Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 25;76(Pt 10):1675–1678. doi: 10.1107/S2056989020012931

Synthesis and crystal structure of peptide dimethyl biphenyl hybrid C52H60N6O10·0.25H2O

Xuan Tu Nguyen a, Thuy Quynh Le a, Tra My Bui Thi a, Dinh Hung Mac a, Thai Thanh Thu Bui a,*
PMCID: PMC7534232  PMID: 33117588

The crystal structure of the title compound shows a disorder of the methyl and meth­oxy­carbonyl groups of one alanine residue. Compared to previously reported peptide biphenyl hybrids, the backbone torsion angles are different.

Keywords: crystal structure, hydrogen bonding, peptide dimethyl biphenyl hybrids, Pro-Phe-Ala

Abstract

The synthesis and crystal structure of peptide 6,6′-dimethyl biphenyl hybrid are described. The title compound was synthesized by reaction between 6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbonyl dichloride in CH2Cl2, amine HN–proline–phenyl­alanine–alanine–COOMe and Et3N at 273 K under N2 atmosphere and characterized by single-crystal X-ray diffraction. The asymmetric unit contains one peptide mol­ecule and a quarter of a water mol­ecule. A disorder of a methyl and meth­oxy­carbonyl group of one alanine residue is observed with occupancy ratio 0.502 (6):0.498 (6). The structure is consolidated by intra- and inter­molecular hydrogen bonds.

Chemical context  

Since the first application in 1922 of peptides in the treatment of diabetes with insulin (Banting et al., 1922), the chemistry of peptides has become a very important domain in the search of new therapeutic drugs. From 2011 to 2018, the global market of drugs has increased from US $ 14.1 to 24.4 billion. With more than 140 peptides in clinical trials, the number of peptide-based drugs is expected to grow significantly (Fosgerau et al., 2015). Despite their tremendous potential, applications of peptides for pharmaceutical purposes are limited by their instability toward enzymatic systems, short half-life, rapid renal clearance, and formulation challenges (Otvos et al., 2014). These problems can be overcome by modifying the linear peptide to enhance the stability and therefore the selectivity and affinity. The biphenyl structure is present in numerous pharmaceuticals and bioactive compounds, as illustrated by the glycopeptide anti­biotic vancomycin, the proteasome inhibitor TMC-95A (Kaiser et al., 2004) and aryl­omycins (Schimana et al., 2002). A statistical analysis of NMR data indicates that compounds containing the biphenyl structure can bind a wide range of proteins with high levels of specificity (Hajduk et al., 2000). Coupling of a small protein chain to the biphenyl structure is a strategy to create a new family of peptidomimetic compounds, which can be used in medicinal chemistry because of its specific conformation and its particular hydrogen-bonding inter­actions.

The synthesis and biological activity as calpain inhibitor of peptide–biphenyl hybrids type I have been reported by Montero and Mann (Montero et al., 2004a ,b ; Mann et al., 2002). Amine et al. (2002) synthesized a bis amido–copper(II) complex from N-containing tetra­dentate ligands having two amido groups with a biphenyl skeleton, which is used as a DNA cleaving agent. Recently, we have reported crystallographic studies of a peptide-biphenyl hybrid A (Fig. 1) with tripeptide Pro–Phe–Ala (Le et al., 2020).graphic file with name e-76-01675-scheme1.jpg

Figure 1.

Figure 1

Peptide–biphenyl hybrids A and B.

We report herein the synthesis and crystallographic study of a peptide-2,2′-biphenyl B (Fig. 1) with the introduction of two methyl groups at the 6-6′ positions to prevent free rotation around the central ar­yl–aryl bond.

Structural commentary  

The compound dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-(6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2′S)-dipropionate (Fig. 2) crystallizes in the monoclinic space group C2 with one mol­ecule of peptide biphenyl hybrid accompanied by a quarter of a water mol­ecule in the asymmetric unit. Two methyl groups have been introduced to the biphenyl rings at the 6,6′ position in order to limit the rotation of the two central phenyl rings in solution. In the solid state, the dihedral angle between biphenyl rings C20–C25 and C27-C32 is 73.8 (3)°. However, this value is similar to that of a previous compound not bearing the methyl groups (C50H56N6O10·0.5H2O; Le et al., 2020). A disorder of a methyl and meth­oxy­carbonyl group of alanine is observed in the crystal structure and was refined with an occupancy ratio of 0.502 (6):0.498 (6).

Figure 2.

Figure 2

A view of the mol­ecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level and hydrogen bonds (dashed lines) within the asymmetric unit. H atoms are shown as small circles of arbitrary radii.

The backbone conformation of the two tripeptide fragments is characterized by the torsion angles ω, φ, ψ (see Table 1). The torsion angles φ and ψ of amino acids Ala1, Ala2, Phe2 correspond with the usual α-helix (right-handed) region of the Ramachandran plot, and only the torsion angles of amino acid Phe1 fall into the corresponding type β-sheet Ramachandran plot region. For both prolines, the related torsion angles lie in the α region of the Ramachandran plot for proline.

Table 1. Backbone torsion angles ω, φ, ψ (°) for the two tripeptide fragments.

C20—C19—N3—C15 178.3 (2) C32—C34—N4—C38 −164.6 (2)
C19—N3—C15—C14 −73.4 (3) C34—N4—C38—C39 −69.1 (3)
N3—C15—C14—N2 −17.5 (3) N4—C38—C39—N5 −14.4 (4)
C15—C14—N2—C6 176.5 (2) C38—C39—N5—C40 −177.2 (2)
C14—N2—C6—C5 −163.0 (2) C39—N5—C40—C48 −106.8 (3)
N2—C6—C5—N1 171.4 (2) N5—C40—C48—N6 18.6 (3)
C6—C5—N1—C3 −174.8 (3) C40—C48—N6—C49 179.1 (2)
C5—N1—C3—C2B −58.0 (5) C48—N6—C49—C51 −60.9 (3)
N1—C3—C2B—O2B −39.6 (13) N6—C49—C51—O9 −35.0 (4)

There are six intra­molecular hydrogen bonds formed in the structure of the title compound (Table 2). Two hydrogen bonds are formed between the NH and CO groups with H⋯O distances of 2.07 Å for N5—H5 ⋯O5 and 2.42 Å for N6—H6⋯O6. The latter value is noticeably longer than the values observed (from 2.04 to 2.29 Å) in other reported peptides (Ranganathan et al., 1997; Le et al., 2020). Four other intra­molecular bonds are formed between CH and CO groups with distances from 2.35 to 2.59 Å.

Table 2. Hydrogen-bond geometry (Å, °).

Cg3 and Cg5 are the centroids of the C8–C13 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O5 0.88 2.07 2.923 (3) 162
N6—H6⋯O6 0.88 2.42 3.233 (3) 154
C9—H9⋯O2B 0.95 2.35 3.270 (18) 164
C21—H21⋯O3 0.95 2.44 3.352 (4) 161
C35—H35A⋯O5 0.99 2.51 3.171 (4) 124
C43—H43⋯O4 0.95 2.59 3.443 (4) 149
N1—H1⋯O4i 0.88 2.01 2.865 (3) 163
C1B—H1BB⋯O10ii 0.98 2.46 2.913 (16) 108
C30—H30⋯O8iii 0.95 2.46 3.222 (4) 137
C35—H35⋯O7iv 0.99 2.39 3.228 (4) 142
C52—H52B⋯O10v 0.98 2.60 3.559 (5) 166
O11—H11A⋯O8 0.87 2.48 3.136 (6) 133
C13—H13⋯O11vi 0.95 2.52 3.155 (7) 124
C36—H36BCg3vi 0.99 2.94 3.845 (4) 152
C4A—H4ACCg5vii 1.05 (8) 2.93 (7) 3.770 (8) 135 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Supra­molecular features  

In the crystal, the packing is characterized by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonding (see Table 2, Fig. 3 ). The strongest inter­molecular inter­action is formed between NH and CO groups of two neighboring peptide residues [N1—H1⋯O4i, with d = 2.01 Å; symmetry code: (i) Inline graphic − x, Inline graphic + y, 1 − z]. Furthermore, there are six additional hydrogen bonds linking the mol­ecules. Two contacts are established between the water mol­ecule and two tripeptides (O11—H11A⋯O8; C13— H13⋯O11). Four C—H⋯O=C contacts with H⋯O distances ranging from 2.39 to 2.60 Å further consolidate the crystal packing. In addition, the mol­ecules are linked by two inter­molecular C—H ⋯π inter­actions, one between a proline H atom and the phenyl ring of a phenyl­alanine residue, the other between a H atom of the disordered methyl group and a phenyl ring of the central biphenyl fragment.

Figure 3.

Figure 3

Crystal packing of the title compound, indicating some inter­molecular hydrogen bonds (dashed lines).

Database survey  

A search of the Cambridge Structural Database (version 5.41 with update of March 2020; Groom et al., 2016) for peptide–dimethyl biphenyl hybrids was conducted. There are seven dimethyl biphenyl hybrid structures with only one amino acid, including JITYET (Linden & Rippert, 2018a ), JITZEU (Linden & Rippert, 2018b ), JITYOD (Linden & Rippert, 2018c ), NOSPUG & NOSQAN (Weigand & Feigel, 1998), PITSUJ (Linden et al., 2018d ) and NIKJOI (Samadi et al., 2013). For these structures the dihedral angles between the dimethyl biphenyl rings varies from 82.0 to 95.8o, larger than the corresponding angle of the title compound.

Synthesis and crystallization  

To a round-bottom flask was added 6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-di­carb­oxy­lic acid (1 eq.) and SOCl2 (3 eq.) respectively under a nitro­gen atmosphere. The mixture was heated under reflux for 4 h and was then evaporated under vacuum. The acid chloride was used in the next step without further purification.

To a round-bottom flask was added amine HN–proline–phenyl­alanine–alanine–COOMe (1 eq.), Et3N (2 eq.) and anhydrous CH2Cl2 (50mL). To this solution was added a solution of (6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbonyl dichloride in CH2Cl2 at 273 K under an N2 atmosphere. After completion of the reaction, the mixture was washed with 1 N HCl solution, water and a solution of brine, respectively. The organic phase was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude product was then purified by flash chromatography (AcOEt/hexane 3:2) to give a white solid (60% yield). The compound was recrystallized by slow evaporation in methanol to give crystals suitable for X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The methyl and meth­oxy­carbonyl groups of alanine show two conformations with refined occupancy factors converging to 0.502 (6) and 0.498 (6). Geometrical restraints were applied to the disordered atoms. H atoms were placed at calculated positions (C—H = 0.95–1.08 Å and N—H = 0.88 Å), with isotropic displacement parameters U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C,N) for all other H atoms. The solvent water mol­ecule is disordered and was refined with a site occupation factor fixed to 0.25. The H atoms of the water mol­ecule were located in difference-Fourier maps and refined in riding-model approximation with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula C52H60N6O10·0.25H2O
M r 933.56
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 27.505 (3), 12.3814 (12), 14.6346 (14)
β (°) 99.999 (3)
V3) 4908.2 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS-; Bruker, 2013)
T min, T max 0.713, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 84318, 9371, 7959
R int 0.062
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.086, 1.06
No. of reflections 9371
No. of parameters 693
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.16
Absolute structure Flack x determined using 3323 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.1 (3)

Computer programs: APEX22 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012931/vm2240sup1.cif

e-76-01675-sup1.cif (36.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup5.docx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup6.docx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup7.tif

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup8.tif

CCDC reference: 2026794

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C52H60N6O10·0.25H2O F(000) = 1986
Mr = 933.56 Dx = 1.263 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 27.505 (3) Å Cell parameters from 9371 reflections
b = 12.3814 (12) Å θ = 2.8–25.8°
c = 14.6346 (14) Å µ = 0.09 mm1
β = 99.999 (3)° T = 100 K
V = 4908.2 (8) Å3 Needle, clear light colourless
Z = 4 0.3 × 0.2 × 0.1 mm

