Abstract
Abstract
Vaccination is an effective intervention against epidemics. Previous work has demonstrated that psychological cognition affects individual behavior. However, perceptual differences between individuals, as well as the dynamics of perceptual evolution, are not taken into account. In order to explore how these realistic characteristics of psychological cognition influence collective vaccination behavior, we propose a prospect theory based evolutionary vaccination game model, where the evolution of reference points is used to characterize changes in perception. We compare the fractions of vaccinated individuals and infected individuals under variable reference points with those under the expected utility theory and the fixed reference point, and highlight the role of evolving perception in promoting vaccination and contributing to epidemic control. We find that the epidemic size under variable reference point is always less than that under the expected utility theory. Finding that there exists a vaccination cost threshold for the cognitive effect, we develop a novel mixed-reference-point mechanism by combining individual psychological characteristics with network topological feature. The effectiveness of this mechanism in controlling the network epidemics is verified with numerical simulations. Compared with pure reference points, the mixed-reference-point mechanism can effectively reduce the final epidemic size, especially at a large vaccination cost.
Graphical abstract
Keywords: Statistical and Nonlinear Physics
Footnotes
Publisher's Note
The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. N. Engl. J. Med. 2020;382:727. doi: 10.1056/NEJMoa2001017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Tizard I.R. Vaccine. 2020;38:5123. doi: 10.1016/j.vaccine.2020.06.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bauch C.T., Galvani A.P., Earn D.J. Proc. Natl. Acad. Sci. U.S.A. 2003;100:10564. doi: 10.1073/pnas.1731324100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Bauch C.T., Earn D.J. Proc. Natl. Acad. Sci. U.S.A. 2004;101:13391. doi: 10.1073/pnas.0403823101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Wang Z., Bauch C.T., Bhattacharyya S., Donofrio A., Manfredi P., Perc M., Perra N., Salathe M., Zhao D. Phys. Rep. 2016;664:1. doi: 10.1016/j.physrep.2016.10.006. [DOI] [Google Scholar]
- 6.Perc M., Jordan J.J., Rand D.G., Wang Z., Boccaletti S., Szolnoki A. Phys. Rep. 2017;687:1. doi: 10.1016/j.physrep.2017.05.004. [DOI] [Google Scholar]
- 7.Bauch C.T. Proc. R. Soc. London B. 2005;272:1669. doi: 10.1098/rspb.2005.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Fu F., Rosenbloom D.I., Wang L., Nowak M.A. Proc. R. Soc. London B. 2011;278:42. doi: 10.1098/rspb.2010.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zhang H., Fu F., Zhang W., Wang B. Physica A. 2012;391:4807. doi: 10.1016/j.physa.2012.05.009. [DOI] [Google Scholar]
- 10.Wu Z.X., Zhang H.F. Europhys. Lett. 2013;104:10002. doi: 10.1209/0295-5075/104/10002. [DOI] [Google Scholar]
- 11.Grabowski A. Eur. Phys. J. B. 2014;87:146. doi: 10.1140/epjb/e2014-50098-0. [DOI] [Google Scholar]
- 12. B. Buonomo, Ric. Mater., 10.1007/s11587-020-00506-8
- 13.Oraby T., Bauch C.T. Sci. Rep. 2015;5:10724. doi: 10.1038/srep10724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Rand D.G. Psychol. Sci. 2016;27:1192. doi: 10.1177/0956797616654455. [DOI] [PubMed] [Google Scholar]
- 15.Bear A., Rand D.G. Proc. Natl. Acad. Sci. U.S.A. 2016;113:936. doi: 10.1073/pnas.1517780113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Simon H.A. Q. J. Econ. 1955;69:99. doi: 10.2307/1884852. [DOI] [Google Scholar]
- 17.Galvani A.P., Reluga T.C., Chapman G.B. Proc. Natl. Acad. Sci. U.S.A. 2007;104:5692. doi: 10.1073/pnas.0606774104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Li X.J., Li C., Li X. IEEE Trans. Netw. Sci. Eng. 2018;5:326. doi: 10.1109/TNSE.2017.2766665. [DOI] [Google Scholar]
- 19.Ellsberg D. Q. J. Econ. 1961;75:643. doi: 10.2307/1884324. [DOI] [Google Scholar]
- 20.Kahneman D., Tversky A. Econometrica. 1979;47:263. doi: 10.2307/1914185. [DOI] [Google Scholar]
- 21.Jie C., Prashanth L., Fu M., Marcus S., Szepesvári C. IEEE Trans. Automat. Control. 2018;63:2867. doi: 10.1109/TAC.2018.2822658. [DOI] [Google Scholar]
- 22.Thanou A., Tsiropoulou E.E., Papavassiliou S. IEEE Trans. Comput. Soc. Syst. 2019;6:135. doi: 10.1109/TCSS.2018.2890276. [DOI] [Google Scholar]
- 23.Hota A.R., Sundaram S. IEEE Trans. Control Netw. 2019;6:1461. doi: 10.1109/TCNS.2019.2897904. [DOI] [Google Scholar]
- 24.Li X.J., Li X. IEEE Trans. Comput. Soc. Syst. 2019;7:329. doi: 10.1109/TCSS.2019.2960818. [DOI] [Google Scholar]
- 25.Rabin M. Econometrica. 2000;68:1281. doi: 10.1111/1468-0262.00158. [DOI] [Google Scholar]
- 26.Siegel S. Psychol. Rev. 1957;64:253. doi: 10.1037/h0049247. [DOI] [PubMed] [Google Scholar]
- 27.Tversky A., Kahneman D. Q. J. Econ. 1991;106:1039. doi: 10.2307/2937956. [DOI] [Google Scholar]
- 28.Wu M., Bai T., Zhu S.X. Omega. 2018;81:99. doi: 10.1016/j.omega.2017.10.003. [DOI] [Google Scholar]
- 29.Baillon A., Bleichrodt H., Spinu V. Manage. Sci. 2020;66:93. doi: 10.1287/mnsc.2018.3224. [DOI] [Google Scholar]
- 30.Sugden R. J. Econ. Theory. 2003;111:172. doi: 10.1016/S0022-0531(03)00082-6. [DOI] [Google Scholar]
- 31.Lattin J.M., Bucklin R.E. J. Marketing Res. 1989;26:299. doi: 10.1177/002224378902600304. [DOI] [Google Scholar]
- 32.Bell D.R., Lattin J.M. Marketing Sci. 2000;19:185. doi: 10.1287/mksc.19.2.185.11802. [DOI] [Google Scholar]
- 33.Baucells M., Sarin R.K. Manage. Sci. 2010;56:286. doi: 10.1287/mnsc.1090.1113. [DOI] [Google Scholar]
- 34.Lant T.K. Manage. Sci. 1992;38:623. doi: 10.1287/mnsc.38.5.623. [DOI] [Google Scholar]
- 35.Perc M. Sci. Rep. 2019;9:1. doi: 10.1038/s41598-019-53300-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Arkes H.R., Blumer C. Organ. Behav. Hum. Dec. 1985;35:124. doi: 10.1016/0749-5978(85)90049-4. [DOI] [Google Scholar]
- 37.Arkes H.R., Hutzel L. J. Behav. Decis. Making. 2000;13:295. doi: 10.1002/1099-0771(200007/09)13:3<295::AID-BDM353>3.0.CO;2-6. [DOI] [Google Scholar]
- 38.Baucells M., Weber M., Welfens F. Manage. Sci. 2011;57:506. doi: 10.1287/mnsc.1100.1286. [DOI] [Google Scholar]
- 39.Fukuda E., Kokubo S., Tanimoto J., Wang Z., Hagishima A., Ikegaya N. Chaos Solitons Fractals. 2014;68:1. doi: 10.1016/j.chaos.2014.07.004. [DOI] [Google Scholar]
- 40.Chen X., Wang L. Phys. Rev. E. 2008;77:017103. doi: 10.1103/PhysRevE.77.017103. [DOI] [PubMed] [Google Scholar]
- 41.Szabó G., Tőke C. Phys. Rev. E. 1998;58:69. doi: 10.1103/PhysRevE.58.69. [DOI] [Google Scholar]
- 42. R.A. Rossi, N.K. Ahmed,The Network Data Repository with Interactive Graph Analytics and Visualization (Austin, Texas, 2015)
- 43. B. Rozemberczki, R. Davies, R. Sarkar, C. Sutton,GEMSEC: Graph Embedding with Self Clustering (Vancouver, British Columbia, 2019)
- 44. H.F. Zhang, Z. Wang, IEEE Trans. Circuits Syst. II Express Briefs, 10.1109/TCSII.2019.2938775