Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Oct 5;93(10):185. doi: 10.1140/epjb/e2020-10355-3

Vaccinating SIS epidemics under evolving perception in heterogeneous networks

Xiao-Jie Li 1, Xiang Li 1,2,3,
PMCID: PMC7531267  PMID: 33024413

Abstract

Abstract

Vaccination is an effective intervention against epidemics. Previous work has demonstrated that psychological cognition affects individual behavior. However, perceptual differences between individuals, as well as the dynamics of perceptual evolution, are not taken into account. In order to explore how these realistic characteristics of psychological cognition influence collective vaccination behavior, we propose a prospect theory based evolutionary vaccination game model, where the evolution of reference points is used to characterize changes in perception. We compare the fractions of vaccinated individuals and infected individuals under variable reference points with those under the expected utility theory and the fixed reference point, and highlight the role of evolving perception in promoting vaccination and contributing to epidemic control. We find that the epidemic size under variable reference point is always less than that under the expected utility theory. Finding that there exists a vaccination cost threshold for the cognitive effect, we develop a novel mixed-reference-point mechanism by combining individual psychological characteristics with network topological feature. The effectiveness of this mechanism in controlling the network epidemics is verified with numerical simulations. Compared with pure reference points, the mixed-reference-point mechanism can effectively reduce the final epidemic size, especially at a large vaccination cost.

Graphical abstract

graphic file with name 10051_2020_10355_Fig1_HTML.jpg

Keywords: Statistical and Nonlinear Physics

Footnotes

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. N. Engl. J. Med. 2020;382:727. doi: 10.1056/NEJMoa2001017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Tizard I.R. Vaccine. 2020;38:5123. doi: 10.1016/j.vaccine.2020.06.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bauch C.T., Galvani A.P., Earn D.J. Proc. Natl. Acad. Sci. U.S.A. 2003;100:10564. doi: 10.1073/pnas.1731324100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bauch C.T., Earn D.J. Proc. Natl. Acad. Sci. U.S.A. 2004;101:13391. doi: 10.1073/pnas.0403823101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Wang Z., Bauch C.T., Bhattacharyya S., Donofrio A., Manfredi P., Perc M., Perra N., Salathe M., Zhao D. Phys. Rep. 2016;664:1. doi: 10.1016/j.physrep.2016.10.006. [DOI] [Google Scholar]
  • 6.Perc M., Jordan J.J., Rand D.G., Wang Z., Boccaletti S., Szolnoki A. Phys. Rep. 2017;687:1. doi: 10.1016/j.physrep.2017.05.004. [DOI] [Google Scholar]
  • 7.Bauch C.T. Proc. R. Soc. London B. 2005;272:1669. doi: 10.1098/rspb.2005.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fu F., Rosenbloom D.I., Wang L., Nowak M.A. Proc. R. Soc. London B. 2011;278:42. doi: 10.1098/rspb.2010.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zhang H., Fu F., Zhang W., Wang B. Physica A. 2012;391:4807. doi: 10.1016/j.physa.2012.05.009. [DOI] [Google Scholar]
  • 10.Wu Z.X., Zhang H.F. Europhys. Lett. 2013;104:10002. doi: 10.1209/0295-5075/104/10002. [DOI] [Google Scholar]
  • 11.Grabowski A. Eur. Phys. J. B. 2014;87:146. doi: 10.1140/epjb/e2014-50098-0. [DOI] [Google Scholar]
  • 12. B. Buonomo, Ric. Mater., 10.1007/s11587-020-00506-8
  • 13.Oraby T., Bauch C.T. Sci. Rep. 2015;5:10724. doi: 10.1038/srep10724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Rand D.G. Psychol. Sci. 2016;27:1192. doi: 10.1177/0956797616654455. [DOI] [PubMed] [Google Scholar]
  • 15.Bear A., Rand D.G. Proc. Natl. Acad. Sci. U.S.A. 2016;113:936. doi: 10.1073/pnas.1517780113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Simon H.A. Q. J. Econ. 1955;69:99. doi: 10.2307/1884852. [DOI] [Google Scholar]
  • 17.Galvani A.P., Reluga T.C., Chapman G.B. Proc. Natl. Acad. Sci. U.S.A. 2007;104:5692. doi: 10.1073/pnas.0606774104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Li X.J., Li C., Li X. IEEE Trans. Netw. Sci. Eng. 2018;5:326. doi: 10.1109/TNSE.2017.2766665. [DOI] [Google Scholar]
  • 19.Ellsberg D. Q. J. Econ. 1961;75:643. doi: 10.2307/1884324. [DOI] [Google Scholar]
  • 20.Kahneman D., Tversky A. Econometrica. 1979;47:263. doi: 10.2307/1914185. [DOI] [Google Scholar]
  • 21.Jie C., Prashanth L., Fu M., Marcus S., Szepesvári C. IEEE Trans. Automat. Control. 2018;63:2867. doi: 10.1109/TAC.2018.2822658. [DOI] [Google Scholar]
  • 22.Thanou A., Tsiropoulou E.E., Papavassiliou S. IEEE Trans. Comput. Soc. Syst. 2019;6:135. doi: 10.1109/TCSS.2018.2890276. [DOI] [Google Scholar]
  • 23.Hota A.R., Sundaram S. IEEE Trans. Control Netw. 2019;6:1461. doi: 10.1109/TCNS.2019.2897904. [DOI] [Google Scholar]
  • 24.Li X.J., Li X. IEEE Trans. Comput. Soc. Syst. 2019;7:329. doi: 10.1109/TCSS.2019.2960818. [DOI] [Google Scholar]
  • 25.Rabin M. Econometrica. 2000;68:1281. doi: 10.1111/1468-0262.00158. [DOI] [Google Scholar]
  • 26.Siegel S. Psychol. Rev. 1957;64:253. doi: 10.1037/h0049247. [DOI] [PubMed] [Google Scholar]
  • 27.Tversky A., Kahneman D. Q. J. Econ. 1991;106:1039. doi: 10.2307/2937956. [DOI] [Google Scholar]
  • 28.Wu M., Bai T., Zhu S.X. Omega. 2018;81:99. doi: 10.1016/j.omega.2017.10.003. [DOI] [Google Scholar]
  • 29.Baillon A., Bleichrodt H., Spinu V. Manage. Sci. 2020;66:93. doi: 10.1287/mnsc.2018.3224. [DOI] [Google Scholar]
  • 30.Sugden R. J. Econ. Theory. 2003;111:172. doi: 10.1016/S0022-0531(03)00082-6. [DOI] [Google Scholar]
  • 31.Lattin J.M., Bucklin R.E. J. Marketing Res. 1989;26:299. doi: 10.1177/002224378902600304. [DOI] [Google Scholar]
  • 32.Bell D.R., Lattin J.M. Marketing Sci. 2000;19:185. doi: 10.1287/mksc.19.2.185.11802. [DOI] [Google Scholar]
  • 33.Baucells M., Sarin R.K. Manage. Sci. 2010;56:286. doi: 10.1287/mnsc.1090.1113. [DOI] [Google Scholar]
  • 34.Lant T.K. Manage. Sci. 1992;38:623. doi: 10.1287/mnsc.38.5.623. [DOI] [Google Scholar]
  • 35.Perc M. Sci. Rep. 2019;9:1. doi: 10.1038/s41598-019-53300-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Arkes H.R., Blumer C. Organ. Behav. Hum. Dec. 1985;35:124. doi: 10.1016/0749-5978(85)90049-4. [DOI] [Google Scholar]
  • 37.Arkes H.R., Hutzel L. J. Behav. Decis. Making. 2000;13:295. doi: 10.1002/1099-0771(200007/09)13:3<295::AID-BDM353>3.0.CO;2-6. [DOI] [Google Scholar]
  • 38.Baucells M., Weber M., Welfens F. Manage. Sci. 2011;57:506. doi: 10.1287/mnsc.1100.1286. [DOI] [Google Scholar]
  • 39.Fukuda E., Kokubo S., Tanimoto J., Wang Z., Hagishima A., Ikegaya N. Chaos Solitons Fractals. 2014;68:1. doi: 10.1016/j.chaos.2014.07.004. [DOI] [Google Scholar]
  • 40.Chen X., Wang L. Phys. Rev. E. 2008;77:017103. doi: 10.1103/PhysRevE.77.017103. [DOI] [PubMed] [Google Scholar]
  • 41.Szabó G., Tőke C. Phys. Rev. E. 1998;58:69. doi: 10.1103/PhysRevE.58.69. [DOI] [Google Scholar]
  • 42. R.A. Rossi, N.K. Ahmed,The Network Data Repository with Interactive Graph Analytics and Visualization (Austin, Texas, 2015)
  • 43. B. Rozemberczki, R. Davies, R. Sarkar, C. Sutton,GEMSEC: Graph Embedding with Self Clustering (Vancouver, British Columbia, 2019)
  • 44. H.F. Zhang, Z. Wang, IEEE Trans. Circuits Syst. II Express Briefs, 10.1109/TCSII.2019.2938775

Articles from The European Physical Journal. B are provided here courtesy of Nature Publishing Group

RESOURCES