Data collection

Bruker D8 Quest CMOS diffractometer 7959 reflections with I > 2σ(I)
φ and ω scans Rint = 0.062
Absorption correction: multi-scan (SADABS-; Bruker, 2013) θmax = 25.8°, θmin = 2.8°
Tmin = 0.713, Tmax = 0.745 h = −33→33
84318 measured reflections k = −15→15
9371 independent reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0359P)2 + 2.1291P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.28 e Å3
9371 reflections Δρmin = −0.16 e Å3
693 parameters Absolute structure: Flack x determined using 3323 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraints Absolute structure parameter: −0.1 (3)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O5 0.33318 (6) 0.37671 (15) 0.30911 (12) 0.0262 (4)
O4 0.25033 (7) 0.41245 (17) 0.49754 (15) 0.0367 (5)
O6 0.37283 (7) 0.35432 (16) 0.07943 (13) 0.0314 (4)
N3 0.36969 (8) 0.32535 (18) 0.45153 (14) 0.0252 (5)
N2 0.32176 (8) 0.50351 (19) 0.50273 (15) 0.0291 (5)
H2 0.3537 0.4960 0.5038 0.035*
O7 0.25946 (8) 0.5451 (2) −0.00116 (15) 0.0531 (6)
O3 0.38550 (8) 0.64671 (17) 0.4803 (2) 0.0552 (7)
O9 0.40799 (7) 0.7684 (2) 0.02936 (16) 0.0536 (7)
N1 0.33544 (8) 0.7906 (2) 0.48045 (17) 0.0351 (6)
H1 0.3070 0.8150 0.4917 0.042*
N5 0.29721 (8) 0.50901 (18) 0.14594 (15) 0.0277 (5)
H5 0.3085 0.4583 0.1862 0.033*
N4 0.29975 (8) 0.2897 (2) 0.10755 (15) 0.0302 (5)
O2A 0.4152 (8) 0.8404 (16) 0.5865 (9) 0.052 (4) 0.498 (6)
O10 0.47865 (9) 0.8022 (2) 0.12726 (19) 0.0665 (8)
C19 0.37162 (9) 0.35712 (19) 0.36445 (17) 0.0221 (5)
O8 0.36763 (10) 0.74704 (19) 0.2248 (2) 0.0667 (8)
N6 0.38529 (8) 0.6049 (2) 0.14123 (16) 0.0335 (5)
H6 0.3742 0.5463 0.1106 0.040*
C20 0.42128 (9) 0.3761 (2) 0.33809 (17) 0.0224 (5)
C14 0.29481 (10) 0.4139 (2) 0.49355 (18) 0.0277 (6)
C22 0.49273 (10) 0.4901 (2) 0.34994 (19) 0.0300 (6)
H22 0.5116 0.5499 0.3769 0.036*
C21 0.44813 (10) 0.4663 (2) 0.37539 (19) 0.0264 (6)
H21 0.4355 0.5113 0.4184 0.032*
C39 0.27589 (10) 0.4803 (3) 0.05996 (19) 0.0336 (7)
C34 0.34964 (10) 0.2867 (2) 0.11713 (18) 0.0292 (6)
C25 0.43896 (10) 0.3099 (2) 0.27349 (17) 0.0264 (6)
C15 0.32173 (10) 0.3090 (2) 0.48016 (18) 0.0290 (6)
H15 0.3004 0.2638 0.4327 0.035*
C23 0.50992 (10) 0.4261 (2) 0.2846 (2) 0.0339 (7)
H23 0.5403 0.4441 0.2659 0.041*
C32 0.37479 (11) 0.1926 (2) 0.1698 (2) 0.0342 (7)
C5 0.34545 (10) 0.6858 (2) 0.4894 (2) 0.0362 (7)
C42 0.22491 (12) 0.6148 (3) 0.2431 (2) 0.0393 (7)
C8 0.32288 (11) 0.5941 (3) 0.6886 (2) 0.0368 (7)
C18 0.41107 (10) 0.2861 (3) 0.52286 (19) 0.0355 (7)
H18A 0.4391 0.3375 0.5316 0.043*
H18B 0.4228 0.2143 0.5062 0.043*
C24 0.48386 (10) 0.3365 (2) 0.24582 (19) 0.0326 (7)
C6 0.30370 (9) 0.6123 (2) 0.5111 (2) 0.0303 (6)
H6A 0.2743 0.6231 0.4612 0.036*
C28 0.43711 (12) 0.1101 (2) 0.2858 (2) 0.0382 (7)
C38 0.27062 (10) 0.3606 (3) 0.03950 (19) 0.0348 (7)
H38 0.2789 0.3459 −0.0232 0.042*
C27 0.41520 (10) 0.2032 (2) 0.2421 (2) 0.0306 (6)
C7 0.28776 (10) 0.6356 (3) 0.6048 (2) 0.0360 (7)
H7A 0.2831 (11) 0.715 (3) 0.610 (2) 0.043*
H7B 0.2561 (12) 0.604 (3) 0.606 (2) 0.043*
C40 0.30215 (11) 0.6212 (2) 0.1744 (2) 0.0344 (7)
H40 0.2820 0.6644 0.1237 0.041*
C48 0.35480 (12) 0.6626 (2) 0.1841 (2) 0.0395 (7)
C51 0.44291 (12) 0.7469 (3) 0.1020 (2) 0.0465 (8)
C41 0.27949 (12) 0.6391 (2) 0.2612 (2) 0.0403 (7)
H41A 0.2962 0.5918 0.3116 0.048*
H41B 0.2848 0.7150 0.2818 0.048*
C49 0.43632 (11) 0.6369 (3) 0.1441 (2) 0.0381 (7)
H49 0.4534 0.6375 0.2103 0.046*
C31 0.35836 (13) 0.0900 (2) 0.1390 (2) 0.0456 (8)
H31 0.3315 0.0830 0.0888 0.055*
C17 0.38721 (11) 0.2796 (3) 0.6093 (2) 0.0461 (8)
H17A 0.3879 0.3506 0.6406 0.055*
H17B 0.4040 0.2256 0.6538 0.055*
C43 0.20546 (13) 0.5304 (3) 0.2867 (2) 0.0406 (8)
H43 0.2267 0.4876 0.3304 0.049*
C26 0.50273 (12) 0.2713 (3) 0.1714 (2) 0.0459 (8)
H26A 0.5078 0.1962 0.1920 0.069*
H26B 0.5341 0.3018 0.1604 0.069*
H26C 0.4785 0.2737 0.1139 0.069*
C35 0.26820 (12) 0.2261 (3) 0.1605 (2) 0.0403 (8)
H35A 0.2818 0.2267 0.2278 0.048*
H35B 0.2648 0.1504 0.1386 0.048*
C9 0.36689 (11) 0.6476 (3) 0.7211 (3) 0.0515 (9)
H9 0.3753 0.7096 0.6890 0.062*
C30 0.38083 (14) −0.0007 (3) 0.1809 (3) 0.0563 (10)
H30 0.3697 −0.0703 0.1592 0.068*
C36 0.21906 (12) 0.2852 (3) 0.1399 (2) 0.0492 (9)
H36A 0.2182 0.3463 0.1833 0.059*
H36B 0.1912 0.2358 0.1441 0.059*
C44 0.15538 (13) 0.5070 (3) 0.2676 (2) 0.0488 (9)
H44 0.1427 0.4490 0.2990 0.059*
C16 0.33427 (11) 0.2449 (3) 0.5705 (2) 0.0434 (8)
H16A 0.3324 0.1662 0.5584 0.052*
H16B 0.3117 0.2637 0.6138 0.052*
C29 0.41922 (14) 0.0090 (3) 0.2539 (2) 0.0520 (9)
H29 0.4339 −0.0543 0.2834 0.062*
C33 0.48036 (13) 0.1160 (3) 0.3656 (2) 0.0466 (8)
H33A 0.5112 0.1201 0.3410 0.070*
H33B 0.4807 0.0514 0.4044 0.070*
H33C 0.4771 0.1804 0.4030 0.070*
C37 0.21720 (11) 0.3253 (3) 0.0408 (2) 0.0492 (9)
H37A 0.1941 0.3867 0.0268 0.059*
H37B 0.2070 0.2668 −0.0047 0.059*
C50 0.46145 (12) 0.5544 (3) 0.0915 (2) 0.0498 (9)
H50A 0.4560 0.4818 0.1145 0.075*
H50B 0.4970 0.5693 0.1008 0.075*
H50C 0.4476 0.5587 0.0252 0.075*
C13 0.31123 (13) 0.5060 (3) 0.7362 (2) 0.0546 (9)
H13 0.2811 0.4689 0.7158 0.065*
C3 0.37093 (12) 0.8660 (3) 0.4522 (3) 0.0506 (9)
H3A 0.3893 0.8282 0.4082 0.061* 0.498 (6)
H3B 0.3776 0.8469 0.3891 0.061* 0.502 (6)
C45 0.12403 (14) 0.5668 (3) 0.2040 (3) 0.0587 (10)
H45 0.0898 0.5502 0.1903 0.070*
C47 0.19287 (15) 0.6750 (4) 0.1803 (3) 0.0668 (12)
H47 0.2053 0.7342 0.1500 0.080*
C52 0.41693 (14) 0.8637 (4) −0.0232 (3) 0.0722 (13)
H52A 0.3905 0.8713 −0.0770 0.108*
H52B 0.4487 0.8563 −0.0443 0.108*
H52C 0.4177 0.9278 0.0163 0.108*
C11 0.38662 (15) 0.5233 (4) 0.8454 (3) 0.0675 (12)
H11 0.4085 0.4988 0.8989 0.081*
C10 0.39836 (14) 0.6128 (4) 0.7984 (3) 0.0665 (12)
H10 0.4283 0.6505 0.8195 0.080*
C12 0.34359 (16) 0.4694 (4) 0.8155 (3) 0.0695 (12)
H12 0.3354 0.4074 0.8480 0.083*
C46 0.14300 (16) 0.6512 (4) 0.1605 (3) 0.0794 (14)
H46 0.1217 0.6935 0.1164 0.095*
O1B 0.46376 (18) 0.8694 (5) 0.5125 (5) 0.082 (2) 0.502 (6)
C1A 0.4577 (7) 0.8657 (13) 0.6565 (10) 0.065 (4) 0.498 (6)
H1AA 0.4865 0.8781 0.6266 0.098* 0.498 (6)
H1AB 0.4645 0.8052 0.7000 0.098* 0.498 (6)
H1AC 0.4510 0.9308 0.6902 0.098* 0.498 (6)
C4A 0.3372 (3) 0.9666 (6) 0.3947 (6) 0.0338 (16) 0.498 (6)
H4AA 0.314 (3) 1.001 (6) 0.437 (5) 0.051* 0.498 (6)
H4AB 0.318 (3) 0.951 (6) 0.348 (5) 0.051* 0.498 (6)
H4AC 0.365 (3) 1.022 (6) 0.380 (5) 0.051* 0.498 (6)
C2B 0.4233 (4) 0.8525 (9) 0.5327 (8) 0.051 (3) 0.502 (6)
O11 0.2727 (2) 0.8908 (5) 0.1778 (4) 0.0166 (14) 0.25
H11A 0.3048 0.8916 0.1906 0.025* 0.25
H11B 0.2657 0.8381 0.1383 0.025* 0.25
C4B 0.3574 (3) 0.9738 (5) 0.4551 (7) 0.049 (2) 0.502 (6)
H4BA 0.3299 0.9887 0.4044 0.074* 0.502 (6)
H4BB 0.3856 1.0197 0.4483 0.074* 0.502 (6)
H4BC 0.3471 0.9891 0.5146 0.074* 0.502 (6)
C2A 0.4049 (2) 0.9141 (6) 0.5214 (4) 0.0317 (15) 0.498 (6)
O2B 0.4184 (6) 0.8407 (16) 0.6190 (9) 0.044 (3) 0.502 (6)
O1A 0.42431 (16) 1.0015 (3) 0.5223 (3) 0.0492 (16) 0.498 (6)
C1B 0.4595 (6) 0.8377 (14) 0.6925 (11) 0.081 (5) 0.502 (6)
H1BA 0.4832 0.7835 0.6788 0.121* 0.502 (6)
H1BB 0.4483 0.8188 0.7504 0.121* 0.502 (6)
H1BC 0.4754 0.9088 0.6989 0.121* 0.502 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0269 (9) 0.0271 (10) 0.0227 (9) 0.0019 (8) −0.0009 (8) −0.0012 (8)
O4 0.0254 (10) 0.0376 (12) 0.0472 (12) −0.0104 (9) 0.0069 (8) −0.0008 (10)
O6 0.0302 (10) 0.0322 (11) 0.0318 (10) 0.0050 (9) 0.0054 (8) −0.0008 (9)
N3 0.0254 (12) 0.0256 (12) 0.0232 (11) −0.0044 (9) 0.0002 (9) 0.0021 (9)
N2 0.0221 (11) 0.0308 (13) 0.0348 (13) −0.0061 (10) 0.0056 (9) −0.0074 (11)
O7 0.0503 (14) 0.0743 (17) 0.0343 (11) 0.0200 (12) 0.0064 (10) 0.0256 (12)
O3 0.0292 (12) 0.0309 (12) 0.114 (2) −0.0076 (9) 0.0349 (13) −0.0243 (13)
O9 0.0327 (12) 0.0701 (18) 0.0595 (15) 0.0071 (11) 0.0126 (11) 0.0410 (13)
N1 0.0259 (12) 0.0284 (13) 0.0554 (16) −0.0076 (10) 0.0196 (11) −0.0116 (12)
N5 0.0354 (13) 0.0248 (12) 0.0246 (12) 0.0065 (10) 0.0099 (10) 0.0053 (10)
N4 0.0309 (12) 0.0303 (13) 0.0290 (12) −0.0028 (10) 0.0040 (10) −0.0103 (10)
O2A 0.041 (5) 0.038 (5) 0.065 (10) −0.016 (3) −0.026 (7) 0.003 (8)
O10 0.0492 (15) 0.0653 (18) 0.0834 (19) −0.0116 (14) 0.0069 (13) 0.0320 (15)
C19 0.0295 (14) 0.0124 (12) 0.0231 (13) −0.0013 (10) 0.0014 (11) −0.0028 (10)
O8 0.0794 (18) 0.0229 (12) 0.110 (2) −0.0139 (12) 0.0500 (16) −0.0127 (13)
N6 0.0345 (13) 0.0342 (13) 0.0325 (13) −0.0013 (11) 0.0081 (10) 0.0046 (11)
C20 0.0277 (13) 0.0161 (12) 0.0222 (13) 0.0028 (10) 0.0005 (10) 0.0058 (11)
C14 0.0282 (15) 0.0322 (15) 0.0219 (14) −0.0075 (12) 0.0020 (11) 0.0003 (12)
C22 0.0305 (15) 0.0233 (15) 0.0342 (15) −0.0039 (12) 0.0000 (12) 0.0053 (12)
C21 0.0305 (15) 0.0200 (13) 0.0269 (14) 0.0013 (11) 0.0000 (11) 0.0012 (11)
C39 0.0246 (14) 0.052 (2) 0.0257 (15) 0.0092 (13) 0.0095 (12) 0.0095 (14)
C34 0.0337 (15) 0.0254 (14) 0.0272 (14) 0.0013 (12) 0.0019 (12) −0.0103 (12)
C25 0.0307 (14) 0.0229 (14) 0.0241 (13) 0.0047 (11) 0.0006 (11) 0.0036 (11)
C15 0.0274 (14) 0.0286 (15) 0.0300 (15) −0.0091 (11) 0.0020 (11) 0.0045 (12)
C23 0.0269 (14) 0.0369 (17) 0.0379 (17) −0.0005 (13) 0.0057 (12) 0.0097 (14)
C32 0.0427 (17) 0.0248 (15) 0.0337 (16) 0.0039 (13) 0.0028 (13) −0.0065 (12)
C5 0.0258 (15) 0.0318 (17) 0.054 (2) −0.0077 (12) 0.0160 (14) −0.0184 (14)
C42 0.0492 (18) 0.0316 (16) 0.0422 (17) 0.0097 (14) 0.0227 (14) −0.0042 (14)
C8 0.0328 (15) 0.0426 (18) 0.0371 (16) 0.0007 (13) 0.0116 (13) −0.0186 (15)
C18 0.0313 (15) 0.0407 (17) 0.0315 (15) −0.0012 (13) −0.0032 (12) 0.0135 (14)
C24 0.0320 (15) 0.0343 (17) 0.0319 (15) 0.0077 (13) 0.0070 (12) 0.0033 (13)
C6 0.0210 (13) 0.0302 (15) 0.0406 (16) −0.0080 (12) 0.0084 (11) −0.0110 (13)
C28 0.0498 (18) 0.0244 (15) 0.0389 (17) 0.0049 (14) 0.0033 (14) −0.0024 (14)
C38 0.0255 (14) 0.057 (2) 0.0208 (13) 0.0045 (14) 0.0019 (11) −0.0098 (14)
C27 0.0378 (16) 0.0226 (14) 0.0316 (15) 0.0033 (12) 0.0069 (12) −0.0036 (12)
C7 0.0213 (14) 0.043 (2) 0.0457 (18) −0.0077 (13) 0.0109 (13) −0.0152 (15)
C40 0.0463 (17) 0.0194 (15) 0.0407 (16) 0.0077 (12) 0.0168 (13) 0.0088 (12)
C48 0.055 (2) 0.0228 (16) 0.0453 (18) 0.0042 (14) 0.0211 (15) 0.0123 (14)
C51 0.0326 (17) 0.057 (2) 0.051 (2) 0.0011 (16) 0.0109 (15) 0.0229 (17)
C41 0.058 (2) 0.0239 (16) 0.0442 (18) 0.0049 (14) 0.0228 (15) 0.0003 (13)
C49 0.0352 (16) 0.0478 (19) 0.0303 (15) −0.0007 (14) 0.0030 (12) 0.0116 (14)
C31 0.059 (2) 0.0280 (18) 0.0443 (19) 0.0017 (15) −0.0071 (15) −0.0127 (14)
C17 0.0407 (17) 0.065 (2) 0.0304 (16) −0.0062 (16) −0.0007 (13) 0.0203 (16)
C43 0.056 (2) 0.0351 (18) 0.0337 (16) 0.0022 (15) 0.0160 (14) −0.0066 (14)
C26 0.0419 (18) 0.052 (2) 0.0469 (19) 0.0102 (16) 0.0174 (15) −0.0010 (16)
C35 0.0485 (19) 0.0351 (17) 0.0394 (17) −0.0185 (15) 0.0138 (14) −0.0148 (14)
C9 0.0289 (17) 0.046 (2) 0.075 (2) 0.0047 (14) −0.0034 (16) −0.0197 (18)
C30 0.079 (3) 0.0222 (17) 0.060 (2) 0.0023 (17) −0.0101 (19) −0.0131 (16)
C36 0.0418 (18) 0.049 (2) 0.062 (2) −0.0186 (16) 0.0242 (16) −0.0270 (18)
C44 0.060 (2) 0.042 (2) 0.051 (2) −0.0074 (17) 0.0283 (17) −0.0189 (17)
C16 0.0408 (18) 0.051 (2) 0.0391 (18) −0.0072 (15) 0.0079 (14) 0.0166 (15)
C29 0.071 (2) 0.0218 (16) 0.058 (2) 0.0099 (16) −0.0032 (18) −0.0010 (16)
C33 0.057 (2) 0.0244 (16) 0.052 (2) 0.0060 (15) −0.0065 (16) 0.0037 (15)
C37 0.0285 (16) 0.066 (2) 0.052 (2) −0.0036 (15) 0.0053 (14) −0.0270 (18)
C50 0.0316 (17) 0.073 (2) 0.0423 (19) 0.0083 (17) 0.0006 (14) 0.0043 (18)
C13 0.055 (2) 0.075 (3) 0.0339 (18) −0.022 (2) 0.0101 (15) −0.0034 (18)
C3 0.048 (2) 0.0403 (19) 0.073 (2) −0.0194 (16) 0.0389 (18) −0.0190 (18)
C45 0.047 (2) 0.069 (3) 0.063 (2) 0.009 (2) 0.0205 (19) −0.013 (2)
C47 0.060 (2) 0.064 (3) 0.085 (3) 0.023 (2) 0.035 (2) 0.034 (2)
C52 0.047 (2) 0.088 (3) 0.089 (3) 0.017 (2) 0.032 (2) 0.066 (3)
C11 0.059 (3) 0.093 (4) 0.046 (2) 0.008 (2) −0.0040 (18) −0.026 (2)
C10 0.042 (2) 0.062 (3) 0.087 (3) 0.0087 (19) −0.013 (2) −0.031 (2)
C12 0.079 (3) 0.091 (3) 0.039 (2) −0.013 (2) 0.013 (2) 0.005 (2)
C46 0.053 (3) 0.095 (4) 0.094 (3) 0.031 (2) 0.022 (2) 0.029 (3)
O1B 0.034 (3) 0.090 (5) 0.129 (6) −0.012 (3) 0.029 (3) 0.011 (4)
C1A 0.067 (8) 0.054 (7) 0.063 (8) −0.011 (6) −0.020 (6) 0.018 (5)
C4A 0.029 (4) 0.035 (4) 0.038 (4) 0.007 (3) 0.007 (3) 0.009 (3)
C2B 0.040 (5) 0.023 (5) 0.095 (9) −0.004 (4) 0.027 (6) −0.008 (5)
O11 0.016 (3) 0.015 (3) 0.019 (3) −0.002 (3) 0.005 (3) −0.001 (3)
C4B 0.051 (5) 0.035 (4) 0.069 (6) −0.002 (3) 0.028 (5) 0.012 (4)
C2A 0.024 (3) 0.025 (4) 0.048 (4) 0.000 (3) 0.012 (3) 0.001 (3)
O2B 0.023 (4) 0.034 (4) 0.065 (8) −0.008 (3) −0.017 (6) −0.012 (6)
O1A 0.041 (3) 0.027 (3) 0.074 (3) −0.017 (2) −0.006 (2) 0.009 (2)
C1B 0.039 (5) 0.087 (11) 0.101 (12) −0.018 (6) −0.031 (7) −0.012 (9)

Geometric parameters (Å, º)

O5—C19 1.239 (3) C49—C50 1.517 (5)
O4—C14 1.235 (3) C31—H31 0.9500
O6—C34 1.239 (3) C31—C30 1.374 (5)
N3—C19 1.343 (3) C17—H17A 0.9900
N3—C15 1.466 (3) C17—H17B 0.9900
N3—C18 1.486 (3) C17—C16 1.530 (4)
N2—H2 0.8800 C43—H43 0.9500
N2—C14 1.328 (3) C43—C44 1.388 (5)
N2—C6 1.449 (4) C26—H26A 0.9800
O7—C39 1.228 (4) C26—H26B 0.9800
O3—C5 1.232 (3) C26—H26C 0.9800
O9—C51 1.330 (4) C35—H35A 0.9900
O9—C52 1.452 (4) C35—H35B 0.9900
N1—H1 0.8800 C35—C36 1.521 (5)
N1—C5 1.329 (4) C9—H9 0.9500
N1—C3 1.461 (4) C9—C10 1.369 (5)
N5—H5 0.8800 C30—H30 0.9500
N5—C39 1.341 (4) C30—C29 1.371 (5)
N5—C40 1.450 (4) C36—H36A 0.9900
N4—C34 1.355 (3) C36—H36B 0.9900
N4—C38 1.459 (4) C36—C37 1.526 (5)
N4—C35 1.486 (4) C44—H44 0.9500
O2A—C1A 1.449 (14) C44—C45 1.371 (5)
O2A—C2A 1.314 (15) C16—H16A 0.9900
O10—C51 1.203 (4) C16—H16B 0.9900
C19—C20 1.501 (4) C29—H29 0.9500
O8—C48 1.225 (4) C33—H33A 0.9800
N6—H6 0.8800 C33—H33B 0.9800
N6—C48 1.338 (4) C33—H33C 0.9800
N6—C49 1.452 (4) C37—H37A 0.9900
C20—C21 1.397 (4) C37—H37B 0.9900
C20—C25 1.401 (4) C50—H50A 0.9800
C14—C15 1.524 (4) C50—H50B 0.9800
C22—H22 0.9500 C50—H50C 0.9800
C22—C21 1.375 (4) C13—H13 0.9500
C22—C23 1.387 (4) C13—C12 1.409 (5)
C21—H21 0.9500 C3—H3A 1.0000
C39—C38 1.513 (5) C3—H3B 1.0000
C34—C32 1.498 (4) C3—C4A 1.688 (8)
C25—C24 1.404 (4) C3—C2B 1.704 (13)
C25—C27 1.510 (4) C3—C4B 1.389 (7)
C15—H15 1.0000 C3—C2A 1.388 (7)
C15—C16 1.529 (4) C45—H45 0.9500
C23—H23 0.9500 C45—C46 1.373 (6)
C23—C24 1.388 (4) C47—H47 0.9500
C32—C27 1.402 (4) C47—C46 1.384 (6)
C32—C31 1.396 (4) C52—H52A 0.9800
C5—C6 1.540 (4) C52—H52B 0.9800
C42—C41 1.509 (5) C52—H52C 0.9800
C42—C43 1.379 (4) C11—H11 0.9500
C42—C47 1.377 (5) C11—C10 1.372 (6)
C8—C7 1.513 (4) C11—C12 1.363 (6)
C8—C9 1.389 (4) C10—H10 0.9500
C8—C13 1.363 (5) C12—H12 0.9500
C18—H18A 0.9900 C46—H46 0.9500
C18—H18B 0.9900 O1B—C2B 1.218 (10)
C18—C17 1.526 (4) C1A—H1AA 0.9800
C24—C26 1.517 (4) C1A—H1AB 0.9800
C6—H6A 1.0000 C1A—H1AC 0.9800
C6—C7 1.537 (4) C4A—H4AA 1.05 (7)
C28—C27 1.403 (4) C4A—H4AB 0.81 (8)
C28—C29 1.395 (5) C4A—H4AC 1.08 (8)
C28—C33 1.517 (4) C2B—O2B 1.301 (17)
C38—H38 1.0000 O11—H11A 0.8705
C38—C37 1.537 (4) O11—H11B 0.8699
C7—H7A 0.99 (4) C4B—H4BA 0.9800
C7—H7B 0.96 (3) C4B—H4BB 0.9800
C40—H40 1.0000 C4B—H4BC 0.9800
C40—C48 1.519 (4) C2A—O1A 1.205 (8)
C40—C41 1.525 (4) O2B—C1B 1.419 (13)
C51—C49 1.518 (5) C1B—H1BA 0.9800
C41—H41A 0.9900 C1B—H1BB 0.9800
C41—H41B 0.9900 C1B—H1BC 0.9800
C49—H49 1.0000
C19—N3—C15 119.8 (2) C16—C17—H17B 111.2
C19—N3—C18 127.6 (2) C42—C43—H43 119.4
C15—N3—C18 111.8 (2) C42—C43—C44 121.1 (3)
C14—N2—H2 116.9 C44—C43—H43 119.4
C14—N2—C6 126.3 (2) C24—C26—H26A 109.5
C6—N2—H2 116.9 C24—C26—H26B 109.5
C51—O9—C52 114.9 (3) C24—C26—H26C 109.5
C5—N1—H1 119.5 H26A—C26—H26B 109.5
C5—N1—C3 121.0 (2) H26A—C26—H26C 109.5
C3—N1—H1 119.5 H26B—C26—H26C 109.5
C39—N5—H5 119.1 N4—C35—H35A 111.2
C39—N5—C40 121.9 (2) N4—C35—H35B 111.2
C40—N5—H5 119.1 N4—C35—C36 102.8 (3)
C34—N4—C38 120.9 (2) H35A—C35—H35B 109.1
C34—N4—C35 127.2 (3) C36—C35—H35A 111.2
C38—N4—C35 112.0 (2) C36—C35—H35B 111.2
C2A—O2A—C1A 114.1 (14) C8—C9—H9 119.3
O5—C19—N3 120.5 (2) C10—C9—C8 121.4 (4)
O5—C19—C20 120.8 (2) C10—C9—H9 119.3
N3—C19—C20 118.5 (2) C31—C30—H30 119.9
C48—N6—H6 119.3 C29—C30—C31 120.2 (3)
C48—N6—C49 121.5 (3) C29—C30—H30 119.9
C49—N6—H6 119.3 C35—C36—H36A 111.1
C21—C20—C19 117.9 (2) C35—C36—H36B 111.1
C21—C20—C25 120.6 (2) C35—C36—C37 103.1 (2)
C25—C20—C19 121.3 (2) H36A—C36—H36B 109.1
O4—C14—N2 123.2 (3) C37—C36—H36A 111.1
O4—C14—C15 120.1 (2) C37—C36—H36B 111.1
N2—C14—C15 116.7 (2) C43—C44—H44 119.7
C21—C22—H22 120.3 C45—C44—C43 120.6 (3)
C21—C22—C23 119.4 (3) C45—C44—H44 119.7
C23—C22—H22 120.3 C15—C16—C17 103.5 (2)
C20—C21—H21 119.9 C15—C16—H16A 111.1
C22—C21—C20 120.1 (3) C15—C16—H16B 111.1
C22—C21—H21 119.9 C17—C16—H16A 111.1
O7—C39—N5 123.8 (3) C17—C16—H16B 111.1
O7—C39—C38 119.0 (3) H16A—C16—H16B 109.0
N5—C39—C38 117.2 (2) C28—C29—H29 119.4
O6—C34—N4 121.7 (3) C30—C29—C28 121.2 (3)
O6—C34—C32 121.8 (2) C30—C29—H29 119.4
N4—C34—C32 116.3 (3) C28—C33—H33A 109.5
C20—C25—C24 118.9 (2) C28—C33—H33B 109.5
C20—C25—C27 122.3 (2) C28—C33—H33C 109.5
C24—C25—C27 118.3 (2) H33A—C33—H33B 109.5
N3—C15—C14 113.6 (2) H33A—C33—H33C 109.5
N3—C15—H15 109.1 H33B—C33—H33C 109.5
N3—C15—C16 103.9 (2) C38—C37—H37A 111.1
C14—C15—H15 109.1 C38—C37—H37B 111.1
C14—C15—C16 111.9 (2) C36—C37—C38 103.3 (2)
C16—C15—H15 109.1 C36—C37—H37A 111.1
C22—C23—H23 119.2 C36—C37—H37B 111.1
C22—C23—C24 121.7 (3) H37A—C37—H37B 109.1
C24—C23—H23 119.2 C49—C50—H50A 109.5
C27—C32—C34 123.4 (2) C49—C50—H50B 109.5
C31—C32—C34 116.5 (3) C49—C50—H50C 109.5
C31—C32—C27 120.0 (3) H50A—C50—H50B 109.5
O3—C5—N1 123.2 (3) H50A—C50—H50C 109.5
O3—C5—C6 120.2 (3) H50B—C50—H50C 109.5
N1—C5—C6 116.6 (2) C8—C13—H13 119.7
C43—C42—C41 121.6 (3) C8—C13—C12 120.5 (3)
C47—C42—C41 120.7 (3) C12—C13—H13 119.7
C47—C42—C43 117.7 (3) N1—C3—H3A 108.7
C9—C8—C7 120.8 (3) N1—C3—H3B 110.4
C13—C8—C7 120.8 (3) N1—C3—C4A 106.0 (3)
C13—C8—C9 118.3 (3) N1—C3—C2B 105.5 (4)
N3—C18—H18A 111.3 C4A—C3—H3A 108.7
N3—C18—H18B 111.3 C2B—C3—H3B 110.4
N3—C18—C17 102.3 (2) C4B—C3—N1 114.2 (4)
H18A—C18—H18B 109.2 C4B—C3—H3B 110.4
C17—C18—H18A 111.3 C4B—C3—C2B 105.8 (6)
C17—C18—H18B 111.3 C2A—C3—N1 117.8 (4)
C25—C24—C26 120.6 (3) C2A—C3—H3A 108.7
C23—C24—C25 119.2 (3) C2A—C3—C4A 106.8 (5)
C23—C24—C26 120.2 (3) C44—C45—H45 120.6
N2—C6—C5 104.6 (2) C44—C45—C46 118.8 (4)
N2—C6—H6A 107.9 C46—C45—H45 120.6
N2—C6—C7 113.9 (3) C42—C47—H47 119.3
C5—C6—H6A 107.9 C42—C47—C46 121.3 (4)
C7—C6—C5 114.3 (2) C46—C47—H47 119.3
C7—C6—H6A 107.9 O9—C52—H52A 109.5
C27—C28—C33 121.9 (3) O9—C52—H52B 109.5
C29—C28—C27 119.1 (3) O9—C52—H52C 109.5
C29—C28—C33 119.0 (3) H52A—C52—H52B 109.5
N4—C38—C39 115.6 (2) H52A—C52—H52C 109.5
N4—C38—H38 109.3 H52B—C52—H52C 109.5
N4—C38—C37 103.5 (3) C10—C11—H11 120.0
C39—C38—H38 109.3 C12—C11—H11 120.0
C39—C38—C37 109.6 (2) C12—C11—C10 120.1 (4)
C37—C38—H38 109.3 C9—C10—C11 119.9 (4)
C32—C27—C25 123.8 (2) C9—C10—H10 120.1
C32—C27—C28 119.2 (3) C11—C10—H10 120.1
C28—C27—C25 116.9 (2) C13—C12—H12 120.1
C8—C7—C6 114.8 (2) C11—C12—C13 119.8 (4)
C8—C7—H7A 110.1 (19) C11—C12—H12 120.1
C8—C7—H7B 107.6 (19) C45—C46—C47 120.5 (4)
C6—C7—H7A 108.4 (19) C45—C46—H46 119.7
C6—C7—H7B 109.5 (19) C47—C46—H46 119.7
H7A—C7—H7B 106 (3) O2A—C1A—H1AA 109.5
N5—C40—H40 106.6 O2A—C1A—H1AB 109.5
N5—C40—C48 113.0 (2) O2A—C1A—H1AC 109.5
N5—C40—C41 110.3 (2) H1AA—C1A—H1AB 109.5
C48—C40—H40 106.6 H1AA—C1A—H1AC 109.5
C48—C40—C41 113.2 (3) H1AB—C1A—H1AC 109.5
C41—C40—H40 106.6 C3—C4A—H4AA 110 (4)
O8—C48—N6 122.2 (3) C3—C4A—H4AB 117 (5)
O8—C48—C40 121.5 (3) C3—C4A—H4AC 102 (4)
N6—C48—C40 116.2 (3) H4AA—C4A—H4AB 102 (6)
O9—C51—C49 112.6 (3) H4AA—C4A—H4AC 113 (5)
O10—C51—O9 124.8 (3) H4AB—C4A—H4AC 112 (7)
O10—C51—C49 122.3 (3) O1B—C2B—C3 120.9 (9)
C42—C41—C40 111.3 (3) O1B—C2B—O2B 120.6 (13)
C42—C41—H41A 109.4 O2B—C2B—C3 117.7 (9)
C42—C41—H41B 109.4 H11A—O11—H11B 104.4
C40—C41—H41A 109.4 C3—C4B—H4BA 109.5
C40—C41—H41B 109.4 C3—C4B—H4BB 109.5
H41A—C41—H41B 108.0 C3—C4B—H4BC 109.5
N6—C49—C51 114.6 (2) H4BA—C4B—H4BB 109.5
N6—C49—H49 108.6 H4BA—C4B—H4BC 109.5
N6—C49—C50 108.9 (3) H4BB—C4B—H4BC 109.5
C51—C49—H49 108.6 O2A—C2A—C3 105.3 (9)
C50—C49—C51 107.5 (3) O1A—C2A—O2A 125.2 (10)
C50—C49—H49 108.6 O1A—C2A—C3 129.3 (6)
C32—C31—H31 119.9 C2B—O2B—C1B 122.3 (15)
C30—C31—C32 120.2 (3) O2B—C1B—H1BA 109.5
C30—C31—H31 119.9 O2B—C1B—H1BB 109.5
C18—C17—H17A 111.2 O2B—C1B—H1BC 109.5
C18—C17—H17B 111.2 H1BA—C1B—H1BB 109.5
C18—C17—C16 103.0 (2) H1BA—C1B—H1BC 109.5
H17A—C17—H17B 109.1 H1BB—C1B—H1BC 109.5
C16—C17—H17A 111.2
C20—C19—N3—C15 178.3 (2) C32—C34—N4—C38 −164.6 (2)
C19—N3—C15—C14 −73.4 (3) C34—N4—C38—C39 −69.1 (3)
N3—C15—C14—N2 −17.5 (3) N4—C38—C39—N5 −14.4 (4)
C15—C14—N2—C6 176.5 (2) C38—C39—N5—C40 −177.2 (2)
C14—N2—C6—C5 −163.0 (2) C39—N5—C40—C48 −106.8 (3)
N2—C6—C5—N1 171.4 (2) N5—C40—C48—N6 18.6 (3)
C6—C5—N1—C3 −174.8 (3) C40—C48—N6—C49 179.1 (2)
C5—N1—C3—C2B −58.0 (5) C48—N6—C49—C51 −60.9 (3)
N1—C3—C2B—O2B −39.6 (13) N6—C49—C51—O9 −35.0 (4)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg5 are the centroids of the C8–C13 and C27–C32 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N5—H5···O5 0.88 2.07 2.923 (3) 162
N6—H6···O6 0.88 2.42 3.233 (3) 154
C9—H9···O2B 0.95 2.35 3.270 (18) 164
C21—H21···O3 0.95 2.44 3.352 (4) 161
C35—H35A···O5 0.99 2.51 3.171 (4) 124
C43—H43···O4 0.95 2.59 3.443 (4) 149
N1—H1···O4i 0.88 2.01 2.865 (3) 163
C1B—H1BB···O10ii 0.98 2.46 2.913 (16) 108
C30—H30···O8iii 0.95 2.46 3.222 (4) 137
C35—H35···O7iv 0.99 2.39 3.228 (4) 142
C52—H52B···O10v 0.98 2.60 3.559 (5) 166
O11—H11A···O8 0.87 2.48 3.136 (6) 133
C13—H13···O11vi 0.95 2.52 3.155 (7) 124
C36—H36B···Cg3vi 0.99 2.94 3.845 (4) 152
C4A—H4AC···Cg5vii 1.05 (8) 2.93 (7) 3.770 (8) 135 (5)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) −x+1, y, −z+1; (iii) x, y−1, z; (iv) −x+1/2, y−1/2, −z; (v) −x+1, y, −z; (vi) −x+1/2, y−1/2, −z+1; (vii) x, y+1, z.

Funding Statement

This work was funded by Asia Research Center-Vietnam National University grant CA.20.7A. Korea Foundation for Advanced Studies grant CA.20.7A.

References

  1. Amine, A., Atmani, Z., El Hallaoui, A., Giorgi, M., Pierrot, M. & Réglier, M. (2002). Bioorg. Med. Chem. Lett. 12, 57–60. [DOI] [PubMed]
  2. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. (1922). Can. Med. Assoc. J. 12, 141–146. [PMC free article] [PubMed]
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Fosgerau, K. & Hoffmann, T. (2015). Drug Discovery Today, 20, 122–128. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hajduk, P. J., Bures, M., Praestgaard, J. & Fesik, S. W. (2000). J. Med. Chem. 43, 3443–3447. [DOI] [PubMed]
  8. Kaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256–1266. [DOI] [PubMed]
  9. Le, T. Q., Nguyen, X. T., Nguyen, H. H., Mac, D. H. & Bui, T. T. T. (2020). Acta Cryst. E76, 257–260. [DOI] [PMC free article] [PubMed]
  10. Linden, A., Furegati, M. & Rippert, A. J. (2018d). Private communication (CCDC refcode 1885480). CCDC, Cambridge, England.
  11. Linden, A. & Rippert, A. J. (2018a). Private communication (CCDC refcode 1884542). CCDC, Cambridge, England.
  12. Linden, A. & Rippert, A. J. (2018b). Private communication (CCDC refcode 1884572). CCDC, Cambridge, England.
  13. Linden, A. & Rippert, A. J. (2018c). Private communication (CCDC refcode 1884549). CCDC, Cambridge, England.
  14. Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624–3638.
  15. Montero, A., Albericio, F., Royo, M. & Herradón, B. (2004b). Org. Lett. 6, 4089–4092. [DOI] [PubMed]
  16. Montero, A., Mann, E., Chana, A. & Herradón, B. (2004a). Chem. Biodiv. 1, 442–457. [DOI] [PubMed]
  17. Otvos, L. Jr & Wade, J. D. (2014). Front. Chem, 2, 62. [DOI] [PMC free article] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Ranganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659–4662.
  20. Samadi, S., Nazari, S., Arvinnezhad, H., Jadidi, K. & Notash, B. (2013). Tetrahedron, 69, 6679–6686.
  21. Schimana, J., Gebhardt, K., Holtzel, A., Schmid, D. G., Sussmuth, R., Muller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565–570. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Weigand, C. & Feigel, M. (1998). Chem. Commun. pp. 679–680.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012931/vm2240sup1.cif

e-76-01675-sup1.cif (36.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup5.docx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup6.docx

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup7.tif

Supporting information file. DOI: 10.1107/S2056989020012931/vm2240sup8.tif

CCDC reference: 2026794

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES