Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 30;76(Pt 10):1694–1698. doi: 10.1107/S2056989020012712

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-methyl­benzyl­idene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-di­methyl­formamide monosolvate

Gulnara Sh Duruskari a, Ali N Khalilov a,b, Gunay Z Mammadova a, Sevim Türktekin Çelikesir c, Mehmet Akkurt c, Anzurat A Akobirshoeva d,*, Abel M Maharramov a
PMCID: PMC7534233  PMID: 33117592

In the crystal, each cation is connected to two anions by N—H⋯ Br hydrogen bonds, forming an Inline graphic(8) motif parallel to the (10Inline graphic) plane, while the N,N-di­methyl­formamide mol­ecules are linked to the cations by C—H⋯O contacts.

Keywords: crystal structure; thia­zolidine; envelope conformation; N,N-di­methyl­formamide; Hirshfeld surface analysis

Abstract

In the cation of the title salt, C17H18N3S+·Br·C3H7NO, the central thia­zolidine ring adopts an envelope conformation with puckering parameters Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)°. In the crystal, each cation is connected to two anions by N—H⋯ Br hydrogen bonds, forming an R 4 2(8) motif parallel to the (10Inline graphic) plane. van der Waals inter­actions between the cations, anions and N,N-di­methyl­formamide mol­ecules further stabilize the crystal structure in three dimensions. The most important contributions to the surface contacts are from H⋯H (55.6%), C⋯H/H⋯C (17.9%) and Br⋯H/H⋯Br (7.0%) inter­actions, as concluded from a Hirshfeld analysis.

Chemical context  

Sulfur and nitro­gen-containing heterocyclic systems are of great inter­ests in the fields of organic synthesis, drug design and material science (Abdelhamid et al., 2014; Pathania et al., 2019; Yin et al., 2020). In this context, thia­zolidine derivatives play an important role in pharmaceutical and medicinal chemistry. Many commercially available drugs such as pioglitazone (an anti­diabetic), penicillin, benzyl­penicillin, ampicillin, oxacillin and amoxicillin (β-lactam anti­biotics) contain a thia­zolidine moiety. Studies in the field of thia­zolidine chemistry have been well documented in the literature (D’hooghe & De Kimpe, 2006; Maharramov et al., 2011). Compounds incorporating thia­zolidine and azomethine structural motifs have also found applications in coordination chemistry, catalysis, crystal design and material science (Asadov et al., 2016; Akbari Afkhami et al., 2017; Maharramov et al., 2018; Mahmudov et al., 2019, 2020).graphic file with name e-76-01694-scheme1.jpg

As part of our ongoing structural studies (Akkurt et al., 2018a ,b ; Khalilov et al., 2011, 2019), we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-[(4-methyl­benzyl­idene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-di­methyl­formamide monosolvate.

Structural commentary  

As shown in Fig. 1, the central thia­zolidine ring (S1/N2/C1–C3) of the cation adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975) Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)° with atom C2 as the flap. The C=N double bond [N1=C4 = 1.272 (4) Å] is in a Z configuration. The dihedral angle between the mean planes of the benzene (C5–C10) and phenyl (C12–C17) rings is 83.95 (18)° and they make dihedral angles of 16.60 (17) and 87.42 (17)°, respectively, with the mean plane of the thia­zolidine ring. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-methyl­benzene rings has a torsion angle of −176.8 (3)°.

Figure 1.

Figure 1

The mol­ecular structure of the title salt, showing displacement ellipsoids drawn at the 30% probability level.

Supra­molecular features  

In the crystal, each cation is connected to two anions by N—H⋯Br hydrogen bonds forming an Inline graphic(8) motif parallel to the (10Inline graphic) plane, while N,N-di­methyl­formamide mol­ecules are linked to the cations by C—H⋯O contacts (Table 1; Figs. 2, 3 and 4). Furthermore, van der Waals inter­actions between the cations, anions and N,N-di­methyl­formamide mol­ecules stabilize the crystal structure in three dimensions.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.57 3.368 (3) 148
N3—H3B⋯Br1ii 0.90 2.35 3.243 (2) 175
C16—H16A⋯O1 0.93 2.54 3.391 (6) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of hydrogen bonds between the cations, anions and N,N-di­methyl­formamide mol­ecules of the title salt. The N—H⋯Br hydrogen bonds and C—H⋯O contacts are shown as dashed lines. Symmetry codes: (a) 1 + x, y, 1 + z; (b) 1 − x, 1 − y, 1 − z; (c) 2 − x, 1 − y, 2 − z.

Figure 3.

Figure 3

Crystal packing for the title salt viewed along the a-axis direction. Dashed lines indicate N—H⋯Br hydrogen bonds and C—H⋯O contacts.

Figure 4.

Figure 4

Crystal packing of the title salt viewed along the c-axis direction. Dashed lines indicate N—H⋯Br and C—H⋯O contacts.

Hirshfeld surface analysis  

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was used to investigate the hydrogen bonds and inter­molecular inter­actions in the crystal structure. This was performed using CrystalExplorer3.1 (Wolff et al., 2012), and comprised d norm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The contribution of inter­atomic contacts (Table 2) to the d norm surface of the title compound is shown in Fig. 5. Fig. 6 indicates by the absence of red and blue triangles on the shape-index surface that π–π stacking inter­actions are not present in the crystal structure.

Table 2. Summary of short inter­atomic contacts (Å) in the title salt.

Contact Distance Symmetry operation
H3B⋯Br1 2.35 1 + x, y, 1 + z
N1⋯S1 3.533 (3) 2 − x, 1 − y, 1 − z
H3A⋯Br1 2.57 1 − x, 1 − y, 1 − z
C9⋯H19C 2.78 1 − x, Inline graphic + y, Inline graphic − z
H17A⋯H9A 2.47 1 − x, 1 − y, 1 − z
H6A⋯H1A 2.50 1 − x, 1 − y, −z
H16A⋯O1 2.54 x, y, z
H16A⋯H18A 2.55 x, Inline graphic − y, −Inline graphic + z
H4A⋯Br1 3.06 x, y, z
H13A⋯Br1 3.08 1 + x, y, z
H14A⋯O1 2.84 1 + x, y, z
O1⋯H18A 2.76 x, Inline graphic − y, −Inline graphic + z
C20⋯Br1 3.736 (5) x, Inline graphic − y, Inline graphic + z

Figure 5.

Figure 5

A view of the three-dimensional Hirshfeld surface for the title salt, plotted over d norm in the range −0.4961 to 1.2178 a.u. N—H⋯Br hydrogen bonds and C—H⋯O contacts are shown.

Figure 6.

Figure 6

View of the three-dimensional Hirshfeld surface of the title salt plotted over shape-index.

Fig. 7(a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H, C⋯H/H⋯C and Br⋯H/H⋯Br contacts are given in Fig. 7 b–d, respectively. The most significant inter­molecular inter­actions are the H⋯H inter­actions (55.6%) (Fig. 7 b). The reciprocal C⋯H/H⋯C inter­actions appear as two symmetrical broad wings with d e + d i ≃ 2.6 Å and contribute 17.9% to the Hirshfeld surface (Fig. 7 c). The reciprocal Br⋯H/H⋯Br inter­action with a 7.0% contribution is seen as branch of sharp symmetrical spikes at diagonal axes d e + d i ≃ 2.2 Å (Fig. 7 d). Furthermore, there are also O⋯H/H⋯O (3.2%), S⋯H/H⋯S (4.6%), N⋯C/C⋯N (3.8%), N⋯H/H⋯N (2.9%), S⋯C/C⋯S (2.4%), C⋯C (1.5%), Br⋯C/C⋯Br (0.2%), Br⋯S/S⋯Br (0.2%), N⋯N (0.4%) and N⋯S/S⋯N (0.5%) contacts (Table 3).

Figure 7.

Figure 7

A view of the two-dimensional fingerprint plots for the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Br⋯H/H⋯Br inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 55.6
C⋯H/H⋯C 17.9
Br⋯H/H⋯Br 7.0
S⋯H/H⋯S 4.6
N⋯C/C⋯N 3.8
O⋯H/H⋯O 3.2
N⋯H/H⋯N 2.9
S⋯C/C⋯S 2.4
C⋯C 1.5
N⋯S/S⋯N 0.5
N⋯N 0.4
Br⋯C/C⋯Br 0.2
Br⋯S/S⋯Br 0.2

Database survey  

A search of the Cambridge Structural Database CSD (Version 5.40, update of August 2019; Groom et al., 2016) yielded eight hits for 2-thia­zolidiniminium compounds, with four of them reporting essentially the same cation [CSD refcodes WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem’yanova et al., 1993a ), YITCAF (Martem’yanova et al., 1993b ) and YOPLUK (Marthi et al., 1995)]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01) of 3-(2-chloro-2-phenyl­eth­yl)-2-thia­zolidiniminiump-toluene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic N atom, while YITCAF (Martem’yanova et al., 1993b ) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

The other closely related compounds are UDELUN (Akkurt et al., 2018a ) and ZIJQAN (Akkurt et al., 2018b ). In the crystal structure of UDELUN, the 3-N atom of the cation carries an N substituent, as found in the title compound. In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts also contribute to the mol­ecular packing. In the crystal of ZIJQAN, the cations, anions and water mol­ecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and (Inline graphic20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds. Furthermore, C—H⋯π inter­actions also help in the stabilization of the mol­ecular packing.

Furthermore, in WILBIC, the thia­zolidine ring adopts a twist conformation. In one of two mol­ecules in the asymmetric unit of WILBOI, the thia­zolidine ring is essentially planar, in the other it adopts a twist conformation. In the two mol­ecules in the asymmetric unit of WILBOI01 and in YOPLUK, the thia­zolidine rings exhibit a twist conformation. In YITCAF, the disordered thia­zolidine ring has two components, which are planar. In YOPLUK, the thia­zolidine ring is slightly puckered, with the nitro­gen atom in an almost planar configuration. In the cations of UDELUN and ZIJQAN, the thia­zolidine rings have an envelope conformation.

Synthesis and crystallization  

To a solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide (1 mmol) in ethanol (20 ml) was added 4-methyl­benzaldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colorless crystals, was collected by filtration, washed with cold acetone (yield 54%; m.p. 501–502 K), and recrystallized from di­methyl­formamide to obtain single crystals.

1H NMR (300 MHz, DMSO-d 6) : 2.33 (s, 3H, CH3); 4.55 (k, 1H, CH2, 3 J H–H = 6.6); 4,88 (t, 1H, CH2, 3 J H–H = 8.1); 5.60 (t, 1H, CH—Ar, 3 J H–H = 7.5); 7.28–7.98 (m, 9H, 9Ar—H); 8.41 (s, 1H, CH=); 10.33 (s, 2H, N+H=). 13C NMR (75 MHz, DMSO-d 6): 21.27; 45.36; 55.90; 127.79; 128.69; 128.86; 129.09; 129.46; 130.21; 137.50; 141.68; 151.04; 167.50. MS (ESI), m/z: 296.40 [C17H18N3S]+ and 79.88 Br.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were placed geometrically (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined as riding atoms with U iso(H) = 1.2 or 1.5U eq(C, N).

Table 4. Experimental details.

Crystal data
Chemical formula C17H18N3S+·Br·C3H7NO
M r 449.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4326 (6), 31.778 (2), 8.4680 (6)
β (°) 110.052 (2)
V3) 2131.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.04
Crystal size (mm) 0.18 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.702, 0.807
No. of measured, independent and observed [I > 2σ(I)] reflections 29638, 4039, 2873
R int 0.076
(sin θ/λ)max−1) 0.609
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.087, 1.03
No. of reflections 4039
No. of parameters 248
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.61

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012712/jy2001sup1.cif

e-76-01694-sup1.cif (877.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012712/jy2001Isup2.hkl

e-76-01694-Isup2.hkl (322KB, hkl)

CCDC reference: 1837125

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H18N3S+·Br·C3H7NO F(000) = 928
Mr = 449.41 Dx = 1.400 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.4326 (6) Å Cell parameters from 7783 reflections
b = 31.778 (2) Å θ = 2.6–25.5°
c = 8.4680 (6) Å µ = 2.04 mm1
β = 110.052 (2)° T = 296 K
V = 2131.6 (3) Å3 Plate, colourless
Z = 4 0.18 × 0.14 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 2873 reflections with I > 2σ(I)
φ and ω scans Rint = 0.076
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 25.7°, θmin = 2.6°
Tmin = 0.702, Tmax = 0.807 h = −10→10
29638 measured reflections k = −38→38
4039 independent reflections l = −10→10

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.7903P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.43 e Å3
4039 reflections Δρmin = −0.53 e Å3
248 parameters Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0081 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.24500 (5) 0.44440 (2) 0.08820 (4) 0.06338 (16)
N1 0.7272 (3) 0.50622 (7) 0.4672 (3) 0.0454 (6)
N2 0.8146 (3) 0.46878 (7) 0.4775 (3) 0.0462 (6)
N3 0.9508 (3) 0.48154 (8) 0.7609 (3) 0.0542 (7)
H3A 0.869458 0.500223 0.757513 0.065*
H3B 1.029166 0.472122 0.855943 0.065*
N4 0.3431 (4) 0.20008 (10) 0.3700 (4) 0.0690 (8)
O1 0.4488 (4) 0.26513 (10) 0.3557 (4) 0.0891 (8)
S1 1.03303 (10) 0.41267 (2) 0.62732 (10) 0.0505 (2)
C1 0.7900 (4) 0.43751 (10) 0.3435 (4) 0.0535 (8)
H1A 0.771425 0.451273 0.236395 0.064*
H1B 0.693711 0.419711 0.333814 0.064*
C2 0.9532 (4) 0.41145 (9) 0.3953 (4) 0.0478 (7)
H2A 1.034938 0.425774 0.354929 0.057*
C3 0.9255 (4) 0.45875 (9) 0.6271 (4) 0.0429 (7)
C4 0.6040 (4) 0.51408 (9) 0.3334 (4) 0.0487 (7)
H4A 0.571043 0.494228 0.247559 0.058*
C5 0.5142 (4) 0.55408 (9) 0.3137 (4) 0.0459 (7)
C6 0.3893 (4) 0.56328 (11) 0.1627 (4) 0.0628 (9)
H6A 0.359656 0.543477 0.076567 0.075*
C7 0.3078 (5) 0.60187 (12) 0.1387 (5) 0.0695 (10)
H7A 0.223309 0.607480 0.036564 0.083*
C8 0.3491 (4) 0.63205 (10) 0.2626 (4) 0.0532 (8)
C9 0.4726 (4) 0.62221 (10) 0.4137 (4) 0.0521 (8)
H9A 0.502433 0.642090 0.499513 0.063*
C10 0.5529 (4) 0.58380 (10) 0.4409 (4) 0.0485 (7)
H10A 0.633347 0.577780 0.545053 0.058*
C11 0.2619 (5) 0.67440 (11) 0.2337 (5) 0.0770 (11)
H11A 0.261055 0.685750 0.128290 0.116*
H11B 0.321407 0.693239 0.322952 0.116*
H11C 0.147992 0.671094 0.231326 0.116*
C12 0.9372 (4) 0.36634 (9) 0.3360 (4) 0.0454 (7)
C13 1.0517 (4) 0.35074 (10) 0.2659 (4) 0.0565 (8)
H13A 1.132036 0.368508 0.248893 0.068*
C14 1.0464 (5) 0.30867 (11) 0.2212 (5) 0.0709 (10)
H14A 1.123460 0.298109 0.174733 0.085*
C15 0.9283 (5) 0.28289 (11) 0.2456 (5) 0.0734 (11)
H15A 0.925525 0.254635 0.216122 0.088*
C16 0.8144 (5) 0.29779 (12) 0.3122 (5) 0.0732 (11)
H16A 0.733331 0.279913 0.326952 0.088*
C17 0.8191 (4) 0.33936 (11) 0.3578 (5) 0.0629 (9)
H17A 0.741175 0.349390 0.404218 0.076*
C18 0.4359 (5) 0.23379 (14) 0.4343 (5) 0.0757 (11)
H18A 0.496399 0.233544 0.549077 0.091*
C19 0.2468 (6) 0.19812 (15) 0.1924 (6) 0.0934 (13)
H19A 0.250819 0.224946 0.141811 0.140*
H19B 0.131711 0.191116 0.176912 0.140*
H19C 0.293996 0.176990 0.140581 0.140*
C20 0.3410 (7) 0.16367 (15) 0.4722 (7) 0.1129 (17)
H20A 0.410879 0.168951 0.586481 0.169*
H20B 0.383236 0.139639 0.430398 0.169*
H20C 0.227360 0.158275 0.467287 0.169*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0746 (3) 0.0552 (2) 0.0497 (2) 0.01350 (18) 0.00753 (16) −0.00653 (16)
N1 0.0476 (14) 0.0418 (14) 0.0449 (14) 0.0098 (11) 0.0133 (12) 0.0017 (11)
N2 0.0505 (14) 0.0416 (14) 0.0405 (13) 0.0138 (12) 0.0077 (11) −0.0006 (11)
N3 0.0609 (17) 0.0538 (16) 0.0409 (14) 0.0202 (13) 0.0086 (12) 0.0019 (12)
N4 0.069 (2) 0.065 (2) 0.078 (2) −0.0069 (16) 0.0321 (17) −0.0073 (17)
O1 0.086 (2) 0.079 (2) 0.104 (2) −0.0168 (16) 0.0357 (17) −0.0018 (18)
S1 0.0531 (5) 0.0452 (4) 0.0473 (4) 0.0140 (4) 0.0095 (3) 0.0008 (4)
C1 0.0604 (19) 0.0461 (19) 0.0471 (18) 0.0104 (15) 0.0094 (15) −0.0076 (14)
C2 0.0498 (18) 0.0444 (17) 0.0476 (17) 0.0037 (14) 0.0147 (14) −0.0016 (14)
C3 0.0442 (16) 0.0406 (16) 0.0413 (17) 0.0064 (13) 0.0113 (13) 0.0000 (13)
C4 0.0479 (18) 0.0434 (17) 0.0497 (18) 0.0040 (14) 0.0102 (15) −0.0016 (14)
C5 0.0430 (16) 0.0447 (17) 0.0470 (17) 0.0054 (14) 0.0115 (13) 0.0078 (14)
C6 0.072 (2) 0.056 (2) 0.0482 (19) 0.0137 (18) 0.0048 (16) 0.0026 (16)
C7 0.070 (2) 0.072 (2) 0.054 (2) 0.023 (2) 0.0047 (17) 0.0182 (19)
C8 0.0527 (19) 0.0461 (18) 0.064 (2) 0.0116 (15) 0.0239 (16) 0.0149 (16)
C9 0.0494 (18) 0.0470 (19) 0.062 (2) 0.0054 (15) 0.0219 (16) −0.0039 (15)
C10 0.0431 (17) 0.0530 (19) 0.0463 (17) 0.0099 (15) 0.0112 (13) 0.0016 (15)
C11 0.084 (3) 0.058 (2) 0.091 (3) 0.028 (2) 0.032 (2) 0.022 (2)
C12 0.0468 (17) 0.0408 (16) 0.0432 (17) 0.0035 (14) 0.0086 (13) −0.0027 (13)
C13 0.0511 (19) 0.050 (2) 0.071 (2) −0.0044 (16) 0.0246 (17) −0.0015 (17)
C14 0.072 (2) 0.054 (2) 0.096 (3) 0.0031 (19) 0.042 (2) −0.016 (2)
C15 0.082 (3) 0.044 (2) 0.094 (3) −0.0072 (19) 0.030 (2) −0.0156 (19)
C16 0.068 (2) 0.060 (2) 0.090 (3) −0.021 (2) 0.025 (2) −0.010 (2)
C17 0.053 (2) 0.065 (2) 0.077 (2) −0.0029 (18) 0.0293 (18) −0.0042 (19)
C18 0.068 (2) 0.086 (3) 0.073 (3) −0.008 (2) 0.023 (2) −0.007 (2)
C19 0.089 (3) 0.090 (3) 0.092 (3) −0.002 (3) 0.018 (2) −0.026 (3)
C20 0.142 (5) 0.082 (3) 0.139 (5) −0.005 (3) 0.079 (4) 0.021 (3)

Geometric parameters (Å, º)

N1—C4 1.272 (4) C8—C9 1.380 (4)
N1—N2 1.386 (3) C8—C11 1.513 (4)
N2—C3 1.330 (4) C9—C10 1.376 (4)
N2—C1 1.468 (4) C9—H9A 0.9300
N3—C3 1.299 (4) C10—H10A 0.9300
N3—H3A 0.9000 C11—H11A 0.9600
N3—H3B 0.9000 C11—H11B 0.9600
N4—C18 1.328 (5) C11—H11C 0.9600
N4—C19 1.445 (5) C12—C17 1.374 (4)
N4—C20 1.448 (5) C12—C13 1.387 (4)
O1—C18 1.223 (5) C13—C14 1.386 (5)
S1—C3 1.722 (3) C13—H13A 0.9300
S1—C2 1.846 (3) C14—C15 1.359 (5)
C1—C2 1.535 (4) C14—H14A 0.9300
C1—H1A 0.9700 C15—C16 1.355 (5)
C1—H1B 0.9700 C15—H15A 0.9300
C2—C12 1.510 (4) C16—C17 1.373 (5)
C2—H2A 0.9800 C16—H16A 0.9300
C4—C5 1.459 (4) C17—H17A 0.9300
C4—H4A 0.9300 C18—H18A 0.9300
C5—C6 1.381 (4) C19—H19A 0.9600
C5—C10 1.385 (4) C19—H19B 0.9600
C6—C7 1.386 (5) C19—H19C 0.9600
C6—H6A 0.9300 C20—H20A 0.9600
C7—C8 1.375 (5) C20—H20B 0.9600
C7—H7A 0.9300 C20—H20C 0.9600
C4—N1—N2 118.6 (2) C8—C9—H9A 119.1
C3—N2—N1 116.8 (2) C9—C10—C5 120.3 (3)
C3—N2—C1 116.1 (2) C9—C10—H10A 119.9
N1—N2—C1 127.0 (2) C5—C10—H10A 119.9
C3—N3—H3A 116.4 C8—C11—H11A 109.5
C3—N3—H3B 116.4 C8—C11—H11B 109.5
H3A—N3—H3B 124.4 H11A—C11—H11B 109.5
C18—N4—C19 120.2 (4) C8—C11—H11C 109.5
C18—N4—C20 121.7 (4) H11A—C11—H11C 109.5
C19—N4—C20 118.0 (4) H11B—C11—H11C 109.5
C3—S1—C2 90.96 (13) C17—C12—C13 118.5 (3)
N2—C1—C2 105.6 (2) C17—C12—C2 122.3 (3)
N2—C1—H1A 110.6 C13—C12—C2 119.1 (3)
C2—C1—H1A 110.6 C14—C13—C12 120.0 (3)
N2—C1—H1B 110.6 C14—C13—H13A 120.0
C2—C1—H1B 110.6 C12—C13—H13A 120.0
H1A—C1—H1B 108.7 C15—C14—C13 119.8 (3)
C12—C2—C1 116.6 (3) C15—C14—H14A 120.1
C12—C2—S1 109.4 (2) C13—C14—H14A 120.1
C1—C2—S1 104.9 (2) C16—C15—C14 120.9 (3)
C12—C2—H2A 108.6 C16—C15—H15A 119.6
C1—C2—H2A 108.6 C14—C15—H15A 119.6
S1—C2—H2A 108.6 C15—C16—C17 119.8 (3)
N3—C3—N2 123.2 (3) C15—C16—H16A 120.1
N3—C3—S1 123.0 (2) C17—C16—H16A 120.1
N2—C3—S1 113.8 (2) C16—C17—C12 121.0 (3)
N1—C4—C5 120.4 (3) C16—C17—H17A 119.5
N1—C4—H4A 119.8 C12—C17—H17A 119.5
C5—C4—H4A 119.8 O1—C18—N4 125.7 (4)
C6—C5—C10 118.5 (3) O1—C18—H18A 117.2
C6—C5—C4 119.4 (3) N4—C18—H18A 117.2
C10—C5—C4 122.0 (3) N4—C19—H19A 109.5
C5—C6—C7 120.4 (3) N4—C19—H19B 109.5
C5—C6—H6A 119.8 H19A—C19—H19B 109.5
C7—C6—H6A 119.8 N4—C19—H19C 109.5
C8—C7—C6 121.5 (3) H19A—C19—H19C 109.5
C8—C7—H7A 119.3 H19B—C19—H19C 109.5
C6—C7—H7A 119.3 N4—C20—H20A 109.5
C7—C8—C9 117.6 (3) N4—C20—H20B 109.5
C7—C8—C11 121.0 (3) H20A—C20—H20B 109.5
C9—C8—C11 121.5 (3) N4—C20—H20C 109.5
C10—C9—C8 121.8 (3) H20A—C20—H20C 109.5
C10—C9—H9A 119.1 H20B—C20—H20C 109.5
C4—N1—N2—C3 −170.3 (3) C6—C7—C8—C11 178.7 (4)
C4—N1—N2—C1 5.3 (4) C7—C8—C9—C10 0.2 (5)
C3—N2—C1—C2 −24.2 (4) C11—C8—C9—C10 −179.8 (3)
N1—N2—C1—C2 160.2 (3) C8—C9—C10—C5 1.8 (5)
N2—C1—C2—C12 150.8 (3) C6—C5—C10—C9 −2.6 (5)
N2—C1—C2—S1 29.7 (3) C4—C5—C10—C9 175.9 (3)
C3—S1—C2—C12 −149.7 (2) C1—C2—C12—C17 −50.1 (4)
C3—S1—C2—C1 −23.9 (2) S1—C2—C12—C17 68.6 (3)
N1—N2—C3—N3 1.9 (4) C1—C2—C12—C13 133.7 (3)
C1—N2—C3—N3 −174.2 (3) S1—C2—C12—C13 −107.5 (3)
N1—N2—C3—S1 −178.1 (2) C17—C12—C13—C14 −0.7 (5)
C1—N2—C3—S1 5.8 (4) C2—C12—C13—C14 175.6 (3)
C2—S1—C3—N3 −168.3 (3) C12—C13—C14—C15 0.3 (6)
C2—S1—C3—N2 11.6 (2) C13—C14—C15—C16 0.4 (6)
N2—N1—C4—C5 −176.8 (3) C14—C15—C16—C17 −0.8 (6)
N1—C4—C5—C6 175.2 (3) C15—C16—C17—C12 0.4 (6)
N1—C4—C5—C10 −3.3 (5) C13—C12—C17—C16 0.3 (5)
C10—C5—C6—C7 1.5 (5) C2—C12—C17—C16 −175.9 (3)
C4—C5—C6—C7 −177.0 (3) C19—N4—C18—O1 0.5 (6)
C5—C6—C7—C8 0.5 (6) C20—N4—C18—O1 177.5 (4)
C6—C7—C8—C9 −1.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1i 0.90 2.57 3.368 (3) 148
N3—H3B···Br1ii 0.90 2.35 3.243 (2) 175
C16—H16A···O1 0.93 2.54 3.391 (6) 153

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.
  2. Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
  3. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  4. Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294. [DOI] [PMC free article] [PubMed]
  5. Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg., 19, 145–153.
  6. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. D’hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  12. Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. [DOI] [PMC free article] [PubMed]
  13. Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721. [DOI] [PMC free article] [PubMed]
  14. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  15. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  16. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  17. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
  18. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
  19. Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
  20. Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
  21. Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  25. Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.
  28. Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012712/jy2001sup1.cif

e-76-01694-sup1.cif (877.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012712/jy2001Isup2.hkl

e-76-01694-Isup2.hkl (322KB, hkl)

CCDC reference: 1837125

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES