87 127 162 198 43 76 118 155 190 225 42 70 100 133 164 226
8 19 33 62 91 133 165 195 214 20 26 57 90 112 150 195 220 12 38 55 88 113 150 186 229 34 60 98 128 148 170 194 221 17 38 58 87 119 147 187 216 10 23 49 79 121 149 170 189
10 16 35 54 71 93 119 141 169 196 231 9 26 36 51 72 106 132 166 195 224 10 26 41 61 77 108 134 160 185 213 14 33 56 86 106 129 159 189 212 235 8 29 43 75 99 118 141 168 196 226 10 33 48 69 90 113 144 169 194 230

Table 4.

Comparison of optimal threshold values between Artificial Bee Colony (ABC) and Bat Algorithm (BA) at K = 4, 6, 8, 10 based on fuzzy entropy.

Image K ABC BA
R G B R G B
Test 1 4 55 103 154 201 69 104 156 207 40 96 165 219 49 78 150 214 66 92 128 195 78 116 176 213
6 24 63 109 149 184 220 47 74 111 152 183 218 39 84 126 154 188 220 31 58 81 105 150 195 20 45 85 115 165 212 29 71 118 154 190 230
8 24 51 81 113 142 177 211 226 20 54 77 108 150 174 200 223 15 47 75 107 143 171 207 237 12 51 80 98 117 155 193 225 13 48 77 109 159 181 205 225 33 63 94 110 143 168 203 242
10 16 41 59 85 113 142 167 187 211 236 15 43 62 88 112 139 167 189 209 232 13 39 62 83 113 139 165 192 221 236 20 50 82 99 125 149 168 190 211 231 15 41 88 107 129 146 158 177 206 232 31 51 72 84 99 129 162 191 227 242
Test 2 4 63 108 164 216 78 119 159 231 72 98 171 224 117 150 188 275 129 152 182 231 88 113 140 189
6 49 76 112 149 196 236 52 79 125 159 189 223 56 78 124 148 182 219 81 107 143 173 205 232 83 97 112 130 212 233 83 114 153 178 206 238
8 38 51 73 110 143 182 221 240 37 56 90 122 143 170 195 222 31 51 79 109 149 175 207 246 35 48 68 89 140 181 210 236 51 85 120 156 182 214 242 250 5 20 45 82 113 149 177 217
10 22 37 57 85 112 142 167 192 223 237 6 45 60 80 109 133 160 188 218 244 23 40 65 88 115 144 163 188 218 239 64 69 75 81 98 120 155 187 210 230 30 50 70 92 120 147 171 193 214 238 28 58 79 98 135 162 186 206 234 248
Test 3 4 31 103 162 206 60 102 151 209 44 103 157 206 53 99 141 197 53 121 164 203 23 100 143 191
6 34 68 103 140 190 226 29 66 101 140 186 217 31 67 98 138 186 217 29 66 116 154 185 215 39 72 122 154 181 210 45 86 116 143 173 219
8 18 51 79 111 138 173 205 232 28 56 84 108 140 168 194 231 20 50 77 103 141 168 199 222 20 43 75 97 136 181 205 236 25 51 80 108 136 177 203 231 12 56 86 110 138 175 202 227
10 19 37 63 87 112 137 170 195 222 244 22 46 65 92 118 141 165 194 216 237 21 52 71 96 110 136 157 196 214 230 19 40 64 90 117 147 174 206 227 244 36 62 88 105 116 135 162 196 216 239 30 51 74 100 113 135 146 160 184 214
Test 4 4 40 90 136 172 63 118 170 210 63 96 146 208 68 110 141 168 60 112 161 208 49 109 189 234
6 32 69 114 155 190 219 42 66 111 161 201 237 35 65 104 146 186 235 38 59 116 147 173 197 37 78 135 168 193 223 40 74 108 137 155 226
8 21 45 78 107 137 169 206 227 32 56 83 120 142 177 212 241 26 49 80 116 156 182 213 233 8 36 61 92 125 197 222 241 26 52 84 112 135 160 198 228 26 58 91 121 146 170 198 228
10 25 45 60 84 114 140 168 191 217 232 26 43 62 86 108 136 161 191 216 245 22 38 63 85 113 137 159 193 223 241 8 33 64 96 128 156 174 195 217 234 38 63 84 105 129 145 168 192 206 231 25 41 54 67 96 130 152 186 209 233
Test 5 4 34 94 167 222 29 93 159 220 75 118 169 231 33 107 160 196 29 75 134 225 72 106 149 208
6 26 72 97 138 187 223 21 73 108 140 188 226 20 71 118 153 191 231 59 86 122 163 202 228 19 62 94 144 184 234 52 101 136 176 213 234
8 16 52 84 117 141 175 202 229 13 62 86 117 143 178 203 228 18 56 77 103 135 172 200 234 27 61 85 117 142 171 201 238 89 124 141 157 171 183 198 225 56 78 98 126 157 167 199 234
10 18 36 68 99 124 147 167 183 206 228 12 50 68 88 114 144 169 192 219 238 18 41 65 92 111 133 163 190 220 241 17 37 54 72 104 138 160 178 191 231 14 68 86 104 118 141 168 197 216 231 16 43 68 98 128 154 177 198 220 241
Test 6 4 72 116 162 197 59 92 142 177 60 91 143 196 60 121 178 210 55 91 135 174 59 94 128 166
6 35 54 103 142 184 222 31 66 111 161 192 228 36 74 114 158 197 218 12 59 96 121 156 201 61 110 147 175 204 233 44 74 103 131 190 227
8 16 45 79 113 151 189 210 231 13 51 85 119 156 182 212 234 21 44 84 120 148 176 206 224 13 33 48 60 119 152 190 236 41 64 98 119 158 183 203 222 11 40 62 125 165 183 213 234
10 15 42 60 86 114 144 164 194 214 231 11 41 60 81 101 130 155 181 212 233 26 46 64 80 110 131 164 185 201 220 11 47 75 102 121 134 150 178 204 227 14 39 58 84 108 138 161 186 210 235 21 38 51 71 90 115 144 172 191 228
Test 7 4 55 97 147 210 45 96 148 216 41 92 139 220 67 96 125 171 84 112 163 244 24 76 173 219
6 33 72 111 153 177 219 19 75 110 147 181 227 25 71 109 148 190 227 57 75 92 122 166 212 27 87 118 141 185 234 21 67 100 140 192 235
8 24 59 79 102 129 157 188 221 29 65 87 113 145 166 195 231 24 56 86 113 147 189 211 234 41 72 92 116 138 154 169 212 22 45 79 104 133 162 200 226 14 45 72 111 154 188 212 244
10 15 39 68 98 125 142 166 195 220 237 13 40 69 87 110 140 170 202 223 242 17 44 71 89 113 138 158 193 214 234 21 62 94 122 144 163 183 200 217 242 43 80 102 121 140 159 175 196 223 237 20 50 84 111 131 167 180 205 223 239
Test 8 4 55 86 183 220 60 104 153 225 33 85 121 226 32 78 163 226 63 106 148 222 54 97 126 192
6 38 82 126 154 193 229 44 74 114 152 181 230 35 57 76 105 130 235 46 87 148 181 215 237 53 78 119 144 184 227 27 42 65 90 112 141
8 14 48 81 105 142 175 212 239 24 55 90 116 146 174 208 236 29 62 80 110 133 172 208 236 28 71 98 124 149 179 204 233 24 54 81 104 142 177 211 236 9 21 42 84 113 132 192 240
10 11 34 57 78 101 133 167 191 216 234 17 35 64 85 109 134 155 183 210 239 20 40 72 99 116 135 167 186 218 240 16 51 79 103 126 144 169 194 224 239 18 50 66 83 101 121 147 172 207 227 18 47 82 105 127 145 169 194 220 240
Test 9 4 64 110 138 182 43 96 149 194 52 101 145 221 68 104 122 151 35 73 109 182 38 92 144 208
6 19 62 101 131 157 197 39 74 106 145 183 212 30 65 102 135 166 234 39 63 90 116 141 181 12 51 100 129 161 198 40 54 72 101 129 158
8 21 56 98 134 154 173 194 214 16 43 67 99 141 175 197 216 22 50 83 115 146 168 205 239 38 58 74 104 128 145 175 198 40 60 105 141 163 187 213 236 15 29 60 96 126 167 210 239
10 12 42 63 87 114 141 169 197 223 238 15 46 66 86 110 137 160 187 214 236 25 45 60 85 111 136 164 193 227 242 23 66 88 123 142 154 164 179 199 216 14 42 64 84 111 135 159 184 203 226 16 32 48 99 135 158 174 202 227 243
Test 10 4 58 104 164 221 70 110 161 213 77 122 159 215 74 134 165 199 70 109 164 238 78 104 163 193
6 38 76 125 159 192 229 53 79 111 139 176 218 48 71 101 135 182 221 26 80 137 166 196 233 51 96 118 138 169 209 42 74 121 155 198 229
8 31 49 76 110 142 169 202 240 32 52 86 117 148 180 206 226 29 52 83 114 146 171 195 234 32 67 94 119 147 174 199 240 47 75 90 103 117 159 187 219 35 67 108 136 162 185 215 243
10 27 47 69 94 120 143 164 185 212 242 26 43 66 95 117 142 165 192 221 239 22 39 62 89 110 135 157 185 214 238 33 66 88 111 125 143 156 180 201 239 11 29 53 84 114 136 166 193 220 234 13 39 58 105 132 166 183 207 230 247

Table 5.

Comparison of optimal threshold values between Wind Driven Optimization (WDO) and Bird Swarm Algorithm (BSA) at K = 4, 6, 8, 10 based on fuzzy entropy.

Image K WDO BSA
R G B R G B
Test 1 4 68 107 150 192 65 103 156 198 77 115 164 196 54 119 190 243 12 57 174 243 24 93 175 238
6 44 74 109 134 172 205 53 84 120 149 175 205 61 95 131 154 186 218 22 90 100 165 239 255 6 30 78 158 214 239 35 58 93 153 186 227
8 47 72 101 121 144 168 188 211 48 75 104 129 149 170 192 213 46 68 91 110 131 156 174 212 7 57 108 118 129 158 216 251 9 55 68 97 181 209 241 255 4 32 78 123 152 179 196 247
10 45 67 93 115 131 142 161 176 194 210 51 65 82 98 114 133 152 171 195 217 25 45 65 80 95 113 139 164 194 223 12 27 46 70 102 136 153 178 198 228 17 37 49 72 95 132 155 194 213 226 12 33 63 99 132 161 189 212 228 243
Test 2 4 123 146 174 202 128 154 183 216 98 131 170 208 7 39 194 232 24 112 145 227 71 105 128 183
6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 3 18 55 104 145 223 26 70 90 142 217 240
8 78 93 104 118 134 146 169 200 93 111 131 147 165 182 202 228 62 74 92 111 131 154 179 211 17 52 83 123 181 216 230 247 18 73 92 119 152 190 225 252 59 90 102 121 142 198 224 240
10 70 82 95 107 122 134 150 168 189 209 80 90 101 112 120 130 142 157 170 190 70 83 103 118 137 147 166 182 200 218 1 20 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 255 22 73 90 123 137 148 179 205 215 239
Test 3 4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 221
6 44 80 113 148 176 212 47 77 105 141 180 214 56 83 114 136 168 211 62 96 128 176 199 223 16 42 63 76 122 219 12 34 67 126 183 212
8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 1 37 51 77 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 125 159 188 221
10 36 69 100 120 142 156 172 190 204 223 30 54 73 96 119 137 158 178 198 222 24 49 67 83 104 120 143 170 192 214 8 77 109 140 164 179 202 207 231 254 1 25 82 98 109 164 178 196 230 255 17 56 80 97 119 146 172 216 229 251
Test 4 4 54 94 132 169 71 117 154 200 78 109 147 207 46 89 145 214 18 95 184 244 36 77 130 213
6 49 72 101 128 156 183 58 87 109 143 181 212 51 89 115 152 194 223 35 52 85 128 167 193 41 70 93 146 203 231 18 54 89 128 169 221
8 40 67 94 120 139 156 176 193 48 73 93 118 138 166 196 225 45 76 106 129 153 176 205 229 1 3 30 81 120 181 218 237 26 56 92 133 185 205 224 244 23 42 91 133 163 204 223 236
10 41 59 83 103 124 141 151 167 185 198 44 64 81 100 115 134 155 175 199 223 43 67 86 103 123 141 159 176 198 227 13 26 41 66 92 119 147 190 226 246 23 54 74 99 123 145 167 190 216 240 15 26 59 95 113 130 156 183 212 238
Test 5 4 86 123 161 198 88 123 165 203 78 118 159 199 8 55 142 203 82 107 159 198 22 57 114 226
6 71 90 116 154 188 218 78 103 127 157 186 211 65 101 133 162 190 222 42 106 138 203 227 253 11 41 110 152 204 248 75 133 164 194 214 237
8 33 67 88 114 131 158 183 212 59 76 97 114 135 164 192 222 58 78 97 121 142 168 192 227 11 33 86 110 175 195 211 247 3 63 123 177 197 216 239 255 26 54 85 123 150 178 211 230
10 57 77 100 116 132 148 166 181 201 223 36 52 70 88 109 128 146 160 183 201 64 87 101 115 128 144 161 179 196 217 32 46 62 94 121 149 171 188 209 238 8 21 50 87 104 138 148 166 192 229 9 36 88 110 123 142 163 182 216 249
Test 6 4 59 104 157 197 69 106 147 193 59 100 130 177 25 127 153 246 16 78 149 224 28 98 172 231
6 54 81 108 141 175 202 55 83 115 151 177 209 41 71 104 137 163 199 36 100 122 148 178 204 29 87 116 142 163 198 13 28 69 91 137 228
8 45 74 100 123 146 167 191 215 55 81 105 131 151 171 191 213 38 67 92 122 142 169 186 211 8 52 79 123 158 181 210 243 11 50 109 132 169 204 219 234 20 63 104 130 137 168 207 246
10 37 53 73 90 110 131 147 170 197 222 47 69 89 105 128 143 162 179 197 219 36 61 83 99 118 137 157 175 199 216 23 42 60 77 108 132 152 182 218 235 6 33 61 108 126 158 180 207 228 245 14 71 105 126 149 173 208 219 230 244
Test 7 4 74 110 145 176 85 107 145 184 75 100 136 182 28 95 224 255 43 70 135 235 46 134 198 247
6 63 84 114 143 170 201 22 76 100 132 169 221 48 79 107 130 151 191 7 30 49 115 157 194 30 71 107 144 183 242 4 55 137 166 205 251
8 41 68 97 120 139 165 184 216 43 76 97 119 140 164 181 220 34 57 82 109 129 151 200 233 16 37 65 85 108 141 169 222 13 44 70 118 144 157 177 236 13 57 95 117 145 183 214 230
10 53 70 89 109 122 141 159 176 195 217 25 44 66 81 103 123 142 158 180 227 55 80 105 123 133 144 156 164 184 234 14 35 57 75 88 120 141 154 173 214 11 38 58 76 100 126 149 172 189 240 17 37 74 100 124 155 175 210 227 242
Test 8 4 69 124 160 207 62 118 152 207 44 92 122 189 48 83 156 213 22 81 125 216 61 98 114 212
6 50 85 114 157 184 213 54 85 116 149 176 216 38 71 103 128 192 221 6 31 73 108 214 254 49 103 122 161 190 235 14 55 109 163 195 234
8 41 61 86 111 136 161 188 220 41 67 88 110 130 157 193 224 38 68 91 105 123 140 184 232 21 41 67 76 107 134 163 231 21 47 88 119 159 194 221 242 12 37 67 116 137 160 184 235
10 34 47 68 88 112 132 157 180 214 236 45 70 89 108 125 137 152 164 178 206 28 42 55 76 104 132 167 194 210 230 15 38 76 102 125 160 178 209 224 243 10 33 46 73 101 138 162 204 227 242 33 47 68 93 114 132 142 153 177 213
Test 9 4 70 104 138 160 71 106 142 176 58 107 149 225 47 86 157 234 43 92 125 219 37 92 147 223
6 57 82 110 133 156 177 61 92 116 137 163 187 43 74 102 126 155 206 41 93 139 167 213 221 13 79 118 156 166 205 11 71 112 155 175 239
8 50 72 97 120 138 155 172 190 54 75 93 110 131 151 173 194 37 62 91 121 143 165 205 219 3 19 32 70 111 155 188 227 11 35 76 122 141 181 216 230 23 74 94 113 147 189 214 241
10 49 64 79 92 105 118 137 158 173 191 50 69 90 108 121 139 155 170 187 204 38 67 85 98 113 129 145 164 196 222 7 35 69 99 115 136 157 184 210 251 5 17 37 91 113 158 202 229 247 252 25 57 90 112 141 155 174 196 216 232
Test 10 4 62 89 136 179 70 103 136 191 70 111 156 191 32 132 173 217 37 90 134 215 70 129 166 192
6 52 93 129 155 187 226 54 88 116 148 184 216 50 80 111 141 171 207 51 85 123 155 187 218 14 33 61 117 187 237 41 67 108 139 182 219
8 35 66 89 107 136 164 188 219 49 72 96 117 141 167 198 223 47 67 89 117 143 166 193 224 21 53 63 86 123 185 213 236 19 56 78 112 143 186 238 253 11 44 70 123 154 173 193 215
10 41 67 90 114 131 153 174 200 215 232 41 62 80 96 109 128 139 157 189 227 41 61 81 102 121 136 158 172 199 232 19 37 65 91 104 134 165 194 223 246 29 50 74 98 114 137 161 190 226 240 6 28 57 105 132 157 180 199 224 239

Figure 7.

Figure 7

Segmented images of Test 1 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 8.

Figure 8

Segmented images of Test 2 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 9.

Figure 9

Segmented images of Test 3 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 10.

Figure 10

Segmented images of Test 4 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 11.

Figure 11

Segmented images of Test 5 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 12.

Figure 12

Segmented images of Test 6 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 13.

Figure 13

Segmented images of Test 7 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 14.

Figure 14

Segmented images of Test 8 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 15.

Figure 15

Segmented images of Test 9 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 16.

Figure 16

Segmented images of Test 10 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Table 6.

Comparison of CPU Time (in seconds) and PSNR computed by CEFO, EFO, ABC, BA, WDO, and BSA using fuzzy entropy. The bold numbers are the best values in the relevant index.

Image K Computational Time (CPU Time) Peak Signal to Noise Ratio (PSNR)
CEFO EFO ABC BA WDO BSA CEFO EFO ABC BA WDO BSA
Test 1 4 0.17541 0.20379 5.13759 2.45288 2.49367 2.97138 19.0869 18.5304 17.8020 17.3212 15.9576 16.8238
6 0.21623 0.26617 6.63971 2.98102 3.04503 3.33423 22.4966 21.0851 20.8826 19.4872 19.2521 19.3995
8 0.26219 0.30416 7.40398 3.54215 3.53203 3.96657 23.9315 23.3153 23.0079 23.0902 21.2553 21.9558
10 0.33284 0.35769 8.54834 4.05983 4.12060 4.61008 25.1603 24.8085 24.9762 23.5623 23.5174 24.2976
Test 2 4 0.18152 0.19745 5.48045 2.62491 2.55021 3.05768 18.5011 16.6384 17.9217 14.9956 14.6621 16.8609
6 0.23014 0.25140 6.52806 2.98864 3.11644 3.67576 21.4186 20.8410 21.4261 17.9962 16.1975 22.5361
8 0.26745 0.30171 7.39266 3.54545 3.54003 4.00924 23.4745 23.5633 24.0574 18.3652 19.0371 22.6106
10 0.35415 0.36493 8.32270 4.07706 4.17821 4.71338 27.1960 26.5362 26.5537 24.7670 19.9620 22.7476
Test 3 4 0.19354 0.20952 5.42962 2.54004 2.32354 3.05836 17.9266 18.0706 17.7559 15.0795 17.8259 16.1882
6 0.24406 0.27724 6.51639 3.07212 3.14887 3.21041 21.4595 20.9724 21.0554 20.6465 20.9096 18.7586
8 0.26572 0.30195 7.43254 3.61201 3.64706 4.05836 23.5257 22.7557 22.9832 22.7031 23.0729 21.4050
10 0.31104 0.35756 8.49756 4.05537 4.27057 4.97929 25.1107 24.1796 24.6243 23.9076 24.8630 21.4820
Test 4 4 0.20654 0.22286 5.22364 2.53570 2.51094 2.89167 18.5791 18.5562 18.4538 17.8594 18.1050 18.4835
6 0.25613 0.27055 6.52943 3.00267 3.05336 3.40388 21.9962 21.5752 21.4728 21.0931 20.4419 21.3494
8 0.29565 0.31734 7.34861 3.53905 3.74083 4.08592 23.6574 22.9513 22.5091 22.4950 22.1239 21.8930
10 0.34226 0.43022 8.48234 4.19234 4.20027 4.77867 24.8212 24.7081 24.3937 24.5774 23.1124 24.5733
Test 5 4 0.20017 0.22525 5.27645 2.53857 2.48718 2.98304 18.0239 17.6242 16.8089 16.3870 17.3516 15.8329
6 0.25485 0.26024 6.89415 3.06993 3.06272 3.53148 20.3479 20.4329 20.0547 20.2630 19.1668 18.4271
8 0.29424 0.32101 7.55179 3.86221 3.68722 4.09332 22.1661 21.8127 22.1693 21.5206 21.5001 19.8220
10 0.34480 0.35174 8.37159 4.09532 4.24325 4.95875 24.0138 23.7462 23.8704 23.4936 22.2399 23.5245
Test 6 4 0.19472 0.20841 5.12137 2.49369 2.53905 3.08066 18.1095 17.6491 17.6509 17.7857 17.7293 16.8704
6 0.24263 0.26745 6.57661 3.07078 3.06447 3.58303 21.4831 20.6287 21.0117 20.2254 20.2431 19.4964
8 0.30864 0.32049 7.35641 3.57464 3.50718 4.12885 23.2290 23.3256 22.7773 21.8122 21.4135 20.8800
10 0.33725 0.35708 8.54900 4.03751 4.15783 4.86694 24.7681 24.4737 24.5259 24.6509 23.1793 22.5603
Test 7 4 0.20678 0.23005 5.22556 2.53131 2.44727 3.00952 18.8739 18.5039 18.0277 16.4128 16.4863 16.0152
6 0.23562 0.25809 6.62490 3.07199 3.21664 3.41591 22.1443 21.6213 20.0762 19.9806 20.8248 18.3119
8 0.29807 0.30283 7.41492 3.56056 3.69153 4.05134 23.7839 23.1932 23.2384 22.0415 24.3675 22.0538
10 0.34217 0.36273 8.58824 4.20910 4.36751 4.74359 24.7433 24.0335 24.3244 23.0629 23.8627 24.2057
Test 8 4 0.21450 0.22378 5.33752 2.52727 2.33784 2.93353 18.9495 17.4911 16.6399 16.5774 18.2614 17.6314
6 0.25068 0.28080 6.43523 3.03905 3.08865 3.44368 21.4109 20.5791 21.8933 20.7661 22.1747 19.2986
8 0.31994 0.35980 7.36667 3.57058 3.46608 4.14337 23.0677 22.4398 23.0619 22.3759 23.4846 21.3875
10 0.33725 0.36888 8.48988 4.08254 4.16608 4.89443 25.4357 25.3720 23.9689 23.7873 25.4598 24.9694
Test 9 4 0.19324 0.23558 5.28317 2.55034 2.32281 3.11904 16.4568 15.9776 16.5525 16.1450 16.1994 18.1708
6 0.23789 0.27384 6.58909 3.06363 3.08147 3.32353 18.4675 18.6749 19.2639 18.5698 18.4175 19.1084
8 0.27057 0.29738 7.32034 3.58204 3.53299 4.04083 21.0098 20.5312 20.6003 20.3908 19.9597 21.0047
10 0.33151 0.36361 8.34554 4.15394 4.26364 4.60027 22.3666 23.0655 24.4486 22.4630 20.8358 22.9661
Test 10 4 0.19039 0.23247 5.45731 2.58281 2.42582 3.10718 18.5817 18.4860 18.1025 17.9358 18.4517 17.3690
6 0.23656 0.25762 6.46701 3.03982 3.12420 3.45783 20.8938 20.8450 20.8187 20.7592 20.5685 19.7354
8 0.26390 0.29360 7.34870 3.59042 3.54711 3.95625 22.6241 22.3346 22.3827 22.2330 22.6466 22.6210
10 0.33304 0.34301 8.49122 4.12545 4.29727 4.76364 25.3640 24.8916 24.8559 24.7299 23.3085 24.8469

Table 7.

Comparison of MSSIM and FSIM computed by CEFO, EFO, ABC, BA, WDO, and BSA using fuzzy entropy. The bold numbers are the best values in the relevant index.

Image K Mean Structural Similarity (MSSIM) Feature Similarity (FSIM)
CEFO EFO ABC BA WDO BSA CEFO EFO ABC BA WDO BSA
Test 1 4 0.97368 0.96312 0.96192 0.94201 0.94017 0.95642 0.75882 0.74880 0.74221 0.72940 0.72485 0.69178
6 0.98631 0.98280 0.98244 0.95769 0.97051 0.97305 0.85039 0.83938 0.81125 0.76648 0.80694 0.75111
8 0.99199 0.98985 0.98934 0.98929 0.98299 0.98442 0.88618 0.87683 0.86915 0.86860 0.85435 0.83095
10 0.99361 0.99251 0.99329 0.98959 0.98878 0.99215 0.91098 0.90282 0.90927 0.88384 0.89480 0.89012
Test 2 4 0.96013 0.95306 0.95484 0.93035 0.92588 0.95814 0.72972 0.68909 0.69247 0.64807 0.64540 0.65013
6 0.98459 0.97495 0.97746 0.93722 0.94664 0.98110 0.81315 0.73786 0.74709 0.70236 0.67594 0.73024
8 0.99098 0.98908 0.98343 0.96678 0.97116 0.98765 0.86210 0.84695 0.85625 0.71072 0.74300 0.83126
10 0.99631 0.99389 0.99545 0.99194 0.97709 0.98899 0.92876 0.92497 0.91465 0.87880 0.76162 0.84512
Test 3 4 0.97373 0.97293 0.97077 0.90106 0.96489 0.95882 0.71919 0.72285 0.71887 0.68456 0.70871 0.65393
6 0.98862 0.98623 0.98767 0.98523 0.98145 0.97832 0.83144 0.81185 0.82559 0.80544 0.82705 0.74121
8 0.99319 0.99143 0.99196 0.99137 0.99274 0.98806 0.88510 0.87295 0.87866 0.87292 0.87457 0.84056
10 0.99513 0.99393 0.99447 0.99282 0.99467 0.98472 0.91471 0.88683 0.91214 0.90164 0.90996 0.86459
Test 4 4 0.97504 0.97382 0.97329 0.97005 0.96999 0.97144 0.75966 0.75493 0.75345 0.75329 0.72873 0.73845
6 0.98817 0.98736 0.98634 0.98489 0.98256 0.98795 0.85825 0.84736 0.84706 0.82680 0.80402 0.84761
8 0.99221 0.99099 0.99161 0.99025 0.98786 0.98684 0.89738 0.88582 0.89347 0.88408 0.84668 0.86167
10 0.99485 0.99452 0.99446 0.99308 0.99011 0.99385 0.92218 0.91879 0.91227 0.90467 0.86575 0.91742
Test 5 4 0.97653 0.97315 0.96886 0.96022 0.96675 0.96267 0.76795 0.76296 0.74913 0.75639 0.75709 0.72777
6 0.98616 0.98513 0.98517 0.98732 0.97710 0.97627 0.82839 0.82738 0.81941 0.82174 0.80032 0.78086
8 0.99131 0.98955 0.99027 0.98258 0.98718 0.98158 0.86282 0.85410 0.85843 0.85236 0.85559 0.82891
10 0.99470 0.99435 0.99429 0.99253 0.98864 0.99286 0.89313 0.88408 0.88847 0.88520 0.88349 0.87589
Test 6 4 0.97060 0.96579 0.96406 0.95931 0.96633 0.95680 0.77366 0.74182 0.73894 0.75263 0.74499 0.71969
6 0.98591 0.98494 0.98417 0.97846 0.98073 0.97718 0.83568 0.82893 0.83366 0.79984 0.81545 0.80549
8 0.99198 0.99165 0.98932 0.98702 0.98448 0.98218 0.88446 0.88168 0.86619 0.85645 0.84359 0.82360
10 0.99424 0.99330 0.99346 0.99299 0.98979 0.98715 0.90343 0.89737 0.90076 0.89585 0.87933 0.85478
Test 7 4 0.97596 0.97279 0.97349 0.95629 0.95168 0.95706 0.75191 0.72087 0.73196 0.69886 0.72229 0.62681
6 0.98862 0.98840 0.98061 0.98013 0.98278 0.97028 0.84983 0.83905 0.79482 0.79773 0.82547 0.70824
8 0.99260 0.99116 0.99129 0.98974 0.99020 0.98792 0.88582 0.87568 0.87649 0.86537 0.87662 0.83777
10 0.99407 0.99259 0.99320 0.99084 0.99053 0.99268 0.90659 0.89269 0.90124 0.87211 0.88049 0.89262
Test 8 4 0.98354 0.97469 0.96164 0.97004 0.98276 0.97990 0.79086 0.76787 0.75329 0.78219 0.77483 0.78629
6 0.99111 0.98909 0.99031 0.98855 0.99055 0.98273 0.84716 0.83915 0.83630 0.82678 0.83681 0.79247
8 0.99381 0.99227 0.99103 0.99217 0.99266 0.99066 0.86616 0.84681 0.85892 0.84004 0.85703 0.80136
10 0.99847 0.99600 0.99506 0.99363 0.99606 0.99554 0.88832 0.88298 0.88288 0.87188 0.87718 0.86633
Test 9 4 0.97162 0.97039 0.96942 0.96822 0.96587 0.97086 0.81290 0.79545 0.80453 0.78891 0.79135 0.80267
6 0.98281 0.98209 0.98173 0.98096 0.97984 0.97906 0.86751 0.85710 0.85210 0.84483 0.85514 0.83386
8 0.98634 0.98826 0.98486 0.98571 0.98601 0.98727 0.88414 0.89537 0.90678 0.87892 0.88468 0.87814
10 0.99255 0.99236 0.99222 0.99119 0.98845 0.99031 0.92326 0.91715 0.91732 0.91380 0.89638 0.90067
Test 10 4 0.97860 0.97680 0.97229 0.96956 0.97424 0.97019 0.78955 0.78169 0.74377 0.74445 0.75473 0.78499
6 0.98606 0.95543 0.98550 0.98345 0.98326 0.98265 0.81837 0.82121 0.80852 0.80624 0.79444 0.80907
8 0.99207 0.99177 0.99129 0.98994 0.98941 0.99109 0.86164 0.86015 0.85335 0.84145 0.83516 0.84721
10 0.99532 0.99500 0.99441 0.99384 0.99105 0.99423 0.89375 0.88711 0.87918 0.87236 0.84516 0.88534

Table 6 and Figure 17 and Figure 18 compare the CPU Time and PSNR values while Table 7 and Figure 19 and Figure 20 compare the MSSIM and FSIM values of the segmented images. As can be seen from these tabulated values, all algorithms have lower values of PSNR, MSSIM, and FSIM at lower threshold levels. With the improvement of the threshold level, the values of PSNR, MSSIM, and FSIM increase gradually. Consequently, it can be clearly known that segmentation performance will be improved as the threshold level increases. However, the time of each algorithm will rise equally on the increasing threshold levels indicating the computation of algorithms is more complex on the higher threshold levels. PSNR, MSSIM, and FSIM are used to measure the similarity and qualify among the segmented images. Higher PSNR, MSSIM, and FSIM demonstrate that segmented images have more excellent segmentation performances.

Figure 17.

Figure 17

Comparison of Computational Time (CPU Time) based on fuzzy entropy.

Figure 18.

Figure 18

Comparison of Peak Signal to Noise Ratio (PSNR) based on fuzzy entropy.

Figure 19.

Figure 19

Comparison of Mean Structural Similarity (MSSIM) based on fuzzy entropy.

Figure 20.

Figure 20

Comparison of Feature Similarity (FSIM) based on fuzzy entropy.

Then, when comparing the differences in CPU time between various algorithms, it can be found that CEFO and EFO are significantly faster than ABC, BA, WDO, and BSA. Moreover, the running time of CEFO has decreased about 12.26% when comparing with EFO, which indicates the modified electromagnetic field optimization algorithm has a faster convergence rate. As for other algorithms, ABC has the longest time of computation due to its slow convergence rate, it needs nearly 30 times as much as CEFO. Afterward, BA, WDO, and BSA have an approximate running time, they are about 15 times longer than CEFO. With the increase of execution time, the practicability of the algorithm will be reduced. For a clearer presentation of convergence speed about these algorithms, the convergence curves are shown in Figure 21.

Figure 21.

Figure 21

Figure 21

Convergence curves of CEFO, EFO, ABC, BA, WDO, and BSA based on fuzzy entropy at K = 10. (Red line represents CEFO; Blue line represents EFO; Cyan line represents ABC; Yellow line represents BA; Magenta line represents WDO; Green ling represents BSA.)

In terms of PSNR, the chart of all algorithms is shown in Figure 18. It can be seen that CEFO has higher values among these algorithms; ABC has similar values to EFO in some images at a high threshold level. For instance, in Test 1 of K=10, PSNR value of EFO is 24.8085 while ABC is 24.9762, but CEFO is 25.1603. WDO has much lower values in smaller threshold level and BSA has good values in higher threshold level, all in all, PSNR values of BA, WDO, and BSA have different diversification, but they are mediocre on the whole.

Comparing the results of MSSIM and FSIM in Table 7, FSIM is considered to be more authoritative and application and CEFO also performs better than other algorithms in this index. Although EFO can have a banner performance at K = 4, ABC will usually be close to EFO at high levels. BA has better values at some images such as in Test 2, 4, etc. WDO and BSA have higher values than BA at K = 6 in some images but they are all lower than CEFO on the whole.

From what has been mentioned above, the CEFO algorithm has superior performance when searching for the optimal threshold vector in multilevel thresholding color image segmentation.

6.2. Comparison of Other Segmentation Methods

In the last experiment, the superiority of CEFO has been verified. And in this experiment, fuzzy entropy has been regarded as the research objective. To show the performance of fuzzy entropy thresholding in multilevel color image segmentation, Otsu’s and Kapur’s entropy based on color image segmentation are used to be a comparison. Applying the CEFO algorithm to Fuzzy entropy, Otsu’s, and Kapur’s entropy respectively to segment selected 10 Berkeley images in Figure 6. The threshold level is chosen as = 4, 6, 8, and 10, which is used to obtain the corresponding threshold points for each component of the color image. The results of segmented images are in Figure 22, and the corresponding optimal threshold values are in Table 8. Table 9 compares the performance of different thresholding approaches based on parameters of CPU Time, PSNR, MSSIM, and FSIM.

Figure 22.

Figure 22

Figure 22

Segmented images at K = 4, 6, 8, 10 using CEFO algorithm based on fuzzy entropy, Otsu’s and Kapur’s entropy.

Table 8.

Comparison of optimal threshold values of CEFO at K = 4, 6, 8, and 10 using fuzzy entropy, Otsu’s and Kapur’s entropy.

Image K Fuzzy Otsu Kapur
R G B R G B R G B
Test 1 4 56 93 153 187 57 88 132 191 59 10 157 197 52 86 130 190 60 80 100 173 50 89 133 223 64 103 145 188 75 117 156 199 67 109 150 194
6 20 59 92 128 167 199 26 47 81 114 161 203 25 48 76 111 138 195 52 74 105 161 177 217 68 80 101 124 167 190 10 55 85 105 155 212 51 84 116 150 184 212 55 87 117 147 178 212 56 87 115 150 187 221
8 11 31 58 82 107 132 168 211 12 42 64 92 114 149 181 210 18 50 73 97 143 168 196 223 25 36 69 90 124 152 169 231 42 59 70 79 115 158 202 238 47 59 68 79 107 120 177 197 38 60 81 104 132 158 185 213 49 74 99 122 147 173 199 224 16 56 87 117 143 172 200 227
10 14 37 55 75 90 111 130 159 182 210 11 41 61 95 122 146 168 185 208 237 14 40 64 80 105 136 161 189 212 231 45 51 67 107 119 129 165 199 222 237 41 70 72 86 91 112 156 192 210 230 35 50 82 100 101 115 139 148 178 197 12 38 58 81 106 133 161 184 203 227 45 61 82 103 124 146 168 189 210 228 17 52 74 94 116 137 163 185 212 238
Test 2 4 10 93 114 171 86 143 194 226 91 110 137 189 39 92 144 206 36 79 116 158 20 45 86 141 76 120 164 208 89 130 171 210 68 111 150 194
6 18 41 75 107 147 177 87 101 133 153 192 234 54 72 97 121 156 192 22 59 88 121 183 197 29 61 90 129 165 179 18 23 36 64 95 233 20 58 96 135 173 213 19 58 99 138 177 215 41 74 106 137 165 199
8 15 27 44 59 96 127 171 204 14 22 43 65 117 144 190 222 39 61 82 117 148 176 195 223 26 47 103 127 151 181 222 235 5 27 61 84 102 120 132 170 13 45 55 61 104 140 180 186 16 48 79 109 140 170 200 228 17 52 84 114 147 175 201 228 15 41 67 92 117 143 169 200
10 32 55 75 108 144 171 195 215 226 239 5 50 65 85 102 121 139 167 197 228 31 47 64 87 108 125 158 179 209 239 18 23 47 56 99 115 143 184 194 237 22 71 76 78 99 108 138 158 196 212 18 43 56 97 129 145 162 234 235 237 13 35 56 81 104 130 155 179 205 230 15 40 65 92 112 134 159 183 206 229 13 37 58 81 102 123 143 163 190 209
Test 3 4 44 92 139 188 31 92 139 188 27 97 138 185 63 113 115 170 93 99 136 192 90 113 150 192 49 98 145 202 25 85 133 192 58 122 157 202
6 32 62 93 128 173 199 19 53 90 119 162 206 36 71 105 136 183 208 48 78 103 126 153 190 36 71 114 168 185 203 18 30 101 133 159 201 30 70 102 127 166 200 20 65 99 143 181 208 26 80 104 135 168 202
8 22 43 68 91 112 138 172 208 17 51 73 98 123 148 181 207 11 36 58 88 106 141 170 213 15 68 93 126 130 160 177 225 7 40 95 123 146 172 186 209 18 80 114 137 167 197 206 239 13 33 60 87 125 157 185 214 29 52 73 97 124 161 187 222 12 42 61 86 108 137 167 205
10 26 39 55 69 86 110 131 154 175 207 42 29 56 79 104 121 141 163 197 219 9 25 49 82 109 132 154 176 199 222 1 37 64 71 99 122 151 176 212 231 13 51 74 75 104 137 170 197 215 246 51 82 106 111 130 168 181 203 233 241 11 32 51 73 100 132 154 173 199 223 14 37 55 75 93 109 123 149 181 212 16 44 66 99 130 150 166 187 208 225
Test 4 4 52 84 127 164 67 102 141 204 49 74 111 155 36 86 170 196 66 107 139 229 41 83 91 146 55 94 133 173 68 124 178 218 40 79 126 203
6 38 62 97 137 172 195 48 71 111 144 175 213 43 77 109 147 178 235 33 63 93 127 163 215 36 66 112 138 168 231 22 48 83 135 183 206 51 86 121 155 190 224 46 80 116 149 183 219 27 55 83 118 155 203
8 13 31 54 92 110 142 175 198 35 60 86 114 137 169 200 226 24 41 64 94 129 156 193 224 33 49 87 98 142 193 231 251 6 25 60 85 118 156 173 218 19 37 39 41 47 67 103 150 34 58 87 116 145 173 201 231 35 61 86 112 139 165 192 223 26 54 79 106 129 155 182 204
10 6 25 43 64 84 106 132 152 172 189 7 27 39 52 75 99 130 157 190 221 15 25 48 78 103 130 157 178 219 240 39 48 73 105 135 152 156 167 197 225 26 39 48 70 106 136 158 191 199 220 9 28 49 66 71 94 131 159 170 186 32 56 78 99 123 145 168 190 211 235 26 48 69 90 112 133 157 180 204 229 21 43 63 80 101 121 145 165 183 204
Test 5 4 52 98 149 198 55 89 164 215 77 125 162 209 95 147 188 198 59 135 142 212 81 116 164 203 74 110 145 194 78 120 160 205 22 88 147 218
6 22 63 93 131 179 225 16 69 97 125 158 204 15 61 97 131 166 207 92 132 165 192 233 243 78 116 119 138 187 229 68 125 134 158 190 248 66 92 118 145 180 216 67 98 126 160 191 223 22 62 99 142 180 219
8 16 59 77 94 116 134 162 199 20 58 75 98 129 155 185 214 19 56 77 115 145 173 196 227 89 111 120 148 188 207 240 246 62 96 152 160 186 194 199 215 17 76 100 131 141 169 197 231 65 90 115 140 162 184 204 225 64 88 112 135 158 182 206 227 18 59 89 119 146 172 197 221
10 13 29 57 77 93 107 130 165 188 214 14 30 62 78 94 126 152 179 205 231 19 44 56 72 89 109 129 159 176 205 36 66 73 82 104 120 126 147 181 210 60 104 127 170 175 181 185 190 206 221 35 58 87 97 135 174 175 189 214 222 54 71 87 106 127 145 168 189 208 225 62 81 100 120 143 163 183 201 218 233 22 52 81 108 133 154 176 197 217 235
Test 6 4 55 97 158 195 64 99 153 190 46 75 131 179 54 104 163 222 69 112 141 214 37 76 121 191 60 109 155 201 66 112 152 199 58 110 156 213
6 43 60 91 118 165 202 25 38 76 119 165 205 47 69 97 133 155 190 49 60 78 135 146 239 52 64 81 132 190 233 28 57 96 130 201 227 45 79 112 147 181 214 54 91 126 155 185 217 38 78 119 155 188 222
8 16 42 73 91 129 157 190 221 10 34 52 79 108 136 168 207 23 39 64 86 120 137 172 202 45 50 81 113 133 174 184 197 20 37 51 76 112 141 168 205 3 11 39 75 110 120 187 211 35 60 86 112 139 166 194 222 44 68 91 116 138 163 189 217 32 58 86 112 138 164 196 226
10 10 32 50 77 99 134 162 192 209 228 13 36 47 69 107 140 164 185 200 223 14 33 60 82 101 130 156 183 208 228 41 49 70 99 111 112 171 191 237 245 42 60 61 85 102 148 186 248 249 13 24 50 87 104 131 137 156 178 229 11 36 59 82 109 135 161 187 209 232 38 58 79 100 119 140 165 189 208 228 15 37 60 86 110 133 158 186 211 232
Test 7 4 66 95 139 176 25 66 108 157 23 88 134 220 85 132 159 183 66 104 171 190 73 104 155 175 75 115 155 193 81 119 157 195 47 88 131 180
6 17 33 80 120 168 205 20 80 108 133 164 189 13 59 84 102 128 151 77 106 144 188 212 224 51 65 76 110 152 200 45 49 79 90 131 154 63 96 128 160 194 225 47 77 106 134 163 195 17 47 79 112 144 180
8 20 54 79 106 126 146 169 209 13 50 80 102 132 166 197 223 19 40 63 88 119 148 200 228 48 67 83 123 141 182 224 234 79 100 140 150 165 183 214 254 6 45 49 80 107 131 165 205 38 61 84 110 144 169 195 223 60 88 116 142 168 196 216 237 12 31 56 82 111 133 154 180
10 10 30 41 63 89 110 129 154 178 216 14 54 68 82 106 132 169 197 220 243 15 41 66 85 105 133 151 190 214 233 38 63 76 101 128 131 157 164 185 186 27 41 83 91 103 119 157 184 219 226 14 55 72 83 86 115 124 157 164 214 41 61 82 101 120 142 167 194 216 237 46 69 92 114 138 158 176 196 216 239 17 42 67 84 111 130 144 161 179 196
Test 8 4 48 73 173 212 62 107 141 207 43 79 124 215 115 174 190 225 92 120 136 156 46 100 139 150 59 116 149 202 83 122 182 218 55 96 130 164
6 38 64 101 141 181 224 32 61 85 126 155 196 38 61 91 126 197 218 54 146 170 197 219 232 98 119 143 156 167 212 12 42 50 121 142 182 42 81 118 148 179 209 45 83 116 147 182 218 25 49 72 101 131 164
8 15 41 64 85 110 133 175 213 44 34 74 110 135 158 179 203 25 40 69 104 136 182 207 231 65 72 140 154 178 188 218 239 69 111 141 150 170 218 245 28 29 72 99 116 128 188 200 37 61 90 120 144 171 200 226 46 73 101 126 152 182 204 225 20 43 61 80 99 121 143 164
10 18 39 58 87 115 137 172 186 210 230 21 36 63 79 111 129 150 180 208 227 28 47 74 90 116 131 153 178 208 226 28 57 59 113 123 163 168 191 213 214 39 70 72 102 128 154 169 183 191 196 9 21 27 77 79 128 168 185 187 197 35 58 80 100 121 142 165 187 207 230 36 47 71 91 116 139 164 183 214 228 20 37 53 70 89 107 126 143 164 182
Test 9 4 47 74 107 149 55 90 132 167 42 66 117 149 40 93 131 211 80 137 195 205 29 81 119 172 76 123 167 212 77 129 180 227 43 90 140 194
6 13 43 62 92 126 165 15 50 89 125 160 195 19 45 81 115 151 230 57 73 109 164 194 230 64 105 136 166 201 231 15 61 91 114 123 165 62 97 132 167 203 236 62 95 128 162 195 231 31 63 95 126 158 194
8 14 36 53 75 92 123 152 173 11 40 55 77 101 126 151 183 26 41 66 91 128 155 200 233 45 62 101 143 153 191 200 229 45 92 128 151 156 193 199 217 12 65 78 106 118 135 169 214 55 83 110 138 162 188 213 238 53 80 108 137 164 191 215 238 25 47 70 97 119 142 171 199
10 13 23 41 59 82 106 126 158 181 198 11 43 54 72 89 105 134 163 188 213 24 47 71 94 118 140 160 177 208 237 30 48 87 101 131 159 164 220 227 253 30 50 59 64 107 112 136 166 189 228 12 20 47 80 93 106 122 132 150 165 47 68 92 115 140 160 182 201 219 239 38 55 74 95 118 142 164 187 212 238 19 36 54 72 91 111 133 156 176 194
Test 10 4 48 76 132 175 31 69 117 169 53 86 116 200 57 112 164 206 63 108 179 202 47 95 172 216 49 91 133 182 63 111 157 206 59 99 148 192
6 34 57 90 127 166 196 53 90 116 142 180 214 42 56 104 136 169 220 18 53 72 129 133 155 55 85 150 177 181 231 38 75 127 175 203 229 30 67 106 136 177 217 46 79 111 141 170 2070 44 78 114 152 190 225
8 19 33 62 91 133 165 195 214 20 26 57 90 112 150 195 220 12 38 55 88 113 150 186 229 34 71 116 118 139 141 159 199 15 42 60 103 149 155 170 210 6 45 70 127 139 200 219 248 22 52 79 109 133 161 189 219 39 67 95 124 153 180 206 230 40 66 91 116 142 167 194 224
10 16 35 54 71 93 119 141 169 196 231 9 26 36 51 72 106 132 166 195 224 10 26 41 61 77 108 134 160 185 213 13 28 49 58 95 105 127 145 151 184 26 65 103 145 169 178 183 193 207 239 19 49 63 107 161 187 191 226 242 249 21 42 67 95 121 148 173 197 217 232 34 55 78 101 122 166 186 207 231 29 47 70 92 117 139 161 183 204 226

Table 9.

Comparison of CPU Time, PSNR, MSSIM, and FSIM computed by CEFO at K = 4, 6, 8, 10 using fuzzy entropy, Otsu’s and Kapur’s. The bold numbers are the best values in the relevant index.

Image K CPU Time PSNR MSSIM FSIM
Fuzzy Otsu’s Kapur Fuzzy Otsu’s Kapur Fuzzy Otsu’s Kapur Fuzzy Otsu’s Kapur
Test 1 4 0.17541 0.11919 0.18065 19.0869 16.0378 16.0378 0.97368 0.95866 0.94199 0.75882 0.75699 0.73718
6 0.21623 0.12506 0.24117 22.4966 19.0529 19.0529 0.98631 0.96735 0.97092 0.85039 0.79878 0.81115
8 0.26219 0.13443 0.25866 23.9315 21.3692 21.9768 0.99199 0.98135 0.98558 0.88618 0.83430 0.86369
10 0.33284 0.15629 0.27287 25.1603 22.8071 23.8019 0.99361 0.98815 0.99060 0.91098 0.85722 0.89851
Test 2 4 0.18152 0.10603 0.24967 18.5011 18.4665 18.4854 0.96013 0.95859 0.95939 0.72972 0.72349 0.71672
6 0.23014 0.11012 0.25587 21.4186 20.9856 21.2795 0.98459 0.98013 0.98049 0.81315 0.80687 0.80330
8 0.26745 0.12666 0.26542 23.4745 23.2473 23.2436 0.99098 0.98926 0.98958 0.86210 0.85725 0.86029
10 0.35415 0.14591 0.30354 27.1960 24.6605 26.8256 0.99631 0.99286 0.99584 0.92876 0.87911 0.92489
Test 3 4 0.19354 0.11462 0.39732 17.9266 17.5340 17.7798 0.97373 0.96767 0.97158 0.71919 0.70489 0.71365
6 0.24406 0.12074 0.45047 21.4595 20.4054 21.3185 0.98862 0.98374 0.98793 0.83144 0.79214 0.82536
8 0.26572 0.13348 0.48285 23.5257 21.5710 22.7384 0.99319 0.98726 0.99194 0.88510 0.82899 0.87669
10 0.31104 0.16254 0.21154 25.1107 23.3835 24.3602 0.99513 0.99227 0.99417 0.91471 0.88218 0.92049
Test 4 4 0.20654 0.09202 0.21866 18.5791 18.4569 18.4989 0.97504 0.94314 0.97497 0.75966 0.74368 0.74512
6 0.25613 0.12600 0.22851 21.9962 21.7162 22.0191 0.98817 0.98612 0.98724 0.85825 0.84935 0.85897
8 0.29565 0.15338 0.24107 23.6574 23.0068 23.5891 0.99221 0.99073 0.99239 0.89738 0.88483 0.89628
10 0.34226 0.16649 0.27016 24.8212 24.5519 24.7934 0.99485 0.99308 0.99460 0.92218 0.91235 0.92176
Test 5 4 0.20017 0.10569 0.23254 18.0239 16.4797 17.2779 0.97653 0.96171 0.97062 0.76795 0.74241 0.76655
6 0.23485 0.12750 0.24186 20.3479 17.9620 20.0647 0.98616 0.97050 0.98300 0.82839 0.81379 0.82815
8 0.29424 0.15211 0.27258 22.1661 19.6993 21.4806 0.99131 0.97874 0.98620 0.86282 0.83396 0.87859
10 0.34480 0.16173 0.29775 24.0138 21.9181 23.1757 0.99470 0.98889 0.99059 0.89313 0.85475 0.89169
Test 6 4 0.19472 0.10286 0.24964 18.1095 17.8512 17.9759 0.97060 0.97041 0.96622 0.77366 0.76319 0.74541
6 0.24263 0.12325 0.28237 21.4831 20.4060 20.6824 0.98591 0.98186 0.98165 0.83568 0.81530 0.82596
8 0.30864 0.15339 0.29413 23.2290 22.1354 22.9859 0.99198 0.98855 0.98949 0.88446 0.85408 0.87426
10 0.33725 0.18392 0.32098 24.7681 22.8894 25.0296 0.99424 0.98975 0.99350 0.90343 0.86898 0.90198
Test 7 4 0.20678 0.10402 0.24912 18.8739 17.8704 17.8217 0.97596 0.96464 0.96471 0.75191 0.72297 0.74535
6 0.23562 0.10956 0.25531 22.1443 20.3251 21.6210 0.98862 0.97872 0.98609 0.84983 0.79339 0.84398
8 0.29807 0.12937 0.27367 23.7839 20.7719 23.1949 0.99260 0.97916 0.99048 0.88582 0.81106 0.87668
10 0.34217 0.14226 0.27555 24.7433 23.1843 24.3686 0.99407 0.99097 0.99363 0.90659 0.85053 0.90773
Test 8 4 0.21450 0.10617 0.23422 18.9495 19.0541 18.9415 0.98354 0.98371 0.98401 0.79086 0.79082 0.79759
6 0.25068 0.12896 0.26131 21.4109 21.1411 21.4439 0.99111 0.98687 0.99032 0.84716 0.80299 0.81085
8 0.31994 0.14136 0.28517 23.0677 23.2842 23.5914 0.99381 0.99375 0.99576 0.86616 0.85771 0.87685
10 0.33725 0.18727 0.29926 25.4357 22.6056 25.4062 0.99847 0.99165 0.99681 0.88832 0.82970 0.89139
Test 9 4 0.19324 0.11092 0.23595 16.4568 16.3593 17.1580 0.97162 0.97064 0.96985 0.81290 0.80596 0.81157
6 0.23789 0.12999 0.17958 18.4675 18.0109 19.0843 0.98281 0.98205 0.98394 0.86751 0.86452 0.89018
8 0.27057 0.14229 0.22847 21.0098 21.0045 21.3567 0.98634 0.98629 0.98699 0.88414 0.87084 0.90497
10 0.33151 0.18128 0.25452 22.3666 22.3547 23.1507 0.99255 0.99251 0.99428 0.92326 0.91262 0.93015
Test 10 4 0.19039 0.10466 0.20511 18.5817 17.9607 18.0765 0.97860 0.97268 0.97934 0.78169 0.76586 0.77935
6 0.23656 0.11261 0.24046 20.8938 20.8925 21.0027 0.98606 0.98526 0.98586 0.82121 0.82907 0.83085
8 0.26390 0.12200 0.24834 22.6241 21.6691 23.1804 0.99207 0.98882 0.99119 0.86015 0.83365 0.85931
10 0.33304 0.12677 0.27179 25.3640 23.8567 25.0886 0.99532 0.99289 0.99428 0.88711 0.88195 0.88555

As can be seen in Table 9 and Figure 23, Figure 24, Figure 25 and Figure 26, Otsu’s thresholding has the fastest speed of execution time, fuzzy entropy and Kapur’s entropy are a bit slower than Otsu’s. However, three thresholding segmentation methods are all in 0.5 (seconds) at different threshold levels, which can also indicate CEFO algorithm has a fast convergence rate. In terms of PSNR, it is clear that fuzzy entropy thresholding has higher values in general, the ranking of PSNR among these segmentation methods is Fuzzy > Kapur’s > Otsu’s. As for MSSIM and FSIM, Fuzzy entropy also performs well, which is in advance of two other methods overall. And the ranking of MSSIM and FSIM among three methods is Fuzzy > Kapur’s > Otsu’s. Therefore, fuzzy entropy is better as compared to others showing CEFO based on the fuzzy entropy technique can be applied in the color image segmentation field excellently.

Figure 23.

Figure 23

Comparison of CPU Time based on fuzzy entropy.

Figure 24.

Figure 24

Comparison of PSNR based on fuzzy entropy.

Figure 25.

Figure 25

Comparison of MSSIM based on fuzzy entropy.

Figure 26.

Figure 26

Comparison of FSIM based on fuzzy entropy.

6.3. ANOVA Test

A statistical test known as “the analysis of variance” (ANOVA) has been performed at 5% significance level to evaluate the significant difference between algorithms. In the experiment, CEFO algorithm is regarded as the control group and is compared with EFO, ABC, BA, WDO and BSA algorithms in terms of four measure metrics. The null hypothesis assumes that there is no significant difference between the mean values of 5 selected algorithms, whereas, the alternative hypothesis can be considered as a significant difference between them. Table 10 exhibits the –value of CPU Time, PSNR, MSSIM, and FSIM by the ANOVA test. As can be seen, the -value for CPU Time is less than 0.05, which implies a significant difference between the proposed algorithm and other algorithms and CEFO has a much fast convergence rate. With respect to another three measures, CEFO also has significant difference about BA, WDO and BSA. It can be observed that CEFO algorithm has a better performance.

Table 10.

Comparison of p-values between CEFO and other algorithms based on Fuzzy entropy.

Dependent Variable Proposed Algorithm Algorithms p-Value Dependent Variable Proposed Algorithm Algorithms p-Value
CPU Time CEFO EFO 0.038791(*) MSSIM CEFO EFO 0.201224
ABC 3.76E-50(*) ABC 0.157924
BA 1.08E-46(*) BA 0.006606(*)
WDO 1.23E-43(*) WDO 0.004560(*)
BSA 1.95E-47(*) BSA 0.006092(*)
PSNR CEFO EFO 0.457477 FSIM CEFO EFO 0.364938
ABC 0.466803 ABC 0.297925
BA 0.037665(*) BA 0.034212(*)
WDO 0.021986(*) WDO 0.016480(*)
BSA 0.020720(*) BSA 0.003728(*)

7. Conclusions and Future Work

In this paper, multilevel thresholding color image segmentation has been considered as an optimization problem in which the fuzzy entropy technique has been presented as the objective function. To achieve efficient segmentation, it is essential for algorithms to search the optimal fuzzy parameters and threshold values. Electromagnetic Field Optimization is a novel meta-heuristic algorithm which use is attempt herein for the first time in this field. Additionally, a new chaotic strategy is proposed and embedded into the EFO algorithm to accelerate the convergence rate and enhance segmentation accuracy. In order to demonstrate the superior performance of the CEFO-based fuzzy entropy technique, a series of experiments have been conducted and results are evaluated in terms of CPU Time, PSNR, MSSIM, and FSIM. On the one hand, the CEFO algorithm is compared with EFO, ABC, BA, WDO, and BSA based on fuzzy entropy for segmenting ten Berkeley benchmark images at different threshold levels (K = 4, 6, 8, and 10). The obtained results illustrate the obvious effect of proposed chaotic strategy and CEFO needs less than 0.35 seconds to find the optimal threshold vector which makes it an effective algorithm to handle the above problem. On the other hand, the fuzzy entropy method is compared with Otsu’s variance and Kapur’s entropy method based on CEFO on the basis of the same experimental environment. The high precision of fuzzy entropy has been validated with four metrics. Although CEFO-fuzzy is not the fastest among the three techniques, its execution time is suitable for practical applications within 0.5 seconds. To sum up, CEFO-based fuzzy entropy is a robust technique in multi-threshold color image segmentation.

In the future, the proposed technique can be applied to solve practical problems such as medical images, satellite images, etc. It is also interesting to modify EFO algorithm in other aspects to improve its performance for higher threshold levels (e.g., K = 15 and 20). Furthermore, the merits of CEFO can be investigated using Tsallis entropy, Renyi’s entropy, and cross entropy for multilevel thresholding.

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Author Contributions

S.S. and H.J. contributed to the idea of this paper; J.M. performed the experiments; S.S. and J.M. wrote the paper; H.J. contributed to the revision of this paper.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.He L.F., Huang S.W. Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing. 2017;240:152–174. doi: 10.1016/j.neucom.2017.02.040. [DOI] [Google Scholar]
  • 2.Mlakar U., Potočnik B., Brest J. A hybrid differential evolution for optimal multilevel image thresholding. Expert Syst. Appl. 2016;65:221–232. doi: 10.1016/j.eswa.2016.08.046. [DOI] [Google Scholar]
  • 3.Agrawal S., Panda R., Bhuyan S., Panigrahi B.K. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol. Comput. 2013;11:16–30. doi: 10.1016/j.swevo.2013.02.001. [DOI] [Google Scholar]
  • 4.Pare S., Bhandar A.K., Kumar A., Singh G.K. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst. Appl. 2017;87:335–362. doi: 10.1016/j.eswa.2017.06.021. [DOI] [Google Scholar]
  • 5.Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975;11:23–27. doi: 10.1109/TSMC.1979.4310076. [DOI] [Google Scholar]
  • 6.Otsu N. A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. [DOI] [Google Scholar]
  • 7.Kapur J.N., Sahoo P.K., Wong A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985;29:273–285. doi: 10.1016/0734-189X(85)90125-2. [DOI] [Google Scholar]
  • 8.Li C.H., Lee C.K. Minimum cross entropy thresholding. Pattern Recogn. 1993;26:617–625. doi: 10.1016/0031-3203(93)90115-D. [DOI] [Google Scholar]
  • 9.Jiang Y.C., Tang Y., Liu H., Chen Z.Z. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Inf. Sci. 2013;240:95–114. doi: 10.1016/j.ins.2013.03.052. [DOI] [Google Scholar]
  • 10.Ye Z.W., Wang M.W., Liu W., Chen S.B. Fuzzy entropy based optimal thresholding using bat algorithm. Appl. Soft Comput. 2015;31:381–395. doi: 10.1016/j.asoc.2015.02.012. [DOI] [Google Scholar]
  • 11.Gao H., Pun C.M., Kwong S. An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf. Sci. 2016;369:500–521. doi: 10.1016/j.ins.2016.07.017. [DOI] [Google Scholar]
  • 12.Bohat V.K., Arya K.A. A new heuristic for multilevel thresholding of images. Expert Syst. Appl. 2019;117:176–203. doi: 10.1016/j.eswa.2018.08.045. [DOI] [Google Scholar]
  • 13.Akay B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 2013;13:3066–3091. doi: 10.1016/j.asoc.2012.03.072. [DOI] [Google Scholar]
  • 14.Agarwal P., Singh R., Kumar S., Bhattacharya M. Social spider algorithm employed multi-level thresholding segmentation approach. Proc. First Int. Conf. Inf. Commun. Technol. Intell. Syst. 2016;2:149–259. doi: 10.1007/978-3-319-30927-9_25. [DOI] [Google Scholar]
  • 15.Bhandari A.K., Singh V.K., Kumar A., Singh G.K. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 2014;41:2538–2560. doi: 10.1016/j.eswa.2013.10.059. [DOI] [Google Scholar]
  • 16.Sumathi R., Venkatesulu M., Arjunan S.P. Extracting tumor in MR brain and breast image with Kapur’s entropy based Cuckoo Search Optimization and morphological reconstruction filters. Biocybern. Biomed. Eng. 2018;38:918–930. doi: 10.1016/j.bbe.2018.07.005. [DOI] [Google Scholar]
  • 17.Chen K., Zhou Y.F., Zhang Z.S., Dai M., Chao Y., Shi J. Multilevel Image Segmentation Based on an Improved Firefly Algorithm. Math. Probl. Eng. 2016;2016 doi: 10.1155/2016/1578056. [DOI] [Google Scholar]
  • 18.Mohamed A.E.A., Ahmed A.E., Aboul E.H. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 2017;83:242–256. doi: 10.1016/j.eswa.2017.04.023. [DOI] [Google Scholar]
  • 19.Wang X.H., Deng Y.M., Duan H.B. Edge-based target detection for unmanned aerial vehicles using competitive Bird Swarm Algorithm. Aerosp. Sci. Technol. 2018;78:708–720. doi: 10.1016/j.ast.2018.04.047. [DOI] [Google Scholar]
  • 20.Rajinikanth V., Couceiro M.S. RGB histogram based color image segmentation using firefly algorithm. Procedia Comput. Sci. 2015;46:1449–1457. doi: 10.1016/j.procs.2015.02.064. [DOI] [Google Scholar]
  • 21.Gao M.L., Jin S., Jun J. Visual tracking using improved flower pollination algorithm. Optik. 2018;156:522–529. doi: 10.1016/j.ijleo.2017.11.155. [DOI] [Google Scholar]
  • 22.Oliva D., Cuevas E., Pajares G., Zaldivar D., Osuna V. A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing. 2014;139:357–381. doi: 10.1016/j.neucom.2014.02.020. [DOI] [Google Scholar]
  • 23.Bayraktar Z., Komurcu M., Bossard J.A., Werner D.H. The Wind Driven Optimization Technique and its Application in Electromagnetics. IEEE Trans. Antenn. Propag. 2013;61:2745–2757. doi: 10.1109/TAP.2013.2238654. [DOI] [Google Scholar]
  • 24.Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. [DOI] [Google Scholar]
  • 25.Kotte S., Pullakura R.K., Injeti S.K. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization. Measurement. 2018;130:340–361. doi: 10.1016/j.measurement.2018.08.007. [DOI] [Google Scholar]
  • 26.Hussein W.A., Sahran S., Abdullah S.N.H.S. A fast scheme for multilevel thresholding based on a modified bees algorithm. Knowl.-Based Syst. 2016;101:114–134. doi: 10.1016/j.knosys.2016.03.010. [DOI] [Google Scholar]
  • 27.Sambandam R.K., Jayaraman S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. Comput. Inform. Sci. 2018;30:449–461. doi: 10.1016/j.jksuci.2016.11.002. [DOI] [Google Scholar]
  • 28.Jia H.M., Ma J., Song W.L. Multilevel Thresholding Segmentation for Color Image Using Modified Moth-Flame Optimization. IEEE Access. 2019;7:2169–3536. doi: 10.1109/ACCESS.2019.2908718. [DOI] [Google Scholar]
  • 29.Abedinpourshotorban H., Shamsuddin S.M., Beheshti Z. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016;26:8–22. doi: 10.1016/j.swevo.2015.07.002. [DOI] [Google Scholar]
  • 30.Talebi B., Dehkordi M.N. Sensitive association rules hiding using electromagnetic field optimization algorithm. Expert Syst. Appl. 2018;114:155–172. doi: 10.1016/j.eswa.2018.07.031. [DOI] [Google Scholar]
  • 31.Bouchekara H.R.E.H., Zellagui M., Abido M.A. Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. Appl. Soft Comput. 2017;54:267–283. doi: 10.1016/j.asoc.2017.01.037. [DOI] [Google Scholar]
  • 32.Ghamisi P., Couceiro M.S., Martins F.M., Benediktsson J.A. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 2014;52:2382–2394. doi: 10.1109/TGRS.2013.2260552. [DOI] [Google Scholar]
  • 33.Sarkar S., Das S., Chaudhuri S.S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recogn. Lett. 2015;54:27–35. doi: 10.1016/j.patrec.2014.11.009. [DOI] [Google Scholar]
  • 34.Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. [DOI] [Google Scholar]
  • 35.Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. [DOI] [Google Scholar]
  • 36.Cuevas E., Zaldivar D., Pérez-Cisneros M. A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst. Appl. 2010;37:5265–5271. doi: 10.1016/j.eswa.2010.01.013. [DOI] [Google Scholar]
  • 37.Pecora L.M., Carroll T.L. Synchronization of chaotic systems. Phys. Rev. Lett. 2015;25 doi: 10.1063/1.4917383. [DOI] [PubMed] [Google Scholar]
  • 38.Kohli M., Arora S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2017;5:458–472. doi: 10.1016/j.jcde.2017.02.005. [DOI] [Google Scholar]
  • 39.Bhandari A.K., Kumar A., Singh G.K. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst. Appl. 2015;42:1573–1601. doi: 10.1016/j.eswa.2014.09.049. [DOI] [Google Scholar]
  • 40.Tao W.B., Wen T.J., Liu J. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recogn. Lett. 2003;24:3069–3078. doi: 10.1016/S0167-8655(03)00166-1. [DOI] [Google Scholar]
  • 41.Laing H.N., Jia H.M., Xing Z.K., Ma J., Peng X.X. Modified Grasshopper Algorithm-Based Multilevel Thresholding for Color Image Segmentation. IEEE Access. 2019;7:2169–3536. doi: 10.1109/ACCESS.2019.2891673. [DOI] [Google Scholar]
  • 42.Bhandari A.K., Kumar A., Singh G.K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst. Appl. 2015;42:8707–8730. doi: 10.1016/j.eswa.2015.07.025. [DOI] [Google Scholar]
  • 43.Horng M.H. A multilevel image thresholding using the honey bee mating optimization. Appl. Math. Comput. 2010;215:3302–3310. doi: 10.1016/j.amc.2009.10.018. [DOI] [Google Scholar]
  • 44.Sağ T., Çunkaş M. Color image segmentation based on multi-objective artificial bee colony optimization. Appl. Soft Comput. 2015;34:389–401. doi: 10.1016/j.asoc.2015.05.016. [DOI] [Google Scholar]
  • 45.Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004;13:600–612. doi: 10.1109/TIP.2003.819861. [DOI] [PubMed] [Google Scholar]
  • 46.Sowmya B., Rani B.S. Colour image segmentation using fuzzy clustering techniques and competitive neural network. Appl. Soft Comput. 2011;11:3170–3178. doi: 10.1016/j.asoc.2010.12.019. [DOI] [Google Scholar]

Articles from Entropy are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES