Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 8;76(Pt 10):1624–1628. doi: 10.1107/S2056989020012177

Crystal structure, optical property and Hirshfeld surface analysis of bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stannate(IV)

Hela Ferjani a,*
PMCID: PMC7534238  PMID: 33117576

The title structure consists of isolated [SnCl6]2− octa­hedral anions separated by layers of organic 1-(prop-2-en-1-yl)-1H-imidazol-3-ium (C6H9N2)+ cations. The crystal packing features inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds and π–π stacking inter­actions.

Keywords: chlorido­stannate(IV), 1-(prop-2-en-1-yl)-1H-imidazole, Hirshfeld surface, fingerprint plots, optical absorption., crystal structure

Abstract

A new 0D organic–inorganic hybrid material bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stannate(IV), (C6H9N2)2[SnCl6], has been prepared and characterized by single-crystal X-ray diffraction, Hirshfeld surface analysis and UV–visible spectroscopy. The structure consists of isolated [SnCl6]2− octa­hedral anions separated by layers of organic 1-(prop-2-en-1-yl)-1H-imidazol-3-ium cations. The 1-(prop-2-en-1-yl) fragment in the organic cation exhibits disorder over two sets of atomic sites having occupancies of 0.512 (9) and 0.488 (9). The crystal packing of the title compound is established by inter­molecular N/C–H⋯Cl hydrogen bond and π– π stacking inter­actions. Hirshfeld surface analysis employing three-dimensional mol­ecular surface contours and two-dimensional fingerprint plots has been used to analyse the inter­molecular inter­actions present in the structure. The optical properties of the crystal were studied using UV–visible absorption spectroscopy, showing one intense band at 208 nm, which is attributed to π–π* transitions in the cations.

Chemical context  

Tin(IV) halide organic–inorganic hybrid compounds are significant materials because of their inter­esting structural topologies and their wide range of optical applications such as luminescence, non-linear activity and semiconductivity (Hajji et al., 2016, 2019; BelhajSalah et al., 2018). As part of a continuing search of new organic–inorganic hybrid compounds such as Bi2Cl10 4− (Ferjani & Boughzala, 2018; Ferjani et al., 2020) and Hg2Cl6 (Garci et al., 2019), the synthesis and characterization of a new hybrid material, bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stan­nate(IV), (C6H9N2)2[SnCl6] is reported.graphic file with name e-76-01624-scheme1.jpg

Imidazole was chosen as the organic cation because the resulting complexes show inter­esting structural, chemical and physical properties significant for photoluminescence, magnetism, ferroelectricity, and conductivity (Tritt-Goc et al., 2019; Babar et al., 2019; Ishak et al., 2019). The Hirshfeld surface analysis was performed to completely characterize the inter­molecular inter­actions and explain the crystalline architecture. Moreover, the UV–visible spectrum was also investigated.

Structural commentary  

The asymmetric unit of (C6H9N2)2[SnCl6] contains one (C6H9N2)+ cation and one half of an [SnCl6]2− anion (Fig. 1). The SnIV atom is located on a special position of site symmetry 21/n (crystallographic center of inversion) and is coordinated by six chlorine atoms in an octa­hedral geometry. The hexa­chloro­stannate(IV) octa­hedron is nearly perfect with Sn—Cl bond lengths ranging from 2.4136 (6) to 2.4363 (6) Å and Cl—Sn—Cl bond angles between 88.44 (3) and 180°. These bond lengths and angles are in good agreement with those observed in similar compounds based on hexa­chloro­stannate(IV) (van Megen et al., 2013; Zhou et al., 2012; Rademeyer et al., 2007). The organic (C6H9N2)+ cations are related to each other by 21/n symmetry elements. The overall negative charges in the structure are counter-balanced by the protonated 1-(prop-2-en-1-yl)-1H-imidazol-3-ium cations (Fig. 1). As usual, this aromatic amine is protonated at the N1 atom. The C=C and ring C—N bond lengths vary from 1.253 (8) to 1.307 (5), and 1.265 (6) to 1.349 (5) Å, respectively, which agree well with those in homologous materials involving 1-(prop-2-en-1-yl)-1H-imidazole (Ferjani, 2020; Parshina et al., 2019). The crystal structure can be described as an organization of organic–inorganic layers, which propagate along the a axis at y = 0 and y = 1/2 (Fig. 2). These layers are formed by [SnCl6]2− octa­hedra and (C6H9N2)+ organic cations.

Figure 1.

Figure 1

The asymmetric unit of (C6H9N2)2[SnCl6], showing the atom-labelling scheme and the disorder of the allyl group with occupancies of 0.512 (9) (solid bonds) and 0.488 (9) (broken bonds).

Figure 2.

Figure 2

Crystal packing of (C6H9N2)2[SnCl6] viewed along the a axis, showing the N—H⋯Cl and C—H⋯Cl hydrogen bonds (dashed lines).

Supra­molecular features  

The cohesion and stabilization of the title structure is ensured by N—H⋯Cl and C—H⋯Cl hydrogen bonds between the NH+ unit of 1H-imidazol-3-ium as the donor group and the chlorine atoms of the [SnCl6]2− octa­hedron as acceptor with H⋯Cl lengths ranging between 2.67 and 2.98 Å (Fig. 2 and Table 1). Additional stabilization is provided by weak π–π stacking inter­actions between 1H-imidazol-3-ium rings with a centroid-to-centroid distance of 3.996 (2) Å (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2 0.86 2.67 3.399 (4) 144
N1—H1A⋯Cl1 0.86 2.81 3.485 (4) 136
C2—H2⋯Cl3i 0.93 2.79 3.672 (4) 158
C3—H3⋯Cl3ii 0.93 2.90 3.790 (4) 160
C4A—H4A1⋯Cl2iii 0.97 2.89 3.716 (9) 144
C4A—H4A1⋯Cl1iv 0.97 2.94 3.743 (10) 141
C4B—H4B1⋯Cl1v 0.97 2.98 3.702 (10) 133
C4B—H4B2⋯Cl1iv 0.97 2.80 3.590 (7) 139
C5B—H5B⋯Cl2vi 0.93 2.97 3.766 (11) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 3.

Figure 3

The π–π inter­actions between organic cations in (C6H9N2)2[SnCl6]. H atoms are omitted for clarity.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and the associated 2D fingerprint plots (McKinnon et al., 2007) generated using Crystal Explorer 17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) d norm surface plotted over a fixed colour scale mapped over the range −0.208 (red) to 1.180 (blue) a.u. The d norm mapping indicates that strong hydrogen-bonding inter­actions, such as N—H⋯Cl hydrogen bonding between chlorine atoms and imidazolium groups and C—H⋯Cl hydrogen bonding between chlorine atoms and the hydrogen atoms of the 1-(prop-2-en-1-yl) groups, appear to be the primary inter­actions in the structure, seen as a bright-red area in the Hirshfeld surface (Fig. 4).

Figure 4.

Figure 4

View of the Hirshfeld surfaces for (C6H9N2)2[SnCl6] mapped over shape-index, d norm and curvedness.

A shape-index map of the title compound was calculated in the range −0.995 to 0.996 a.u. (Fig. 4). The convex blue regions on the shape-index symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups. π–π inter­actions are generally indicated by adjacent red and blue triangles on the shape-index map of the Hirshfeld surface.

A curvedness map of the title compound was generated in the range −3.411 to 0.368 a.u. (Fig. 4). The large flat region of green around the rings delineated by a blue outline on the Hirshfeld surface plotted over curvedness refer to the π–π stacking inter­actions.

The overall 2D fingerprint plot for all contacts are shown in Fig. 5, together with their relative contributions to the Hirshfeld surface. The 2D fingerprint plots show that the dominant inter­molecular H⋯Cl (N/C-H⋯Cl) and H⋯H inter­actions contribute 59.8% and 25.6%, respectively, to the overall crystal packing. The fingerprint plot of H⋯Cl contacts, which represent the largest contribution to the Hirshfeld surfaces (59.8%), shows two large spikes highly concentrated at the edges, having almost the same d e + d i = 2.7 Å (Fig. 5). The H⋯H inter­actions appear as the next largest region of the fingerprint plot (25.6%), and have a distinct pattern with a minimum value of d e = d i = 1 Å (Fig. 5). Apart from these above, C⋯Cl, C⋯H, Cl⋯Cl, Cl⋯N, N⋯H, C⋯C, and C⋯N inter­actions were observed, which are summarized in Fig. 5.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions.

Database survey  

In the Cambridge Structural Database (Version 5.40, November 2019; Groom et al., 2016), eight structures of transition-metal coordination compounds with the 1-allyl­imidazole ligand are reported. The environment for the central ion in the [ML 6]2+ ion is provided by the nitro­gen atoms of six imidazole rings (Kurdziel & Glowiak, 2000; Kurdziel & Glowiak, 1998) or by other ligands with the imidazole rings (Glowiak & Kurdziel, 2000; Curtis et al. 2008; Kurdziel & Glowiak, 1998; Li & Liu, 2010). However, there is no structure reported of a post-transition-metal complex with 1-allyl­imidazole as ligand. One bis­muth complex with 1-allyl­imidazole (C6H9N2)4[Bi4I16]·2H2O has been recently determined by Ferjani (2020), but is not yet available in the CSD. This and the title structure have the same monoclinic crystallographic P21/n symmetry. However, one has two cations in the unit cell and the other has only one. The half anionic cluster in the asymmetric unit sits on a crystallographic inversion center.

UV–visible spectroscopy  

Optical absorption (OA) of the title compound was measured at ambient temperature in water. The experimental UV–visible absorption spectrum of the title compound is shown in Fig. 6. It shows one intense absorption band at 208 nm. According to a similar compound studied previously (Maalaoui et al., 2012; Lassoued et al., 2017; Hermi et al., 2020; Mathlouthi et al., 2017), we assign this band to π–π* transitions within the (C6H9N2)+ organic cations.

Figure 6.

Figure 6

UV–visible spectrum of the title compound.

Synthesis and crystallization  

The title compound was prepared by dissolving 0.34 g (1 mmol) of 1-allyl­imidazole [1-(prop-2-en-1-yl)-1H-imidazole] and 0.3 g (2 mmol) of tin(II) chloride in 10 ml of concentrated (37%) hydro­chloric acid. The mixture was stirred with heating and then kept at room temperature. Three days later, colourless single crystals suitable for structural determination were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The disordered 1-(prop-2-en-1-yl) fragment in the organic cation was refined by splitting atoms C4 and C5 over two positions (C4A, C4B) and (C5A, C5B) with occupancy factors of 0.512 (9) and 0.488 (9). Geometrical restraints (SADI) on bond lengths were applied. H atoms were located in difference-Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 and 0.97 Å, N—H = 0.86 Å with U iso(H) = 1.2U eq(C, N).

Table 2. Experimental details.

Crystal data
Chemical formula (C6H8N2)2[SnCl6]
M r 547.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.3953 (5), 11.7817 (6), 9.8243 (5)
β (°) 106.547 (4)
V3) 1042.44 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.00
Crystal size (mm) 0.71 × 0.66 × 0.42
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.311, 0.358
No. of measured, independent and observed [I > 2σ(I)] reflections 12972, 4294, 3326
R int 0.035
(sin θ/λ)max−1) 0.791
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.086, 1.14
No. of reflections 4294
No. of parameters 126
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.93

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012177/vm2239sup1.cif

e-76-01624-sup1.cif (438.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012177/vm2239Isup3.hkl

e-76-01624-Isup3.hkl (342.2KB, hkl)

CCDC reference: 2021940

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Dr Necmi Dege of the Department of Physics, Ondokuz Mayıs University (Samsun, Turkey), is thanked for performing the SCXRD and UV–visible measurements related to this work.

supplementary crystallographic information

Crystal data

(C6H8N2)2[SnCl6] F(000) = 536
Mr = 547.68 Dx = 1.745 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.3953 (5) Å Cell parameters from 19596 reflections
b = 11.7817 (6) Å θ = 2.3–34.4°
c = 9.8243 (5) Å µ = 2.00 mm1
β = 106.547 (4)° T = 298 K
V = 1042.44 (10) Å3 Prism, colorless
Z = 2 0.71 × 0.66 × 0.42 mm

Data collection

Stoe IPDS2 diffractometer 4294 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3326 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.035
rotation method scans θmax = 34.2°, θmin = 2.7°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −11→14
Tmin = 0.311, Tmax = 0.358 k = −17→18
12972 measured reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.5447P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max < 0.001
S = 1.14 Δρmax = 0.65 e Å3
4294 reflections Δρmin = −0.93 e Å3
126 parameters Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraints Extinction coefficient: 0.0276 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 1.0000 0.5000 0.5000 0.03804 (7)
Cl2 0.87600 (8) 0.32725 (6) 0.39099 (8) 0.05747 (17)
Cl3 1.12514 (8) 0.39362 (6) 0.70986 (7) 0.05588 (17)
Cl1 0.79125 (8) 0.53542 (7) 0.59310 (8) 0.06053 (18)
N2 0.3752 (3) 0.5613 (2) 0.1386 (4) 0.0803 (9)
N1 0.5438 (4) 0.4614 (4) 0.2679 (4) 0.0884 (10)
H1A 0.6204 0.4413 0.3351 0.106*
C2 0.4639 (4) 0.3926 (3) 0.1674 (5) 0.0778 (10)
H2 0.4800 0.3156 0.1572 0.093*
C3 0.3583 (4) 0.4548 (3) 0.0861 (4) 0.0718 (9)
H3 0.2849 0.4301 0.0065 0.086*
C1 0.4905 (5) 0.5607 (4) 0.2501 (5) 0.0895 (13)
H1 0.5276 0.6231 0.3073 0.107*
C6 0.0239 (5) 0.6629 (5) −0.0277 (6) 0.1064 (17)
H6A 0.0288 0.6570 −0.1207 0.128* 0.512 (9)
H6B −0.0676 0.6696 −0.0097 0.128* 0.512 (9)
C5A 0.1409 (7) 0.6617 (7) 0.0733 (9) 0.0645 (19) 0.488 (9)
H5A 0.1396 0.6674 0.1674 0.077* 0.488 (9)
C4A 0.2828 (8) 0.6505 (7) 0.0334 (13) 0.085 (3) 0.512 (9)
H4A1 0.3346 0.7226 0.0435 0.102* 0.512 (9)
H4A2 0.2635 0.6247 −0.0639 0.102* 0.512 (9)
C4B 0.2765 (9) 0.6630 (6) 0.1398 (10) 0.073 (2) 0.488 (9)
H4B1 0.2290 0.6558 0.2150 0.087* 0.488 (9)
H4B2 0.3340 0.7326 0.1543 0.087* 0.488 (9)
C5B 0.1662 (11) 0.6638 (8) 0.0018 (11) 0.086 (3) 0.512 (9)
H5B 0.2039 0.6651 −0.0761 0.103* 0.512 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.04007 (11) 0.03416 (10) 0.03755 (11) 0.00060 (9) 0.00730 (7) 0.00264 (8)
Cl2 0.0611 (4) 0.0399 (3) 0.0626 (4) −0.0058 (3) 0.0033 (3) −0.0064 (3)
Cl3 0.0597 (4) 0.0527 (3) 0.0467 (3) 0.0001 (3) 0.0015 (3) 0.0136 (3)
Cl1 0.0553 (4) 0.0704 (4) 0.0611 (4) 0.0057 (3) 0.0250 (3) −0.0003 (3)
N2 0.0484 (14) 0.0470 (14) 0.140 (3) −0.0018 (11) 0.0178 (16) 0.0098 (16)
N1 0.0568 (17) 0.107 (3) 0.090 (2) −0.0018 (19) 0.0023 (15) 0.016 (2)
C2 0.071 (2) 0.0554 (19) 0.111 (3) 0.0096 (17) 0.033 (2) 0.005 (2)
C3 0.069 (2) 0.067 (2) 0.071 (2) −0.0158 (17) 0.0064 (16) −0.0003 (17)
C1 0.066 (2) 0.086 (3) 0.117 (3) −0.024 (2) 0.027 (2) −0.038 (3)
C6 0.078 (3) 0.124 (4) 0.107 (3) −0.015 (3) 0.009 (2) 0.037 (3)
C5A 0.064 (4) 0.076 (4) 0.059 (4) 0.012 (3) 0.028 (3) 0.014 (3)
C4A 0.068 (4) 0.068 (4) 0.127 (9) 0.020 (3) 0.042 (5) 0.045 (5)
C4B 0.075 (5) 0.052 (4) 0.081 (6) 0.000 (3) 0.005 (4) 0.002 (3)
C5B 0.099 (7) 0.078 (5) 0.072 (5) 0.010 (5) 0.010 (5) 0.023 (4)

Geometric parameters (Å, º)

Sn1—Cl3 2.4131 (6) C3—H3 0.9300
Sn1—Cl3i 2.4131 (6) C1—H1 0.9300
Sn1—Cl1i 2.4247 (7) C6—C5A 1.253 (8)
Sn1—Cl1 2.4247 (7) C6—C5B 1.285 (10)
Sn1—Cl2 2.4363 (6) C6—H6A 0.9300
Sn1—Cl2i 2.4363 (6) C6—H6B 0.9300
N2—C1 1.303 (5) C5A—C4A 1.499 (9)
N2—C3 1.349 (5) C5A—H5A 0.9300
N2—C4B 1.517 (8) C4A—H4A1 0.9700
N2—C4A 1.554 (8) C4A—H4A2 0.9700
N1—C1 1.265 (6) C4B—C5B 1.453 (9)
N1—C2 1.331 (5) C4B—H4B1 0.9700
N1—H1A 0.8600 C4B—H4B2 0.9700
C2—C3 1.307 (5) C5B—H5B 0.9300
C2—H2 0.9300
Cl3—Sn1—Cl3i 180.0 C2—C3—H3 126.2
Cl3—Sn1—Cl1i 89.04 (3) N2—C3—H3 126.2
Cl3i—Sn1—Cl1i 90.96 (3) N1—C1—N2 108.8 (4)
Cl3—Sn1—Cl1 90.96 (3) N1—C1—H1 125.6
Cl3i—Sn1—Cl1 89.04 (3) N2—C1—H1 125.6
Cl1i—Sn1—Cl1 180.0 C5A—C6—H6A 120.0
Cl3—Sn1—Cl2 89.85 (2) C5A—C6—H6B 120.0
Cl3i—Sn1—Cl2 90.15 (2) H6A—C6—H6B 120.0
Cl1i—Sn1—Cl2 91.56 (3) C6—C5A—C4A 116.0 (7)
Cl1—Sn1—Cl2 88.44 (3) C6—C5A—H5A 122.0
Cl3—Sn1—Cl2i 90.15 (2) C4A—C5A—H5A 122.0
Cl3i—Sn1—Cl2i 89.85 (2) C5A—C4A—N2 104.8 (6)
Cl1i—Sn1—Cl2i 88.44 (3) C5A—C4A—H4A1 110.8
Cl1—Sn1—Cl2i 91.56 (3) N2—C4A—H4A1 110.8
Cl2—Sn1—Cl2i 180.0 C5A—C4A—H4A2 110.8
C1—N2—C3 107.2 (3) N2—C4A—H4A2 110.8
C1—N2—C4B 111.2 (4) H4A1—C4A—H4A2 108.9
C3—N2—C4B 137.0 (4) C5B—C4B—N2 105.8 (7)
C1—N2—C4A 137.4 (5) C5B—C4B—H4B1 110.6
C3—N2—C4A 113.1 (6) N2—C4B—H4B1 110.6
C1—N1—C2 110.1 (3) C5B—C4B—H4B2 110.6
C1—N1—H1A 124.9 N2—C4B—H4B2 110.6
C2—N1—H1A 124.9 H4B1—C4B—H4B2 108.7
C3—C2—N1 106.3 (3) C6—C5B—C4B 129.0 (10)
C3—C2—H2 126.8 C6—C5B—H5B 115.5
N1—C2—H2 126.8 C4B—C5B—H5B 115.5
C2—C3—N2 107.6 (3)
C1—N1—C2—C3 0.2 (5) C4A—N2—C1—N1 −160.5 (6)
N1—C2—C3—N2 −0.1 (5) C6—C5A—C4A—N2 −135.5 (8)
C1—N2—C3—C2 0.0 (5) C1—N2—C4A—C5A −106.0 (7)
C4B—N2—C3—C2 −152.5 (7) C3—N2—C4A—C5A 94.2 (8)
C4A—N2—C3—C2 165.9 (4) C1—N2—C4B—C5B 171.4 (6)
C2—N1—C1—N2 −0.1 (5) C3—N2—C4B—C5B −36.7 (11)
C3—N2—C1—N1 0.1 (5) N2—C4B—C5B—C6 124.1 (9)
C4B—N2—C1—N1 160.4 (5)

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl2 0.86 2.67 3.399 (4) 144
N1—H1A···Cl1 0.86 2.81 3.485 (4) 136
C2—H2···Cl3ii 0.93 2.79 3.672 (4) 158
C3—H3···Cl3iii 0.93 2.90 3.790 (4) 160
C4A—H4A1···Cl2iv 0.97 2.89 3.716 (9) 144
C4A—H4A1···Cl1v 0.97 2.94 3.743 (10) 141
C4B—H4B1···Cl1vi 0.97 2.98 3.702 (10) 133
C4B—H4B2···Cl1v 0.97 2.80 3.590 (7) 139
C5B—H5B···Cl2vii 0.93 2.97 3.766 (11) 145

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1, y, z−1; (iv) −x+3/2, y+1/2, −z+1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z.

References

  1. Babar, R., Munawar, M. A., Tahir, M. N. & Arif, M. (2019). Spectrochim. Acta Part A, 217, 223–236. [DOI] [PubMed]
  2. BelhajSalah, S., Abdelbaky, M. S. M., García-Granda, S., Essalah, K., Ben Nasr, C. & Mrad, M. L. (2018). Solid State Sci. 86, 77–85.
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Curtis, S. De A., Kurdziel, K., Materazzi, S. & Vecchio, S. (2008). J. Therm. Anal. Calorim. 92, 109–114.
  5. Ferjani, H. (2020). Crystals, 10, 397–411.
  6. Ferjani, H., Bechaieb, R., Abd El-Fattah, W. & Fettouhi, M. (2020). Spectrochim. Acta Part A, 161, 126–131. [DOI] [PubMed]
  7. Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356.
  8. Garci, F., Ferjani, H., Chebbi, H., Ben Jomaa, M. & Zid, M. F. (2019). Acta Cryst. E75, 1600–1606. [DOI] [PMC free article] [PubMed]
  9. Głowiak, T. & Kurdziel, K. (2000). J. Mol. Struct. 516, 1–5.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hajji, R., Fersi, M. A., Hajji, S., Hlel, F. & Ben Ahmed, A. (2019). Chem. Phys. Lett. 722, 160–172.
  12. Hajji, R., Oueslati, A., Hajlaoui, F., Bulou, A. & Hlel, F. (2016). Phase Transit. 89, 523–542.
  13. Hermi, S., Alotaibi, A. A., Lefebvre, F., Ben Nasr, C. & Mrad, M. H. (2020). J. Mol. Struct. 1216, 128296.
  14. Ishak, N. N. M., Jamsari, J., Ismail, A. Z., Tahir, M. I. M., Tiekink, E. R. T., Veerakumarasivam, A. & Ravoof, T. B. S. A. (2019). J. Mol. Struct. 1198, 126888.
  15. Kurdziel, K. T. & Głowiak, T. (1998). Pol. J. Chem. 72, 2181–2181.
  16. Kurdziel, K. T. & Głowiak, T. (2000). Polyhedron, 19, 2183–2188.
  17. Lassoued, M. S., Abdelbaky, M. S. M., Lassoued, A., Meroño, R. M., Ammar, S., Gadri, A., Ben Salah, A. & García-Granda, S. (2017). J. Mol. Struct. 1141, 660–667.
  18. Li, R.-X., Wu, Q.-Y. & Liu, F.-Q. (2010). Acta Cryst. E66, m258. [DOI] [PMC free article] [PubMed]
  19. Maalaoui, A., Olfa, B. S., Akriche, S. T., Al-Deyabd, S. S. & Rzaigui, M. (2012). Z. Naturforsch Teil B, 67, 1178–1184.
  20. Mathlouthi, M., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). Phase Transit. 90, 399–414.
  21. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  22. Megen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217. [DOI] [PMC free article] [PubMed]
  23. Parshina, L. N., Grishchenko, L. A., Smirnov, V. I., Borodina, T. N., Shakhmardanova, S. A., Tarasov, V. V., Apartsin, K. A., Kireeva, V. V. & Trofimov, B. A. (2019). Polyhedron, 161, 126–131.
  24. Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289–m292. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  28. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  29. Tritt-Goc, J., Lindner, Ł., Bielejewski, M., Markiewicz, E. & Pankiewicz, R. (2019). Carbohydr. Polym. 225, 115196. [DOI] [PubMed]
  30. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  32. Zhou, B. & Liu, H. (2012). Acta Cryst. E68, m782. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012177/vm2239sup1.cif

e-76-01624-sup1.cif (438.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012177/vm2239Isup3.hkl

e-76-01624-Isup3.hkl (342.2KB, hkl)

CCDC reference: 2021940

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES