The title compound crystallizes with a single molecule in the asymmetric unit. The phenol ring makes a dihedral angle of 36.56 (3)° with the nitrobenzene ring. In the crystal, molecules are linked by C—H⋯O interactions, forming chains along the b-axis direction.
Keywords: crystal structure, 2-hydroxy-5-methyl-benzaldehyde, 2-methyl-3-nitro-phenylamine, Schiff base
Abstract
The title compound, C15H14N2O3, was prepared by condensation of 2-hydroxy-5-methyl-benzaldehyde and 2-methyl-3-nitro-phenylamine in ethanol. The configuration of the C=N bond is E. An intramolecular O—H⋯N hydrogen bond is present, forming an S(6) ring motif and inducing the phenol ring and the Schiff base to be nearly coplanar [C—C—N—C torsion angle of 178.53 (13)°]. In the crystal, molecules are linked by C—H⋯O interactions, forming chains along the b-axis direction. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.2%), C⋯H (30.7%) and O⋯H (24.9%) interactions. The gas phase density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared to the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Chemical context
Over the past 25 years, extensive research has surrounded the synthesis and use of Schiff base compounds in organic and inorganic chemistry, as they have important medicinal and pharmaceutical applications. These compounds show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001 ▸; Singh & Dash, 1988 ▸; Karia & Parsania, 1999 ▸). Schiff bases are also becoming increasingly important in the dye and plastics industries as well as for liquid-crystal technology and the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006 ▸). ortho-Hydroxy Schiff base compounds such as the title compound can display two tautomeric forms, the enol–imine (OH) and keto–amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are generally observed in ortho-hydroxy Schiff bases, namely, O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2010 ▸). The present work is a part of an ongoing structural study of Schiff bases and their utilization in synthesis, their excited state proton-transfer properties and as fluorescent chemosensors (Faizi et al., 2016 ▸, 2018 ▸; Kumar et al., 2018 ▸; Mukherjee et al., 2018 ▸). We report herein on the synthesis, crystal structure as well as Hirshfeld surface analysis of the title compound (I). The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
Structural commentary
The molecular structure of the title compound, (I), is illustrated in Fig. 1 ▸. There is an intramolecular O1—H1⋯N1 hydrogen bond (Table 1 ▸ and Fig. 1 ▸); this is a common feature also observed in related imine-phenol Schiff bases. It forms an S(6) ring motif and also induces the phenol ring and the Schiff base to be nearly coplanar, as indicated by the C3—C8—N1—C9 torsion angle of 178.53 (13)°. An intramolecular C15—H15B⋯O2 interaction is also observed. The phenol ring (C1–C8/O1) is inclined to the tolyl ring (C9–C14) by 37.57 (3)°, and the nitro group (N2/O2/O3) is inclined to the tolyl ring (C9—C14) by 35.05 (2)°. The configuration of the C8=N1 bond is E. The C4—O1 distance is 1.3455 (18) Å, which is close to normal values reported for single C—O bonds in phenols and salicylideneamines (Ozeryanskii et al., 2006 ▸). The N1—C8 bond is short at 1.2782 (19) Å, strongly indicating a C=N double bond, while the long C8—C3 bond [1.4486 (18) Å] implies a single bond. All of these data support the existence of the phenol–imine tautomer for (I) in the crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Pizzala et al., 2000 ▸).
Figure 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intramolecular O—H⋯N hydrogen bond (Table1) is shown as a dashed line.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C7—H7C⋯O1i | 0.96 | 2.54 | 3.468 (2) | 163 |
C14—H14⋯O2i | 0.93 | 2.40 | 3.2064 (19) | 145 |
C15—H15B⋯O2 | 0.96 | 2.33 | 2.840 (2) | 113 |
O1—H1⋯N1 | 0.95 (3) | 1.78 (3) | 2.6032 (16) | 143 (3) |
Symmetry code: (i) .
Supramolecular features
In the crystal, molecules are linked by two intermolecular interactions, C14—H14⋯O2i and C7—H7C⋯O1i, resulting in the formation of an infinite chain along the b-axis direction (Fig. 2 ▸ and Table 1 ▸).
Figure 2.
A view along the a axis of the chain formed by C—H⋯O interactions (dashed lines; see Table 1 ▸ for details).
Hirshfeld surface analysis and two-dimensional fingerprint plots
Hirshfeld surface analysis, together with two-dimensional fingerprint plots, is a powerful tool for the visualization and interpretation of intermolecular contacts in molecular crystals, since it provides a concise description of all intermolecular interactions present in a crystal structure (Spackman & Jayatilaka, 2009 ▸; McKinnon et al., 2007 ▸). All surfaces and fingerprint plots were generated using CrystalExplorer3.1 (Turner et al., 2017 ▸). The mappings of d norm and shape-index for the title structure are shown in Fig. 3 ▸ a and 3c, respectively, with the prominent hydrogen-bonding interactions shown as intense red spots. The red colour indicates regions with shorter intermolecular contacts, while blue colour shows regions with longer contact distance in the Hirshfeld surface. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in intermolecular C—H⋯O interactions that involve C14—H14 and the O2 of the nitro group (Table 1 ▸, Fig. 3 ▸ b). The two-dimensional fingerprint plots (Fig. 4 ▸ a–f) provide information about the percentage contributions of the various interatomic contacts. The most important are H⋯H interactions, which contribute 37.2% to the total Hirshfeld surface. Other contributions are from C⋯H (30.7%), O⋯H (24.9%), N⋯H (2.0%) and C⋯O (1.8%) contacts. There are also smaller contributions (not shown in Fig. 4 ▸) from O⋯O (1.7%), N⋯O (1.1%) and C⋯N (0.6%) contacts. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C interactions are induced dipole-dispersive (or van der Waals) interactions while O⋯H interactions are responsible for hydrogen bonds, which play important roles in the crystal packing (Hathwar et al., 2015 ▸).
Figure 3.
A view of the Hirshfeld surface mapped over (a) d norm (b) C—H⋯O interactions and (c) shape-index.
Figure 4.
The overall two-dimensional fingerprint plot and those delineated into (b) H⋯H (37.2%), (c) C⋯H/H⋯C (30.7%), (d) O⋯H/H⋯O (24.9%), (e) N⋯H/H⋯N (2.0%) and (f) C⋯O/O⋯C (1.8%) contacts.
DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN09 (Frisch et al., 2009 ▸). The theoretical and experimental results are in good agreement (Table 2 ▸). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. The electronic, optical and chemical reactivity properties of compounds are predicted by their frontier molecular orbitals (Tanak, 2019 ▸). The HOMO–LUMO gap is used to analyse the chemical reactivity and stability of a molecule. A molecule with a small frontier orbital gap is more polarizable than one with a large gap and is considered a soft molecule because of its high chemical reactivity and low kinetic stability. If the molecule has a large HOMO–LUMO gap, the molecule is more stable and less chemically reactive. The term ‘hard molecule’ is used to describe such cases. The electron affinity (A = −E HOMO), the ionization potential (I = −E LUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the E HOMO and E LUMO energies. As a result of the large ΔE and η values (Table 3 ▸), the title compound can be classified as a hard molecule. The electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels for the title compound is shown in Fig. 5 ▸. The DFT study shows that HOMO and LUMO are localized in the plane extending from the whole 2-hydroxy-5-methyl-benzaldehyde ring to the 2-methyl-3-nitrophenylamine ring. The HOMO, HOMO−1 and LUMO+1 orbitals are delocalized over the two phenyl rings connected by the Schiff base bridge and HOMO and HOMO-1 can be said to be π-bonding orbitals. The LUMO orbital is delocalized on the 2-methyl-3-nitrophenylamine ring and the C atom of the Schiff base. The LUMO and LUMO+1 orbitals exhibit π* antibonding character. The energy gap of (I) is 3.7160 eV, similar to that reported for the Schiff bases (E)-2-{[(3-chlorophenyl)imino]methyl}-6-methylphenol (ΔE = 4.069 eV; Faizi et al., 2019 ▸) and (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile (ΔE = 3.520 eV; Saraçoğlu et al., 2020 ▸).
Table 2. Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °).
Parameter | X-ray | B3LYP/6–311G(d,p) |
---|---|---|
O1—C4 | 1.3455 (18) | 1.3406 |
N1—C8 | 1.2782 (19) | 1.2946 |
N2—C11 | 1.4728 (19) | 1.4763 |
C9—N1 | 1.4169 (17) | 1.4080 |
C8—C3 | 1.4486 (18) | 1.4457 |
N1—C8—C3 | 121.84 (13) | 122.41 |
C8—N1—C9 | 120.92 (12) | 120.91 |
O2—N2—O3 | 122.32 (14) | 124.17 |
Table 3. The energy band gap of the title compound.
Molecular Energy, (eV) | Compound (I) |
---|---|
Total Energy, TE (eV) | −24894.6063 |
E HOMO (eV) | −6.0091 |
E LUMO (eV) | −2.2931 |
Gap, ΔE (eV) | 3.7160 |
Dipole moment, μ (Debye) | 6.545 |
Ionization potential, I (eV) | 6.009 |
Electron affinity, A | 2.293 |
Electronegativity, χ | 4.151 |
Hardness, η | 1.858 |
Electrophilicity index, ω | 4.636 |
Softness, σ | 0.269 |
Fraction of electron transferred, ΔN | 0.744 |
Figure 5.
The energy band gap of the title compound.
Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016 ▸) for the (E)-4-methyl-2-[(2-methyl-3-nitro-phenylimino)methyl]phenol moiety resulted in no hits when both methyl groups were included in the search. Without the methyl groups, seven related compounds were found. Out of these, few are very similar to the title compound and some are metal complexes such as diazido-[2,2′-{(4-nitro-1,2-phenylene)bis[(nitrilo)methylylidene]}bis(4-methylphenolato)]manganese (AGUGAN; Quan, 2018 ▸), where the ligand is similar to the title compound. There are two iron complexes, viz. {2-[({2-[bis(3,5-di-t-butyl-2-oxybenzyl)amino]-4,5-dinitrophenyl}imino)methyl]-4,6-di-t-butylphenolato}iron(III) methanol solvate hemihydrate (AROVIO; Wickramasinghe et al., 2016 ▸) in which a t-butyl group is present and chloro-{2,4-di-t-butyl-6-[({2-[(3,5-di-t-butyl-2-oxybenzylidene)amino]-4,5-dinitrophenyl}imino)methyl]phenolato}iron(III) (AROVOU; Wickramasinghe et al., 2016 ▸) in which two nitro groups are attached to one aromatic ring. A nickel complex [N,N′-(4,5-dinitro-1,2-phenylene)bis(3,5-di-t-butylsalicylaldiminato)]nickel(II) methanol solvate (BOQPAZ; Rotthaus et al., 2009 ▸) and a cobalt complex with a similar ligand {2,2′-[{[2-({[3,5-di-t-butyl-2-oxyphenyl]methylidene}amino)-4,5-dinitrophenyl]azanediyl}bis(methylene)]bis(4,6-di-t-butylphenolato)}methanolcobalt(III) methanol solvate (FORJOO; Basu et al., 2019 ▸) have also been reported. The compound most analogous to the title compound is N-(3,5-di-t-butylsalicylidene)-3-nitroaniline (KIPMEB; Harada et al., 1999 ▸; KIPMEB03; Koshima et al., 2011 ▸) in which a t-butyl group is present. In all of the above structures except AGUGAN, both methyl groups are absent and this structure is the most similar to the title compound.
Synthesis and crystallization
The title compound was prepared by refluxing mixed solutions of 2-hydroxy-5-methyl-benzaldehyde (38.0 mg, 0.28 mmol) in ethanol (15 ml) and 2-methyl-3-nitro-phenylamine (42.0 mg, 0.28 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, yellow prisms, m.p. 410–412 K).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The hydroxy H atom was located in a difference-Fourier map and positional parameters were refined freely, U iso(H) = 1.5U eq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), U iso(H) = 1.2U eq(C) or 1.5U eq(Cmethyl).
Table 4. Experimental details.
Crystal data | |
Chemical formula | C15H14N2O3 |
M r | 270.28 |
Crystal system, space group | Orthorhombic, P b c a |
Temperature (K) | 296 |
a, b, c (Å) | 7.3925 (3), 15.4082 (6), 23.5750 (9) |
V (Å3) | 2685.31 (18) |
Z | 8 |
Radiation type | Mo Kα |
μ (mm−1) | 0.10 |
Crystal size (mm) | 0.72 × 0.66 × 0.59 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
T min, T max | 0.935, 0.968 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18040, 3618, 2258 |
R int | 0.035 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.043, 0.125, 1.04 |
No. of reflections | 3618 |
No. of parameters | 187 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.13 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011652/zl2794sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011652/zl2794Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020011652/zl2794Isup3.cml
CCDC reference: 2025323
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
supplementary crystallographic information
Crystal data
C15H14N2O3 | Dx = 1.337 Mg m−3 |
Mr = 270.28 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 15516 reflections |
a = 7.3925 (3) Å | θ = 1.6–29.6° |
b = 15.4082 (6) Å | µ = 0.10 mm−1 |
c = 23.5750 (9) Å | T = 296 K |
V = 2685.31 (18) Å3 | Prism, yellow |
Z = 8 | 0.72 × 0.66 × 0.59 mm |
F(000) = 1136 |
Data collection
STOE IPDS 2 diffractometer | 3618 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2258 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.035 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.2°, θmin = 1.7° |
rotation method scans | h = −8→10 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −19→20 |
Tmin = 0.935, Tmax = 0.968 | l = −32→32 |
18040 measured reflections |
Refinement
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0659P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.125 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.14 e Å−3 |
3618 reflections | Δρmin = −0.13 e Å−3 |
187 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0039 (10) |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.74349 (19) | 0.20861 (10) | 0.60276 (6) | 0.0596 (4) | |
C2 | 0.70581 (18) | 0.23031 (10) | 0.54705 (6) | 0.0559 (3) | |
H2 | 0.646600 | 0.189998 | 0.524307 | 0.067* | |
C3 | 0.75324 (18) | 0.31034 (9) | 0.52368 (5) | 0.0519 (3) | |
C4 | 0.8454 (2) | 0.37053 (10) | 0.55780 (6) | 0.0577 (3) | |
C5 | 0.8823 (2) | 0.35005 (11) | 0.61387 (6) | 0.0665 (4) | |
H5 | 0.942132 | 0.389899 | 0.636800 | 0.080* | |
C6 | 0.8309 (2) | 0.27125 (11) | 0.63571 (6) | 0.0650 (4) | |
H6 | 0.855030 | 0.259165 | 0.673614 | 0.078* | |
C7 | 0.6923 (3) | 0.12209 (12) | 0.62715 (7) | 0.0773 (5) | |
H7A | 0.592310 | 0.129208 | 0.652729 | 0.116* | |
H7B | 0.793548 | 0.098209 | 0.647305 | 0.116* | |
H7C | 0.658178 | 0.083481 | 0.597033 | 0.116* | |
C8 | 0.70208 (18) | 0.33130 (10) | 0.46597 (5) | 0.0544 (3) | |
H8 | 0.640422 | 0.290150 | 0.444545 | 0.065* | |
C9 | 0.69171 (18) | 0.42321 (9) | 0.38670 (5) | 0.0525 (3) | |
C10 | 0.64261 (17) | 0.50918 (9) | 0.37357 (5) | 0.0515 (3) | |
C11 | 0.60096 (19) | 0.52470 (9) | 0.31696 (6) | 0.0546 (3) | |
C12 | 0.6044 (2) | 0.46167 (10) | 0.27547 (6) | 0.0668 (4) | |
H12 | 0.571736 | 0.474947 | 0.238372 | 0.080* | |
C13 | 0.6565 (3) | 0.37947 (10) | 0.28964 (6) | 0.0723 (5) | |
H13 | 0.661926 | 0.336515 | 0.261979 | 0.087* | |
C14 | 0.7012 (2) | 0.36023 (10) | 0.34503 (6) | 0.0630 (4) | |
H14 | 0.738019 | 0.304345 | 0.354450 | 0.076* | |
C15 | 0.6285 (2) | 0.57517 (11) | 0.42042 (6) | 0.0680 (4) | |
H15A | 0.580390 | 0.548033 | 0.453817 | 0.102* | |
H15B | 0.549860 | 0.621413 | 0.408760 | 0.102* | |
H15C | 0.746420 | 0.598158 | 0.428556 | 0.102* | |
N1 | 0.73931 (16) | 0.40478 (8) | 0.44366 (5) | 0.0563 (3) | |
N2 | 0.55057 (19) | 0.61224 (8) | 0.29747 (6) | 0.0675 (3) | |
O1 | 0.89814 (18) | 0.44842 (7) | 0.53800 (5) | 0.0778 (4) | |
O2 | 0.6215 (2) | 0.67456 (8) | 0.31898 (6) | 0.0945 (4) | |
O3 | 0.4416 (2) | 0.61880 (9) | 0.25937 (6) | 0.1073 (5) | |
H1 | 0.864 (4) | 0.4546 (18) | 0.4992 (14) | 0.161* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0528 (8) | 0.0715 (9) | 0.0545 (7) | 0.0031 (7) | 0.0025 (6) | 0.0003 (6) |
C2 | 0.0493 (7) | 0.0632 (9) | 0.0551 (7) | −0.0006 (6) | −0.0014 (5) | −0.0070 (6) |
C3 | 0.0469 (7) | 0.0589 (8) | 0.0500 (6) | 0.0036 (6) | 0.0001 (5) | −0.0051 (6) |
C4 | 0.0574 (8) | 0.0598 (9) | 0.0559 (7) | −0.0002 (6) | −0.0020 (6) | −0.0057 (6) |
C5 | 0.0723 (10) | 0.0711 (10) | 0.0562 (8) | −0.0027 (8) | −0.0083 (7) | −0.0112 (7) |
C6 | 0.0647 (9) | 0.0796 (11) | 0.0506 (7) | 0.0056 (8) | −0.0038 (6) | −0.0021 (7) |
C7 | 0.0793 (11) | 0.0836 (12) | 0.0690 (10) | −0.0088 (9) | −0.0052 (8) | 0.0130 (8) |
C8 | 0.0489 (7) | 0.0604 (9) | 0.0540 (7) | 0.0006 (6) | −0.0003 (6) | −0.0071 (6) |
C9 | 0.0496 (7) | 0.0577 (8) | 0.0501 (6) | −0.0001 (6) | 0.0031 (5) | −0.0052 (6) |
C10 | 0.0443 (7) | 0.0561 (8) | 0.0542 (7) | −0.0011 (6) | 0.0020 (5) | −0.0075 (6) |
C11 | 0.0551 (8) | 0.0520 (8) | 0.0567 (7) | −0.0036 (6) | 0.0031 (6) | −0.0013 (6) |
C12 | 0.0860 (11) | 0.0665 (9) | 0.0480 (7) | −0.0063 (8) | 0.0029 (7) | −0.0029 (6) |
C13 | 0.1020 (13) | 0.0614 (9) | 0.0535 (8) | −0.0023 (8) | 0.0097 (8) | −0.0112 (7) |
C14 | 0.0770 (10) | 0.0534 (8) | 0.0585 (8) | 0.0046 (7) | 0.0071 (7) | −0.0039 (6) |
C15 | 0.0735 (10) | 0.0661 (9) | 0.0644 (8) | 0.0095 (8) | −0.0050 (7) | −0.0177 (7) |
N1 | 0.0543 (6) | 0.0622 (7) | 0.0523 (6) | 0.0026 (5) | −0.0007 (5) | −0.0029 (5) |
N2 | 0.0747 (9) | 0.0625 (8) | 0.0654 (7) | −0.0006 (7) | 0.0020 (6) | 0.0020 (6) |
O1 | 0.0998 (9) | 0.0647 (7) | 0.0687 (6) | −0.0177 (6) | −0.0139 (6) | −0.0025 (5) |
O2 | 0.1208 (11) | 0.0561 (7) | 0.1065 (9) | −0.0115 (7) | −0.0104 (8) | −0.0056 (6) |
O3 | 0.1330 (13) | 0.0889 (9) | 0.1001 (9) | 0.0089 (9) | −0.0457 (9) | 0.0120 (7) |
Geometric parameters (Å, º)
C1—C2 | 1.3836 (19) | C9—C10 | 1.4079 (19) |
C1—C6 | 1.397 (2) | C9—N1 | 1.4169 (17) |
C1—C7 | 1.501 (2) | C10—C11 | 1.3904 (19) |
C2—C3 | 1.395 (2) | C10—C15 | 1.5048 (19) |
C2—H2 | 0.9300 | C11—C12 | 1.3787 (19) |
C3—C4 | 1.4039 (19) | C11—N2 | 1.4728 (19) |
C3—C8 | 1.4486 (18) | C12—C13 | 1.365 (2) |
C4—O1 | 1.3455 (18) | C12—H12 | 0.9300 |
C4—C5 | 1.386 (2) | C13—C14 | 1.379 (2) |
C5—C6 | 1.372 (2) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C15—H15A | 0.9600 |
C7—H7A | 0.9600 | C15—H15B | 0.9600 |
C7—H7B | 0.9600 | C15—H15C | 0.9600 |
C7—H7C | 0.9600 | N2—O2 | 1.2057 (17) |
C8—N1 | 1.2782 (19) | N2—O3 | 1.2109 (18) |
C8—H8 | 0.9300 | O1—H1 | 0.95 (3) |
C9—C14 | 1.3826 (19) | ||
C2—C1—C6 | 117.00 (14) | C14—C9—N1 | 121.34 (13) |
C2—C1—C7 | 121.84 (14) | C10—C9—N1 | 117.45 (11) |
C6—C1—C7 | 121.16 (13) | C11—C10—C9 | 115.47 (12) |
C1—C2—C3 | 122.53 (13) | C11—C10—C15 | 124.95 (13) |
C1—C2—H2 | 118.7 | C9—C10—C15 | 119.48 (12) |
C3—C2—H2 | 118.7 | C12—C11—C10 | 123.76 (13) |
C2—C3—C4 | 118.64 (12) | C12—C11—N2 | 115.37 (12) |
C2—C3—C8 | 120.15 (12) | C10—C11—N2 | 120.86 (12) |
C4—C3—C8 | 121.17 (13) | C13—C12—C11 | 119.01 (14) |
O1—C4—C5 | 118.48 (13) | C13—C12—H12 | 120.5 |
O1—C4—C3 | 122.08 (13) | C11—C12—H12 | 120.5 |
C5—C4—C3 | 119.45 (14) | C12—C13—C14 | 119.91 (14) |
C6—C5—C4 | 120.31 (14) | C12—C13—H13 | 120.0 |
C6—C5—H5 | 119.8 | C14—C13—H13 | 120.0 |
C4—C5—H5 | 119.8 | C13—C14—C9 | 120.65 (14) |
C5—C6—C1 | 122.04 (13) | C13—C14—H14 | 119.7 |
C5—C6—H6 | 119.0 | C9—C14—H14 | 119.7 |
C1—C6—H6 | 119.0 | C10—C15—H15A | 109.5 |
C1—C7—H7A | 109.5 | C10—C15—H15B | 109.5 |
C1—C7—H7B | 109.5 | H15A—C15—H15B | 109.5 |
H7A—C7—H7B | 109.5 | C10—C15—H15C | 109.5 |
C1—C7—H7C | 109.5 | H15A—C15—H15C | 109.5 |
H7A—C7—H7C | 109.5 | H15B—C15—H15C | 109.5 |
H7B—C7—H7C | 109.5 | C8—N1—C9 | 120.92 (12) |
N1—C8—C3 | 121.84 (13) | O2—N2—O3 | 122.32 (14) |
N1—C8—H8 | 119.1 | O2—N2—C11 | 119.22 (13) |
C3—C8—H8 | 119.1 | O3—N2—C11 | 118.44 (13) |
C14—C9—C10 | 121.14 (12) | C4—O1—H1 | 110.3 (17) |
C6—C1—C2—C3 | 0.6 (2) | N1—C9—C10—C15 | −4.75 (19) |
C7—C1—C2—C3 | −179.72 (14) | C9—C10—C11—C12 | 0.6 (2) |
C1—C2—C3—C4 | 1.1 (2) | C15—C10—C11—C12 | −175.87 (15) |
C1—C2—C3—C8 | −176.78 (13) | C9—C10—C11—N2 | −178.94 (12) |
C2—C3—C4—O1 | 178.89 (13) | C15—C10—C11—N2 | 4.6 (2) |
C8—C3—C4—O1 | −3.3 (2) | C10—C11—C12—C13 | −2.0 (2) |
C2—C3—C4—C5 | −1.7 (2) | N2—C11—C12—C13 | 177.53 (15) |
C8—C3—C4—C5 | 176.10 (14) | C11—C12—C13—C14 | 1.3 (3) |
O1—C4—C5—C6 | −179.93 (14) | C12—C13—C14—C9 | 0.8 (3) |
C3—C4—C5—C6 | 0.7 (2) | C10—C9—C14—C13 | −2.3 (2) |
C4—C5—C6—C1 | 1.1 (2) | N1—C9—C14—C13 | −179.18 (14) |
C2—C1—C6—C5 | −1.8 (2) | C3—C8—N1—C9 | 178.53 (12) |
C7—C1—C6—C5 | 178.60 (15) | C14—C9—N1—C8 | −36.9 (2) |
C2—C3—C8—N1 | 178.24 (13) | C10—C9—N1—C8 | 146.03 (13) |
C4—C3—C8—N1 | 0.4 (2) | C12—C11—N2—O2 | −144.51 (15) |
C14—C9—C10—C11 | 1.5 (2) | C10—C11—N2—O2 | 35.0 (2) |
N1—C9—C10—C11 | 178.59 (12) | C12—C11—N2—O3 | 33.9 (2) |
C14—C9—C10—C15 | 178.20 (14) | C10—C11—N2—O3 | −146.51 (16) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···O1i | 0.96 | 2.54 | 3.468 (2) | 163 |
C14—H14···O2i | 0.93 | 2.40 | 3.2064 (19) | 145 |
C15—H15B···O2 | 0.96 | 2.33 | 2.840 (2) | 113 |
O1—H1···N1 | 0.95 (3) | 1.78 (3) | 2.6032 (16) | 143 (3) |
Symmetry code: (i) −x+3/2, y−1/2, z.
References
- Basu, D., Mazumder, S., Kpogo, K. K. & Verani, C. N. (2019). Dalton Trans. 48, 14669–14677. [DOI] [PubMed]
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.
- Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
- Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.
- Koshima, H., Takechi, K., Uchimoto, H., Shiro, M. & Hashizume, D. (2011). Chem. Commun. 47, 11423–11425. [DOI] [PubMed]
- Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.
- Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamienski, B., Sawka- Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.
- Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.
- Quan, H. Y. (2018). Russ. J. Coord. Chem. 44, 32–38.
- Rotthaus, O., Jarjayes, O., Philouze, C., Del Valle, C. P. & Thomas, F. (2009). Dalton Trans. pp. 1792–1800. [DOI] [PubMed]
- Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144. [DOI] [PMC free article] [PubMed]
- Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
- Tanak, H. (2019). ChemistrySelect 4, 10876–10883.
- Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wickramasinghe, L. D., Mazumder, S., Kpogo, K. K., Staples, R. J., Schlegel, H. B. & Verani, C. N. (2016). Chem. Eur. J. 22, 10786–10790. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020011652/zl2794sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020011652/zl2794Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020011652/zl2794Isup3.cml
CCDC reference: 2025323
Additional supporting information: crystallographic information; 3D view; checkCIF report