Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 4;76(Pt 10):1562–1565. doi: 10.1107/S2056989020011834

Synthesis and characterization of a tert-butyl ester-substituted titanocene dichloride: t-BuOOCCp2TiCl2

Jackson S McCarthy a, Colin D McMillen b, Jared A Pienkos a, Paul S Wagenknecht a,*
PMCID: PMC7534228  PMID: 33117564

The synthesis and characterization of a new titanocene dichloride complex with tert-butyl esters appended to the cyclo­penta­diene rings is reported.

Keywords: crystal structure, titanocene, carboxyl­ate anchoring group, metallocene

Abstract

Bis[η5-(tert-butoxyca­rbonyl)­cyclo­penta­dien­yl]di­chlorido­titanium(IV), [Ti(C10H13O2)2Cl2], was synthesized from LiCpCOOt-Bu using TiCl4, and was characterized by single-crystal X-ray diffraction and 1H NMR spectroscopy. The distorted tetra­hedral geometry about the central titanium atom is relatively unchanged compared to Cp2TiCl2. The complex exhibits elongation of the titanium–cyclo­penta­dienyl centroid distances [2.074 (3) and 2.070 (3) Å] and a contraction of the titanium–chlorine bond lengths [2.3222 (10) Å and 2.3423 (10) Å] relative to Cp2TiCl2. The dihedral angle formed by the planes of the Cp rings [52.56 (13)°] is smaller than seen in Cp2TiCl2. Both ester groups extend from the same side of the Cp rings, and occur on the same side of the complex as the chlorido ligands. The complex may serve as a convenient synthon for titanocene complexes with carboxyl­ate anchoring groups for binding to metal oxide substrates.

Chemical context  

Mol­ecules exhibiting charge-separated excited states have been shown to be useful in photocatalysis (Prier et al., 2013), dye-sensitized photoelectrochemical cells (Hammarström, 2015; Kalyanasundaram & Grätzel, 1998) and dye-sensitized solar cells (DSSCs) (Ji et al., 2018; Kalyanasundaram & Grätzel, 1998). One architecture used in compounds of this type is the Donor–π bridge–Acceptor (D–π–A) architecture, where absorption of a photon results in the transfer of charge from an electron-rich donor portion of the mol­ecule to an electron-poor acceptor portion through a conjugated π-linkage (Ji et al., 2018). Alkynyl titanocenes utilizing titanocene acceptors and ferrocenyl or aryl­amine donors are promising candidates for sensitizers in DSSCs (Turlington et al., 2016; Pienkos et al., 2016, 2018; Livshits et al., 2019). In photovoltaic technologies, the sensitizer must be attached to a semiconductor substrate, commonly TiO2, using an anchoring group exhibiting a high binding affinity for the substrate (Zhang & Cole, 2015; Kalyanasundaram & Grätzel, 1998). The most common anchoring group used with TiO2 semiconductors is the carboxyl­ate, chosen for its strong binding and conjugated π-electron system (Galoppini, 2004). Anchoring groups with conjugated π systems allow for improved device efficiency in DSSCs compared to anchoring groups with aliphatic or unconjugated linkages (Zhang & Cole, 2015). In alkynyl titanocene sensitizers, the alkyn­yl–titanium bond is sensitive to acid hydrolysis. As a result, the carboxyl­ate anchor must be masked with a protecting group to avoid carb­oxy­lic acid inter­mediates. Our research group has focused primarily on the tert-butyl protecting group, because t-butyl esters are relatively stable and have well documented deprotection strategies under mild conditions (Jung & Lyster, 1977; Theodorou et al., 2018; Shaw et al., 2008). Herein, we report the synthesis, crystallization, and structural analysis of a t-butyl ester substituted titanocene dichloride that will serve as a convenient synthon for D–π–A titanocenes with carboxyl­ate anchoring groups.graphic file with name e-76-01562-scheme1.jpg

Structural commentary  

While many titanocene and metallocene compounds have been characterized by X-ray diffraction, structures of ester-substituted metallocenes are comparatively rare. Here we present the structure of the t-butyl ester-substituted complex t-BuOOCCp2TiCl2 (Fig. 1). Though the data pool is small, our findings follow trends seen in previously reported structures. In the metallocenes of both vanadium and titanium, the addition of the ester shortens the metal–chlorine bond length by 0.02-0.04 Å [2.3222 (10) and 2.3423 (10) Å in the present titanocene] compared to the parent Cp2VCl2 (Tzavellas et al., 1996) and Cp2TiCl2 (Clearfield et al., 1975) complexes. A similar M—Cl bond contraction was not observed in the recent report of a titanocene with a bulky alkyl substituent appended to the Cp ring, (CpC(CH3)2CH2CH(CH3)2)2TiCl2 (Ceballos-Torres et al., 2019), suggesting that the change is likely due to the inter­play of the electron-withdrawing nature of the ester and the π-donor character of the chlorido ligand. Furthermore, substitution at the Cp ring results in a slight elongation of the titanium–cyclo­penta­diene centroid distance [2.070 (3) and 2.074 (3) Å] by 0.011 to 0.015 Å in the ester-substituted titanocene here and as much as 0.016 Å in the alkyl substituted titanocene (Ceballos-Torres et al., 2019). However, this trend is not noticeable between ester-substituted and unsubstituted vanadocene dichloride (Klepalová et al., 2013; Tzavellas et al., 1996). Substitution of esters at the Cp ring has little effect on the bond angles formed about the central metal in both titanium and vanadium compounds, with a centroid—Ti—centroid angle of 129.90 (12)° and a Cl—Ti—Cl angle of 95.23 (4)° observed here. In titanocenes, substitution at the Cp ring results in a decrease of the dihedral angle formed between the planes of the two Cp rings. This angle is 58.5° in titanocene dichloride (Clearfield et al., 1975), but is 52.56 (13)° in this titanocene and 52.2° in the alkyl substituted titanocene (Ceballos-Torres et al., 2019). This trend is not observed between substituted and unsubstituted vanadocene dichloride, where the dihedral angle is approximately 48° for both (Tzavellas et al., 1996; Klepalová et al., 2013). The dihedral angle formed between the esters and their associated Cp rings differs more in the titanocene than in other ester-substituted metallocenes. In t-BuOOCCp2TiCl2, these two angles are 8.2 (6)° and 15.7 (3)°. In the other ester substituted metallocenes, the angles differ by less than a degree (18.37 and 18.37° in PhOOCCp2VCl2 and 10.78 and 11.36° in PhOOCCp2NbCl2) (Klepalová et al., 2013). The appended esters in t-BuOOCCp2TiCl2 extend from the same sides of both Cp rings, and occur on the same side of the complex as the chlorido ligands (Fig. 2). This is a similar arrangement to what occurs in EtOOCCp2NbBr2 and MeOOCCp2NbBr2·CH2Cl2, but differs from PhOOCCp2VCl2, PhOOCCp2NbCl2, and MeOOCCp2NbBr2, where the substituting esters are on opposing sides of their respective Cp rings, and also do not overlap with the halides (Klepalova et al., 2013).

Figure 1.

Figure 1

Structure of t-BuOOCCp2TiCl2 shown as 50% probability ellipsoids, with H atoms as small arbitrary spheres.

Figure 2.

Figure 2

Ligand orientation in the structure of t-BuOOCCp2TiCl2.

Supra­molecular features  

Inter­molecular contact geometries are shown in Table 1. Neighboring mol­ecules are connected along the c-axis direction via C9—H9⋯O1, C8—H8⋯Cl1, and C4—H4⋯Cl1 inter­actions to form chains (Fig. 3). Both Cp groups are angled toward the neighboring chlorine atom to enable these inter­actions. Neighboring mol­ecules along the a-axis are connected in a dimerized fashion via C7—H7⋯Cl1 inter­actions. The resulting packing diagram is shown in Fig. 4.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.78 3.632 (4) 149
C7—H7⋯Cl1ii 0.95 2.80 3.511 (4) 132
C8—H8⋯Cl1i 0.95 2.76 3.521 (3) 137
C9—H9⋯O1i 0.95 2.30 3.245 (4) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Chains of t-BuOOCCp2TiCl2 propagating along the c axis. Close contacts are depicted as dotted lines.

Figure 4.

Figure 4

Packing of mol­ecules viewed along the b axis.

Database survey  

A CSD search revealed nearly 200 hits for metallocene dichloride complexes, where the two cyclo­penta­diene ligands were monosubstituted (CSD Version 5.41, Update 2, May 2020; Groom et al., 2016). Of these, only two, CSD entries CICPIP (vanadium) and CICPOV (niobium) are substituted by a protected carboxyl­ate (Klepalová et al., 2013). Both of these utilize a phenyl-protecting group, and the carboxyl­ate carbon is bound to the Cp ring, similar to the tert-butyl-protected titanocene of the present study. Methyl- and ethyl-protected carboxyl­ate-substituted Cp ligands are reported in the niobium dibromide complexes CICPUB, CICQAI, and CICQEM (Klepalová et al., 2013).

Synthesis and crystallization  

Lithium tert-butyl ester cyclo­penta­dienide (Shaw et al., 2008) (2.0278 g, 11.78 mmol, 1 eq) was dissolved by the addition of THF (15 mL) under an argon atmosphere. The reaction solution was chilled to 195 K and 1 M TiCl4 solution in toluene (6 ml, 6 mmol, 0.5 eq) was added via syringe. The solution changed from pale yellow to red–brown. After 5 minutes, the reaction was allowed to gradually warm to room temperature and stirred overnight. Solid impurities were filtered from the reaction mixture and the solvent was removed from the filtrate. Pentane (5 mL) was added, the mixture was filtered, and the solid impurities were washed with pentane and toluene. The solvent was removed from the filtrate and the resulting red porous solid was dissolved in CH2Cl2 (3 mL), and pentane (50 mL) was added to the solution. The solution was filtered, and the filtrate immediately began to form a precipitate in the filter flask. The resulting suspension was filtered yielding a red–orange powder (0.2823 g, 5.3% yield). 1H NMR (400 MHz, C6D6) δ 6.95 (2H), 6.04 (2H), 1.42 (9H).

Single crystals suitable for X-ray analysis were grown by slow evaporation of a hexa­nes solution of the crude product, following the removal of solid impurities. The mixture was chilled to 243 K to encourage further crystallization.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions using riding models, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic hydrogen atoms, and C—H = 0.98 Å with U iso(H) = 1.5U eq(C) for methyl hydrogen atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Ti(C10H13O2)2Cl2]
M r 449.21
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 29.3802 (19), 10.8106 (7), 13.6002 (9)
β (°) 91.214 (3)
V3) 4318.7 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.21 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Photon 2
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18758, 4007, 3053
R int 0.057
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.106, 1.16
No. of reflections 4007
No. of parameters 250
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.40

Computer programs: APEX3 (Bruker, 2017), SAINT (Bruker, 2013), SHELXT2016 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011834/pk2643sup1.cif

e-76-01562-sup1.cif (663.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011834/pk2643Isup3.hkl

e-76-01562-Isup3.hkl (319.8KB, hkl)

CCDC reference: 2025817

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

supplementary crystallographic information

Crystal data

[Ti(C10H13O2)2Cl2] F(000) = 1872
Mr = 449.21 Dx = 1.382 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 29.3802 (19) Å Cell parameters from 8394 reflections
b = 10.8106 (7) Å θ = 2.5–27.5°
c = 13.6002 (9) Å µ = 0.67 mm1
β = 91.214 (3)° T = 100 K
V = 4318.7 (5) Å3 Column, orange
Z = 8 0.21 × 0.04 × 0.04 mm

Data collection

Bruker D8 Venture Photon 2 diffractometer 3053 reflections with I > 2σ(I)
Radiation source: Incoatec IµS Rint = 0.057
φ and ω scans θmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −35→35
Tmin = 0.923, Tmax = 1.000 k = −13→13
18758 measured reflections l = −16→16
4007 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + 22.4903P] where P = (Fo2 + 2Fc2)/3
4007 reflections (Δ/σ)max = 0.001
250 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ti1 0.39985 (2) 0.57278 (5) 0.53051 (4) 0.01683 (15)
Cl1 0.44127 (3) 0.55491 (8) 0.38592 (6) 0.0260 (2)
Cl2 0.33931 (3) 0.67945 (8) 0.45795 (7) 0.0306 (2)
O1 0.32753 (8) 0.3882 (2) 0.32835 (17) 0.0271 (6)
O2 0.27453 (7) 0.4207 (2) 0.44453 (16) 0.0209 (5)
O3 0.49135 (8) 0.8281 (2) 0.41841 (17) 0.0225 (5)
O4 0.42031 (7) 0.9091 (2) 0.43313 (16) 0.0189 (5)
C1 0.34941 (11) 0.4018 (3) 0.4973 (2) 0.0198 (7)
C2 0.39394 (11) 0.3550 (3) 0.4942 (3) 0.0224 (7)
H2 0.408032 0.320221 0.438385 0.027*
C3 0.41406 (12) 0.3689 (3) 0.5889 (3) 0.0249 (8)
H3 0.444351 0.347138 0.607694 0.030*
C4 0.38100 (12) 0.4210 (3) 0.6508 (3) 0.0258 (8)
H4 0.384986 0.438050 0.718950 0.031*
C5 0.34166 (12) 0.4429 (3) 0.5947 (2) 0.0213 (7)
H5 0.314378 0.479004 0.617586 0.026*
C6 0.44378 (11) 0.7612 (3) 0.5464 (2) 0.0178 (7)
C7 0.47120 (11) 0.6638 (3) 0.5840 (2) 0.0213 (7)
H7 0.499233 0.636551 0.558028 0.026*
C8 0.44979 (12) 0.6147 (3) 0.6661 (2) 0.0224 (8)
H8 0.460880 0.548674 0.705931 0.027*
C9 0.40869 (12) 0.6805 (3) 0.6796 (2) 0.0230 (7)
H9 0.387053 0.665144 0.729112 0.028*
C10 0.40562 (12) 0.7728 (3) 0.6066 (2) 0.0196 (7)
H10 0.381985 0.832252 0.599266 0.024*
C11 0.31673 (11) 0.4038 (3) 0.4130 (2) 0.0204 (7)
C12 0.23511 (11) 0.4317 (3) 0.3749 (2) 0.0225 (7)
C13 0.24101 (13) 0.5488 (4) 0.3142 (3) 0.0320 (9)
H13A 0.244351 0.620112 0.358322 0.048*
H13B 0.214238 0.560587 0.271051 0.048*
H13C 0.268247 0.541147 0.274311 0.048*
C14 0.23064 (13) 0.3153 (4) 0.3134 (3) 0.0340 (9)
H14A 0.255778 0.311161 0.267262 0.051*
H14B 0.201607 0.316717 0.276553 0.051*
H14C 0.231637 0.242684 0.356518 0.051*
C15 0.19555 (12) 0.4444 (4) 0.4438 (3) 0.0360 (10)
H15A 0.194513 0.371980 0.487035 0.054*
H15B 0.167056 0.450003 0.405259 0.054*
H15C 0.199488 0.519323 0.483578 0.054*
C16 0.45507 (11) 0.8354 (3) 0.4583 (2) 0.0194 (7)
C17 0.42166 (11) 0.9853 (3) 0.3432 (2) 0.0195 (7)
C18 0.45974 (11) 1.0803 (3) 0.3530 (3) 0.0229 (7)
H18A 0.457586 1.122955 0.416323 0.034*
H18B 0.456899 1.140675 0.299477 0.034*
H18C 0.489240 1.038412 0.349535 0.034*
C19 0.42567 (12) 0.9024 (3) 0.2540 (2) 0.0261 (8)
H19A 0.455422 0.861398 0.255688 0.039*
H19B 0.422678 0.952354 0.194043 0.039*
H19C 0.401518 0.839944 0.254504 0.039*
C20 0.37525 (11) 1.0482 (3) 0.3442 (3) 0.0249 (8)
H20A 0.351282 0.985237 0.344936 0.037*
H20B 0.371433 1.099788 0.285353 0.037*
H20C 0.373206 1.100149 0.403042 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ti1 0.0185 (3) 0.0171 (3) 0.0147 (3) −0.0010 (2) −0.0016 (2) 0.0002 (2)
Cl1 0.0363 (5) 0.0266 (5) 0.0153 (4) −0.0001 (4) 0.0043 (4) −0.0021 (3)
Cl2 0.0258 (5) 0.0207 (4) 0.0448 (6) −0.0005 (4) −0.0140 (4) 0.0035 (4)
O1 0.0229 (13) 0.0381 (15) 0.0205 (13) −0.0010 (11) 0.0017 (11) −0.0086 (11)
O2 0.0158 (12) 0.0252 (13) 0.0217 (12) −0.0017 (10) 0.0014 (10) 0.0020 (10)
O3 0.0187 (12) 0.0261 (13) 0.0227 (12) 0.0010 (10) 0.0046 (10) 0.0040 (10)
O4 0.0189 (12) 0.0203 (12) 0.0174 (11) −0.0005 (9) 0.0000 (9) 0.0033 (9)
C1 0.0230 (17) 0.0133 (16) 0.0230 (17) −0.0040 (13) 0.0005 (14) 0.0014 (13)
C2 0.0239 (18) 0.0147 (16) 0.0288 (19) 0.0003 (14) 0.0032 (15) −0.0022 (14)
C3 0.0271 (19) 0.0163 (17) 0.0309 (19) −0.0023 (14) −0.0047 (16) 0.0086 (15)
C4 0.031 (2) 0.0252 (19) 0.0208 (17) −0.0079 (16) −0.0035 (15) 0.0067 (15)
C5 0.0246 (18) 0.0190 (17) 0.0204 (17) −0.0033 (14) 0.0014 (14) 0.0055 (14)
C6 0.0196 (17) 0.0192 (17) 0.0145 (15) −0.0056 (13) −0.0012 (13) −0.0012 (13)
C7 0.0165 (17) 0.0283 (19) 0.0187 (17) −0.0089 (14) −0.0064 (14) 0.0032 (14)
C8 0.0256 (18) 0.0264 (19) 0.0150 (16) −0.0097 (15) −0.0039 (14) 0.0011 (14)
C9 0.0262 (18) 0.0268 (18) 0.0159 (16) −0.0079 (15) 0.0009 (14) −0.0040 (14)
C10 0.0256 (18) 0.0169 (17) 0.0164 (16) −0.0043 (14) 0.0032 (14) −0.0054 (13)
C11 0.0220 (18) 0.0162 (16) 0.0230 (18) −0.0051 (14) 0.0015 (15) −0.0022 (14)
C12 0.0149 (16) 0.0302 (19) 0.0223 (17) −0.0018 (14) −0.0017 (14) −0.0001 (15)
C13 0.025 (2) 0.037 (2) 0.034 (2) −0.0052 (17) −0.0070 (17) 0.0057 (18)
C14 0.028 (2) 0.031 (2) 0.043 (2) −0.0076 (17) −0.0038 (18) −0.0079 (18)
C15 0.0198 (19) 0.044 (2) 0.044 (2) 0.0008 (17) 0.0000 (18) 0.000 (2)
C16 0.0194 (17) 0.0187 (17) 0.0200 (17) −0.0021 (13) −0.0020 (14) 0.0008 (14)
C17 0.0219 (17) 0.0231 (17) 0.0135 (16) −0.0003 (14) 0.0012 (14) 0.0057 (13)
C18 0.0211 (17) 0.0216 (18) 0.0258 (18) −0.0040 (14) 0.0000 (15) 0.0051 (15)
C19 0.0289 (19) 0.031 (2) 0.0183 (17) −0.0029 (16) −0.0023 (15) −0.0005 (15)
C20 0.0214 (18) 0.0267 (19) 0.0265 (19) 0.0006 (15) 0.0018 (15) 0.0053 (15)

Geometric parameters (Å, º)

Ti1—Cl2 2.3222 (10) C7—C8 1.397 (5)
Ti1—Cl1 2.3423 (10) C7—H7 0.9500
Ti1—C9 2.348 (3) C8—C9 1.417 (5)
Ti1—C8 2.376 (3) C8—H8 0.9500
Ti1—C3 2.377 (3) C9—C10 1.409 (5)
Ti1—C4 2.391 (3) C9—H9 0.9500
Ti1—C5 2.392 (3) C10—H10 0.9500
Ti1—C10 2.401 (3) C12—C15 1.514 (5)
Ti1—C1 2.406 (3) C12—C14 1.516 (5)
Ti1—C2 2.411 (3) C12—C13 1.523 (5)
Ti1—C7 2.414 (3) C13—H13A 0.9800
Ti1—C6 2.419 (3) C13—H13B 0.9800
O1—C11 1.212 (4) C13—H13C 0.9800
O2—C11 1.333 (4) C14—H14A 0.9800
O2—C12 1.485 (4) C14—H14B 0.9800
O3—C16 1.209 (4) C14—H14C 0.9800
O4—C16 1.334 (4) C15—H15A 0.9800
O4—C17 1.476 (4) C15—H15B 0.9800
C1—C2 1.404 (5) C15—H15C 0.9800
C1—C5 1.420 (5) C17—C19 1.515 (5)
C1—C11 1.480 (5) C17—C18 1.522 (4)
C2—C3 1.414 (5) C17—C20 1.524 (5)
C2—H2 0.9500 C18—H18A 0.9800
C3—C4 1.415 (5) C18—H18B 0.9800
C3—H3 0.9500 C18—H18C 0.9800
C4—C5 1.392 (5) C19—H19A 0.9800
C4—H4 0.9500 C19—H19B 0.9800
C5—H5 0.9500 C19—H19C 0.9800
C6—C10 1.407 (5) C20—H20A 0.9800
C6—C7 1.415 (5) C20—H20B 0.9800
C6—C16 1.485 (4) C20—H20C 0.9800
Cl2—Ti1—Cl1 95.23 (4) Ti1—C4—H4 120.6
Cl2—Ti1—C9 100.97 (9) C4—C5—C1 108.1 (3)
Cl1—Ti1—C9 135.73 (9) C4—C5—Ti1 73.0 (2)
Cl2—Ti1—C8 133.62 (10) C1—C5—Ti1 73.32 (19)
Cl1—Ti1—C8 110.13 (9) C4—C5—H5 126.0
C9—Ti1—C8 34.90 (12) C1—C5—H5 126.0
Cl2—Ti1—C3 136.89 (9) Ti1—C5—H5 119.5
Cl1—Ti1—C3 96.52 (10) C10—C6—C7 108.1 (3)
C9—Ti1—C3 98.96 (12) C10—C6—C16 128.0 (3)
C8—Ti1—C3 79.42 (12) C7—C6—C16 123.9 (3)
Cl2—Ti1—C4 116.44 (9) C10—C6—Ti1 72.34 (18)
Cl1—Ti1—C4 130.53 (10) C7—C6—Ti1 72.78 (18)
C9—Ti1—C4 76.84 (12) C16—C6—Ti1 120.7 (2)
C8—Ti1—C4 75.41 (12) C8—C7—C6 108.0 (3)
C3—Ti1—C4 34.53 (12) C8—C7—Ti1 71.54 (18)
Cl2—Ti1—C5 84.24 (9) C6—C7—Ti1 73.17 (18)
Cl1—Ti1—C5 130.25 (9) C8—C7—H7 126.0
C9—Ti1—C5 92.44 (12) C6—C7—H7 126.0
C8—Ti1—C5 105.26 (11) Ti1—C7—H7 121.0
C3—Ti1—C5 57.00 (12) C7—C8—C9 108.2 (3)
C4—Ti1—C5 33.83 (11) C7—C8—Ti1 74.55 (18)
Cl2—Ti1—C10 77.43 (9) C9—C8—Ti1 71.50 (18)
Cl1—Ti1—C10 113.76 (8) C7—C8—H8 125.9
C9—Ti1—C10 34.50 (11) C9—C8—H8 125.9
C8—Ti1—C10 57.10 (12) Ti1—C8—H8 119.9
C3—Ti1—C10 132.89 (12) C10—C9—C8 107.8 (3)
C4—Ti1—C10 109.79 (12) C10—C9—Ti1 74.81 (18)
C5—Ti1—C10 114.57 (12) C8—C9—Ti1 73.60 (19)
Cl2—Ti1—C1 80.71 (8) C10—C9—H9 126.1
Cl1—Ti1—C1 96.20 (9) C8—C9—H9 126.1
C9—Ti1—C1 126.83 (12) Ti1—C9—H9 117.5
C8—Ti1—C1 131.31 (12) C6—C10—C9 107.9 (3)
C3—Ti1—C1 56.87 (12) C6—C10—Ti1 73.71 (18)
C4—Ti1—C1 56.65 (11) C9—C10—Ti1 70.69 (18)
C5—Ti1—C1 34.43 (11) C6—C10—H10 126.1
C10—Ti1—C1 144.11 (12) C9—C10—H10 126.1
Cl2—Ti1—C2 110.28 (9) Ti1—C10—H10 121.3
Cl1—Ti1—C2 77.53 (9) O1—C11—O2 126.1 (3)
C9—Ti1—C2 131.86 (12) O1—C11—C1 123.7 (3)
C8—Ti1—C2 112.71 (12) O2—C11—C1 110.2 (3)
C3—Ti1—C2 34.35 (12) O2—C12—C15 102.2 (3)
C4—Ti1—C2 56.84 (12) O2—C12—C14 110.1 (3)
C5—Ti1—C2 56.80 (12) C15—C12—C14 111.0 (3)
C10—Ti1—C2 166.30 (12) O2—C12—C13 108.4 (3)
C1—Ti1—C2 33.89 (11) C15—C12—C13 111.0 (3)
Cl2—Ti1—C7 125.31 (9) C14—C12—C13 113.6 (3)
Cl1—Ti1—C7 79.83 (9) C12—C13—H13A 109.5
C9—Ti1—C7 57.19 (12) C12—C13—H13B 109.5
C8—Ti1—C7 33.92 (11) H13A—C13—H13B 109.5
C3—Ti1—C7 97.59 (12) C12—C13—H13C 109.5
C4—Ti1—C7 106.61 (11) H13A—C13—H13C 109.5
C5—Ti1—C7 138.78 (11) H13B—C13—H13C 109.5
C10—Ti1—C7 56.64 (12) C12—C14—H14A 109.5
C1—Ti1—C7 153.80 (12) C12—C14—H14B 109.5
C2—Ti1—C7 121.21 (12) H14A—C14—H14B 109.5
Cl2—Ti1—C6 91.27 (8) C12—C14—H14C 109.5
Cl1—Ti1—C6 81.89 (8) H14A—C14—H14C 109.5
C9—Ti1—C6 57.05 (11) H14B—C14—H14C 109.5
C8—Ti1—C6 56.65 (11) C12—C15—H15A 109.5
C3—Ti1—C6 131.42 (12) C12—C15—H15B 109.5
C4—Ti1—C6 130.38 (11) H15A—C15—H15B 109.5
C5—Ti1—C6 147.78 (12) C12—C15—H15C 109.5
C10—Ti1—C6 33.95 (11) H15A—C15—H15C 109.5
C1—Ti1—C6 171.57 (11) H15B—C15—H15C 109.5
C2—Ti1—C6 151.26 (12) O3—C16—O4 126.9 (3)
C7—Ti1—C6 34.05 (11) O3—C16—C6 122.8 (3)
C11—O2—C12 121.6 (3) O4—C16—C6 110.3 (3)
C16—O4—C17 120.8 (3) O4—C17—C19 109.7 (3)
C2—C1—C5 108.0 (3) O4—C17—C18 109.7 (3)
C2—C1—C11 124.8 (3) C19—C17—C18 113.6 (3)
C5—C1—C11 127.2 (3) O4—C17—C20 101.6 (3)
C2—C1—Ti1 73.25 (19) C19—C17—C20 110.9 (3)
C5—C1—Ti1 72.25 (18) C18—C17—C20 110.8 (3)
C11—C1—Ti1 121.4 (2) C17—C18—H18A 109.5
C1—C2—C3 107.8 (3) C17—C18—H18B 109.5
C1—C2—Ti1 72.85 (19) H18A—C18—H18B 109.5
C3—C2—Ti1 71.51 (19) C17—C18—H18C 109.5
C1—C2—H2 126.1 H18A—C18—H18C 109.5
C3—C2—H2 126.1 H18B—C18—H18C 109.5
Ti1—C2—H2 121.3 C17—C19—H19A 109.5
C2—C3—C4 107.7 (3) C17—C19—H19B 109.5
C2—C3—Ti1 74.14 (19) H19A—C19—H19B 109.5
C4—C3—Ti1 73.3 (2) C17—C19—H19C 109.5
C2—C3—H3 126.1 H19A—C19—H19C 109.5
C4—C3—H3 126.1 H19B—C19—H19C 109.5
Ti1—C3—H3 118.4 C17—C20—H20A 109.5
C5—C4—C3 108.3 (3) C17—C20—H20B 109.5
C5—C4—Ti1 73.13 (19) H20A—C20—H20B 109.5
C3—C4—Ti1 72.21 (19) C17—C20—H20C 109.5
C5—C4—H4 125.8 H20A—C20—H20C 109.5
C3—C4—H4 125.8 H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···Cl1i 0.95 2.78 3.632 (4) 149
C7—H7···Cl1ii 0.95 2.80 3.511 (4) 132
C8—H8···Cl1i 0.95 2.76 3.521 (3) 137
C9—H9···O1i 0.95 2.30 3.245 (4) 170

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by National Science Foundation grants CHE-1362516 and OIA-1655740.

References

  1. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2016). SADABS. Madison, Wisconsin, USA.
  3. Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ceballos-Torres, J., Gómez-Ruiz, S., Fajardo, M., Pinar, A. B. & Prashar, S. (2019). J. Organomet. Chem. 899, 120890.
  5. Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. & Bernal, I. (1975). Can. J. Chem. 53, 1622–1629.
  6. Galoppini, E. (2004). Coord. Chem. Rev. 248, 1283–1297.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hammarström, L. (2015). Acc. Chem. Res. 48, 840–850. [DOI] [PubMed]
  9. Ji, J.-M., Zhou, H. & Kim, H. K. (2018). J. Mater. Chem. A, 6, 14518–14545.
  10. Jung, M. F. & Lyster, M. A. (1977). J. Am. Chem. Soc. 99, 968–969.
  11. Kalyanasundaram, K. & Grätzel, M. (1998). Coord. Chem. Rev. 177, 347–414.
  12. Klepalová, I., Honzíček, J., Vinklárek, J., Padělková, Z., Šebestová, L. & Řezáčová, M. (2013). Inorg. Chim. Acta, 402, 109–115.
  13. Livshits, M. Y., Turlington, M. D., Trindle, C. O., Wang, L., Altun, Z., Wagenknecht, P. S. & Rack, J. J. (2019). Inorg. Chem. 58, 15320–15329. [DOI] [PubMed]
  14. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  15. Pienkos, J., Agakidou, D. A., Trindle, C. O., Herwald, W. D., Altun, Z. & Wagenknecht, P. S. (2016). Organometallics, 35, 2575–2578.
  16. Pienkos, J. A., Webster, A. B., Piechota, E. J., Agakidou, D. A., McMillen, C. D., Pritchett, D. Y., Meyer, G. J. & Wagenknecht, P. S. (2018). Dalton Trans. 47, 10953–10964. [DOI] [PubMed]
  17. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363. [DOI] [PMC free article] [PubMed]
  18. Shaw, A. P., Guan, H. & Norton, J. R. (2008). J. Organomet. Chem. 693, 1382–1388.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Theodorou, V., Alagiannis, M., Ntemou, N., Brentas, A., Voulgari, P., Polychronidou, V., Gogou, M., Giannelos, M. & Skobridis, K. (2018). Arkivoc, 2018, 308–319.
  23. Turlington, M. D., Pienkos, J. A., Carlton, E. S., Wroblewski, K. N., Myers, A. R., Trindle, C. O., Altun, Z., Rack, J. J. & Wagenknecht, P. S. (2016). Inorg. Chem. 55, 2200–2211. [DOI] [PubMed]
  24. Tzavellas, N., Klouras, N. & Raptopoulou, C. P. (1996). Z. Anorg. Allg. Chem. 622, 898–902.
  25. Zhang, L. & Cole, J. M. (2015). Appl. Mater. Interfaces, 7, 3427–3455. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011834/pk2643sup1.cif

e-76-01562-sup1.cif (663.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011834/pk2643Isup3.hkl

e-76-01562-Isup3.hkl (319.8KB, hkl)

CCDC reference: 2025817

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES