Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 11;76(Pt 10):1629–1633. doi: 10.1107/S2056989020012268

A very short O—H⋯O hydrogen bond in the structure of clozapinium hydrogen bis­(3,5-di­nitro­benzoate)

Mohammed A E Shaibah a, Channappa N Kavitha b, Hemmige S Yathirajan a,*, Sabine Foro c, Christopher Glidewell d
PMCID: PMC7534239  PMID: 33117577

The title compound features a very short, but asymmetric, O—H⋯O hydrogen bond having an O⋯O distance of 2.452 (3) Å within the anion.

Keywords: clozapine, crystal structure, mol­ecular conformation, hydrogen bonding, very short hydrogen bonds, supra­molecular assembly

Abstract

In the title salt {systematic name: 4-[6-chloro-2,9-di­aza­tri­cyclo­[9.4.0.03,8]penta­deca-1(15),3(8),4,6,9,11,13-heptaen-10-yl]-1-methyl­piperazin-1-ium 3,5-di­nitro­benzoate–3,5-di­nitro­benzic acid (1/1)}, C18H20ClN4 +·C7H3N2O6 ·C7H4N2O6, there is a very short, asymmetric, O—H⋯O hydrogen bond [O⋯O = 2.453 (3) Å] within the anion. The oxygen atoms of one of the nitro groups of the anion are disordered over two sets of sites having occupancies of 0.56 (3) and 0.44 (3). The fused tricyclic portion of the cation adopts a butterfly conformation, with a dihedral angle of 45.59 (6)° between the planes of the two aryl rings. In the crystal, a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the component species into a three-dimensional framework. Comparisons are made with the structures of some related compounds.

Chemical context  

Clozapine, 8-chloro-11-(4-methyl­piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine, C18H19ClN4, is a well established medication for the treatment of schizophrenia, often preferred over other treatments because of the generally lower incidence of adverse side effects (Breier et al., 1994). The structure of the free base has been reported (Petcher & Weber, 1976; Fillers & Hawkinson, 1982), along with those of a few salts (Fillers & Hawkinson, 1982; Kaur et al., 2015). Among the latter is the 1:1 salt formed by the reaction of clozapine with an equimolar qu­antity of 3,5-di­nitro­benzoic acid in methanol followed by slow crystallization from di­methyl­sulfoxide solution, when a DMSO monosolvate of the 1:1 salt was obtained (Kaur et al., 2015).graphic file with name e-76-01629-scheme1.jpg

We have now found that repetition of this process but with the substitution of di­methyl­sulfoxide by a 1:1 mixture of chloro­form and methanol gives the solvent-free 1:2 acid salt chlozapinium hydrogen bis(3,5-di­nitro­benzoate), (I), whose structure we report here along with comparisons between the structure of (I) and those of both the solvated 1:1 salt, (II), (Kaur et al., 2015) and the 1:2 acid salt, (III), formed between 3,5-di­nitro­benzoic acid and the anti­psychotic agent chlorprothixene, 3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine (Shaibah et al., 2019).

Structural commentary  

Compound (I) is an acid salt, i.e., the asymmetric unit contains one C18H20ClN4 + clozapinium cation and one C14H7N4O12 hydrogen bis­(3,5-dinotrobenzoate) anion (Fig. 1). An alternative description is one cation, one 3,5-di­nitro­benzote anion and one neutral mol­ecule of 3,5-di­nitro­benzoic acid, i.e., C18H20ClN4 +·(C7H3N2O6)·(C7H4N2O6). The –CO2H and –CO2 groups in the anion are linked by a very short O22—H22A⋯O32 hydrogen bond (Table 1) (Speakman, 1972; Emsley, 1980; Gerlt et al., 1997) but, although it is nearly linear [169 (3)°], it is not symmetric as the two independent O—H distances are significantly different [O22—H22A = 1.11 (4); H22A⋯O32 = 1.35 (4) Å]. There is a similarly short O—H⋯O hydrogen bond in the corresponding species of the chlorprothixene salt (III) (Shaibah et al., 2019), where the O⋯O distance, 2.4197 (15) Å, is slightly shorter than that found here for (I), while the difference between the two independent O—H distances is about 50% higher in (III) as compared to (I). For (I) it is possible to select a compact asymmetric unit in which the components are linked by O—H⋯O and N—H⋯O hydrogen bonds (Table 1, Fig. 1). Within this asymmetric unit, there are also two fairly short C—H⋯O contacts. That involving atom C4 has a small C—H⋯O angle, and so it probably not structurally significant (Wood et al., 2009), while for that involving atom C13, the H⋯O distance is not significantly shorter that the sum of the van der Waals radii (Rowland & Taylor, 1996). These are both probably better regarded as adventitious contacts rather than as structurally significant hydrogen bonds.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level and hydrogen bonds (dashed lines) within the asymmetric unit.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O21 0.88 (3) 2.23 (3) 3.079 (3) 162 (3)
O22—H22A⋯O32 1.11 (4) 1.35 (4) 2.453 (3) 169 (3)
C4—H4⋯O21 0.93 2.48 3.280 (4) 144
C13—H13A⋯O34 0.97 2.60 3.539 (4) 164
N14—H14⋯O31i 1.00 (3) 1.70 (3) 2.689 (3) 169 (3)
C1—H1⋯O35ii 0.93 2.39 3.292 (13) 164
C7—H7⋯O36iii 0.93 2.34 3.242 (13) 163
C7—H7⋯O46iii 0.93 2.37 3.253 (14) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

One of the nitro groups of the anion, that attached to C35, is disordered over two sets of atomic sites, with occupancies of 0.56 (3) and 0.44 (3) for the oxygen atoms. The major and minor disorder components make dihedral angles with the adjacent aryl ring of 17.2 (8) and 19.4 (8)°, with a dihedral angle between their own planes of 36.5 (14)°, so that these components are rotated out of the plane of the aryl ring in opposite senses.

In the C18H20ClN4 + cation of (I), the fused tricyclic component adopts a butterfly conformation with a dihedral angle of 45.59 (6)° between the planes of the two outer aryl rings. The piperazine ring adopts a chair conformation, as indicated by the value of the ring-puckering angle θ = 176.0 (3)°, as calculated for the atom sequence N11/C12/C13/N14/C15/C16: for an idealized chair form this angle takes a value of either zero or 180° (Boeyens, 1978). The site of protonation is the methyl­ated atom N14 where the methyl substituent occupies the equatorial site (Fig. 1). The geometry at the other N atom in this ring, atom N11, is nearly planar: the sum of the C—N—C angles at N11 is 351.9°, as compared with 344.1° at N14, while the displacements of these N atoms from the planes of the adjacent three C atoms are 0.449 (3) Å for N14 and 0.236 (2) Å for N11.

Supra­molecular features  

Aggregates of the type defining the selected asymmetric unit (Fig. 1) are linked by a combination of one N—H⋯O, one O—H⋯O and two C—H⋯O hydrogen bonds (Table 1) to form a three-dimensional network: since both disorder components participate in similar hydrogen bonds, it is necessary to consider only the inter­actions involving the major component. The formation of the hydrogen-bonded network is readily analysed in terms of three simple sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000), in which the asymmetric unit aggregates are linked in different ways, each utilizing just one of the three inter-aggregate hydrogen bonds. The N14–H14⋯O31i (see Table 1 for symmetry codes) hydrogen bond links the aggregates into a Inline graphic(17) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 2). In the second sub-structure, the C1—H1⋯O35ii hydrogen bond links the aggregates into another Inline graphic(17) chain, this time running parallel to the [101] direction (Fig. 3). In the final sub-structure, the C7—H7⋯O36iii hydrogen bond links inversion-related pairs of aggregates into a cyclic centrosymmetric system characterized by an Inline graphic(34) motif (Fig. 4). The combination of the chains along [010] and [101] generates a complex sheet lying parallel to (10Inline graphic), and adjacent sheets are linked by the Inline graphic(34) motif, thereby generating a three-dimensional array.

Figure 2.

Figure 2

Part of the crystal structure of (I) showing the formation of a hydrogen-bonded Inline graphic(17) chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Figure 3.

Figure 3

Part of the crystal structure of (I) showing the formation of a hydrogen-bonded Inline graphic(17) chain running parallel to [101]. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

Figure 4.

Figure 4

Part of the crystal structure of (I) showing the formation of a hydrogen-bonded Inline graphic(34) ring. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

Database survey  

Here we briefly compare the salient features of the structure of compound (I), with those of some related structures. As noted above (Section 2), the O⋯O distances in the anion of the chloro­thixene salt (III) (Shaibah et al., 2019), is slightly shorter than that found here for compound (I). Although the O⋯O distances in (I) and (III) are very short, some even shorter distances have been reported, some below 2.40 Å. One of the simplest organic compounds to display such a short distance is the enol form, Me3C(OH)=C(CN)COCMe3, of the 1,3 diketone 4-cyano 2,2,6,6-tetra­methyl3,5-hepta­nedione, where the intra­molecular O—H⋯O hydrogen bond has an O⋯O distance of 2.3936 (15) Å (Belot et al., 2004), while the corresponding distances in some cyclic phosphate derivatives are reported to be as low as 2.368 (4) Å (Kumara Swamy et al., 2001).

The dihedral angles between the planes of the pendent aryl rings in the fused tricyclic portion of various clozapine derivatives show some curious variations. In the free base (Fillers & Hawkinson, 1982) this angle is 67.3° [unfortunately, the atomic coordinates retrieved from the CSD (Groom et al., 2016) have no s.u. values] and in the monohydrate (CSD refcode DEHBUP; the publication cited in the CSD could not be traced) and the methanol solvate (Verma et al., 2018), the corresponding angles are 63.4 and 56.1°, respectively. In the 1:1 salt formed with 3,5-di­nitro­benzoic acid (II), this angle is 62.21 (11)° (Kaur et al., 2015), fairly similar to the values of 60.97 (9) and 59.07 (16)° in the 1:1 salts formed with maleic and 2-hy­droxy­benzoic acids, respectively (Kaur et al., 2015). In the di(hydro­bomide) salt, the angle is 52.3° (Fillers & Hawkinson, 1982), while in the ethanol solvate of clozapine N-oxide, the corresponding angle is 56.2° (van der Peet et al., 2018). There are, at present, too few data for any pattern to be discernible in the variation of this dihedral angle.

The hydrogen-bonded supra­molecular assembly of compound (I) is three dimensional (Section 3, above), but in the solvated 1:1 salt (II), the hydrogen-bonded ion pairs are linked into chains by a π–π stacking inter­action (Kaur et al., 2015). There are no hydrogen bonds in the structure of clozapine itself (Fillers & Hawkinson, 1982), but in the monohydrate (DEHBUP), a combination of one N—H⋯O hydrogen bond and two O—H⋯N hydrogen bonds links the components into a chain of rings. In the methanol solvate of clozapine (Verma et al., 2018), the components are linked by an O—H⋯N hydrogen bond, but with no further aggregation. In the hydrogenmaleate and 2-hy­droxy­benzoate salts, multiple hydrogen bonds generate sheets and a three-dimensional supra­molecular network, respectively (Kaur et al., 2015), while in the di(hydro­bromide) salt, the ions are linked into chains by N—H⋯Br hydrogen bonds (Fillers & Hawkinson, 1982).

Synthesis and crystallization  

Clozapine (100 mg, 0.31 mmol) and 3,5-di­nitro­benzoic acid (66 mg, 0.31mmol) were dissolved in methanol (10 ml), and this mixture was then stirred at 333 K for a few minutes. The solution was permitted to cool to room temperature and the resulting crystals were then collected by filtration and dried over P2O5. Crystals of (I) suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at room temperature and in the presence of air, of a solution in the mixed solvents of chloro­form and methanol (initial composition 1:1, v/v); m.p. 494–497 K.

Refinement  

Crystal data, data collection and refinement details are summarized in Table 2. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with U iso(H) = 1.2U eq(C) or 1.5U eq(methyl C); the CH3 group was permitted to rotate but not to tilt. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) or 1.5U eq(O). For the minor disorder component, the N—O distances and the 1,3-non-bonded O⋯O distances were restrained to be the same of the corresponding distances in the major component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, a similarity restraint was applied to the disordered O-atom sites and for each of the disorder components, the C—NO2 fragment was restrained to be planar. Subject to these conditions, the refined disorder occupancies are 0.56 (3) and 0.44 (3).

Table 2. Experimental details.

Crystal data
Chemical formula C18H20ClN4 +·C7H3N2O6 ·C7H4N2O6
M r 751.07
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.4102 (6), 24.629 (2), 18.446 (1)
β (°) 98.478 (6)
V3) 3329.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.36 × 0.24 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.914, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 13700, 6870, 3811
R int 0.036
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.133, 1.04
No. of reflections 6870
No. of parameters 507
No. of restraints 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.20

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012268/hb7944sup1.cif

e-76-01629-sup1.cif (504.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012268/hb7944Isup2.hkl

e-76-01629-Isup2.hkl (546KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020012268/hb7944Isup3.cml

CCDC reference: 2027224

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Clozapine was a gift from R L Fine Chem, Bengaluru, Karnataka, India. MAES thanks the University of Mysore for research facilities.

supplementary crystallographic information

Crystal data

C18H20ClN4+·C7H3N2O6·C7H4N2O6 F(000) = 1552
Mr = 751.07 Dx = 1.498 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.4102 (6) Å Cell parameters from 7183 reflections
b = 24.629 (2) Å θ = 2.8–27.9°
c = 18.446 (1) Å µ = 0.19 mm1
β = 98.478 (6)° T = 296 K
V = 3329.7 (4) Å3 Needle, red
Z = 4 0.36 × 0.24 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur Sapphire CCD detector diffractometer 6870 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3811 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω scans θmax = 26.6°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→8
Tmin = 0.914, Tmax = 0.962 k = −18→30
13700 measured reflections l = −20→23

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: mixed
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.0626P] where P = (Fo2 + 2Fc2)/3
6870 reflections (Δ/σ)max < 0.001
507 parameters Δρmax = 0.16 e Å3
17 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3444 (4) 0.23128 (13) 0.08513 (15) 0.0519 (8)
H1 0.3445 0.1944 0.0957 0.062*
C2 0.2571 (4) 0.24929 (16) 0.01823 (17) 0.0659 (9)
H2 0.1993 0.2247 −0.0157 0.079*
C3 0.2559 (4) 0.30335 (16) 0.00210 (16) 0.0650 (9)
H3 0.2007 0.3155 −0.0436 0.078*
C4 0.3359 (4) 0.33980 (13) 0.05311 (15) 0.0525 (8)
H4 0.3326 0.3767 0.0421 0.063*
C4A 0.4220 (3) 0.32228 (11) 0.12132 (13) 0.0383 (6)
N5 0.5009 (3) 0.36063 (10) 0.17327 (12) 0.0437 (6)
H5 0.492 (4) 0.3941 (12) 0.1564 (15) 0.052*
C5A 0.4443 (3) 0.35994 (11) 0.24375 (13) 0.0374 (6)
C6 0.3781 (4) 0.40729 (12) 0.27020 (15) 0.0458 (7)
H6 0.3563 0.4371 0.2391 0.055*
C7 0.3434 (4) 0.41167 (13) 0.34144 (16) 0.0519 (8)
H7 0.3007 0.4440 0.3586 0.062*
C8 0.3733 (4) 0.36715 (13) 0.38635 (15) 0.0487 (7)
Cl8 0.34891 (13) 0.37265 (4) 0.47895 (4) 0.0768 (3)
C9 0.4298 (3) 0.31860 (12) 0.36041 (14) 0.0463 (7)
H9 0.4435 0.2884 0.3910 0.056*
C9A 0.4666 (3) 0.31418 (11) 0.28869 (14) 0.0379 (6)
N10 0.5458 (3) 0.26494 (9) 0.27155 (11) 0.0410 (5)
C11 0.5353 (3) 0.24542 (11) 0.20636 (14) 0.0396 (6)
C11A 0.4322 (3) 0.26698 (11) 0.13697 (13) 0.0391 (6)
N11 0.6093 (3) 0.19388 (9) 0.20017 (11) 0.0451 (6)
C12 0.6660 (4) 0.16212 (12) 0.26609 (15) 0.0524 (8)
H12A 0.6413 0.1241 0.2553 0.063*
H12B 0.5939 0.1729 0.3035 0.063*
C13 0.8645 (4) 0.16879 (12) 0.29558 (15) 0.0524 (8)
H13A 0.8889 0.2062 0.3105 0.063*
H13B 0.8964 0.1457 0.3382 0.063*
N14 0.9768 (3) 0.15369 (10) 0.23769 (13) 0.0472 (6)
H14 0.947 (4) 0.1154 (12) 0.2223 (14) 0.057*
C15 0.9216 (4) 0.18776 (12) 0.17106 (15) 0.0508 (7)
H15A 0.9913 0.1769 0.1329 0.061*
H15B 0.9492 0.2255 0.1828 0.061*
C16 0.7201 (4) 0.18191 (12) 0.14324 (15) 0.0471 (7)
H16A 0.6868 0.2064 0.1023 0.057*
H16B 0.6954 0.1451 0.1257 0.057*
C17 1.1766 (4) 0.15711 (16) 0.2639 (2) 0.0800 (11)
H17A 1.2074 0.1934 0.2803 0.120*
H17B 1.2425 0.1480 0.2245 0.120*
H17C 1.2086 0.1322 0.3037 0.120*
C21 0.2811 (4) 0.54057 (11) 0.01705 (14) 0.0419 (7)
C22 0.2657 (4) 0.59602 (12) 0.00575 (16) 0.0492 (7)
H22 0.3254 0.6201 0.0400 0.059*
C23 0.1607 (4) 0.61492 (13) −0.05705 (17) 0.0535 (8)
C24 0.0736 (4) 0.58098 (14) −0.11005 (17) 0.0572 (8)
H24 0.0046 0.5945 −0.1524 0.069*
C25 0.0928 (4) 0.52651 (13) −0.09794 (15) 0.0484 (7)
C26 0.1939 (4) 0.50581 (12) −0.03532 (15) 0.0456 (7)
H26 0.2033 0.4684 −0.0284 0.055*
C27 0.3916 (4) 0.51740 (13) 0.08452 (16) 0.0473 (7)
O21 0.3873 (3) 0.46873 (9) 0.09583 (11) 0.0678 (6)
O22 0.4857 (3) 0.55163 (8) 0.12759 (12) 0.0570 (6)
H22A 0.572 (5) 0.5330 (14) 0.1755 (19) 0.085*
N23 0.1434 (5) 0.67388 (13) −0.0680 (2) 0.0740 (9)
O23 0.2158 (4) 0.70360 (11) −0.0192 (2) 0.1043 (10)
O24 0.0524 (5) 0.68988 (11) −0.12377 (16) 0.1095 (10)
N25 −0.0005 (4) 0.48816 (15) −0.15269 (16) 0.0669 (8)
O25 0.0063 (4) 0.44003 (12) −0.13688 (13) 0.0836 (8)
O26 −0.0774 (3) 0.50674 (12) −0.21036 (14) 0.0935 (9)
C31 0.7597 (4) 0.47059 (12) 0.34692 (15) 0.0446 (7)
C32 0.8228 (4) 0.42264 (12) 0.32110 (15) 0.0463 (7)
H32 0.8254 0.4179 0.2713 0.056*
C33 0.8817 (4) 0.38203 (11) 0.37005 (15) 0.0447 (7)
C34 0.8818 (4) 0.38730 (12) 0.44445 (16) 0.0496 (7)
H34 0.9216 0.3594 0.4769 0.060*
C35 0.8204 (4) 0.43570 (12) 0.46830 (15) 0.0503 (7)
C36 0.7589 (4) 0.47737 (12) 0.42137 (15) 0.0505 (7)
H36 0.7173 0.5096 0.4394 0.061*
C37 0.6800 (4) 0.51417 (14) 0.29415 (17) 0.0507 (8)
O31 0.6202 (3) 0.55554 (9) 0.31888 (12) 0.0689 (6)
O32 0.6772 (3) 0.50299 (9) 0.22654 (12) 0.0653 (6)
N33 0.9440 (3) 0.33021 (11) 0.34261 (16) 0.0565 (7)
O33 0.9549 (3) 0.32681 (10) 0.27753 (13) 0.0774 (7)
O34 0.9802 (4) 0.29336 (9) 0.38628 (13) 0.0768 (7)
N35 0.8168 (5) 0.44262 (13) 0.54739 (15) 0.0740 (9) 0.44 (3)
O35 0.830 (4) 0.4023 (5) 0.5865 (10) 0.086 (5) 0.44 (3)
O36 0.816 (3) 0.4907 (3) 0.5686 (6) 0.078 (3) 0.44 (3)
N45 0.8168 (5) 0.44262 (13) 0.54739 (15) 0.0740 (9) 0.56 (3)
O45 0.900 (2) 0.4100 (6) 0.5902 (8) 0.084 (4) 0.56 (3)
O46 0.712 (3) 0.4787 (6) 0.5660 (5) 0.098 (4) 0.56 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0503 (18) 0.0489 (19) 0.0549 (18) 0.0007 (16) 0.0026 (14) −0.0084 (15)
C2 0.059 (2) 0.076 (3) 0.057 (2) 0.007 (2) −0.0099 (16) −0.0188 (19)
C3 0.064 (2) 0.084 (3) 0.0425 (17) 0.017 (2) −0.0079 (15) −0.0011 (18)
C4 0.0569 (19) 0.054 (2) 0.0453 (17) 0.0110 (17) 0.0035 (14) 0.0052 (15)
C4A 0.0344 (15) 0.0427 (17) 0.0383 (14) 0.0025 (13) 0.0067 (12) −0.0013 (13)
N5 0.0507 (14) 0.0357 (14) 0.0448 (13) −0.0013 (12) 0.0074 (11) 0.0039 (11)
C5A 0.0299 (14) 0.0396 (16) 0.0412 (15) −0.0018 (13) 0.0000 (11) −0.0033 (13)
C6 0.0411 (16) 0.0384 (17) 0.0571 (18) 0.0022 (14) 0.0049 (13) −0.0026 (14)
C7 0.0440 (17) 0.0478 (19) 0.064 (2) 0.0034 (16) 0.0089 (15) −0.0175 (16)
C8 0.0429 (17) 0.060 (2) 0.0429 (16) 0.0014 (16) 0.0059 (13) −0.0100 (15)
Cl8 0.0832 (6) 0.0991 (7) 0.0497 (5) 0.0122 (6) 0.0154 (4) −0.0144 (5)
C9 0.0409 (17) 0.0518 (19) 0.0443 (16) 0.0026 (15) 0.0006 (13) −0.0010 (14)
C9A 0.0333 (14) 0.0371 (16) 0.0411 (15) 0.0009 (13) −0.0021 (11) −0.0010 (12)
N10 0.0389 (13) 0.0390 (14) 0.0441 (13) 0.0087 (11) 0.0027 (10) −0.0006 (11)
C11 0.0351 (15) 0.0352 (16) 0.0489 (16) 0.0000 (13) 0.0069 (12) 0.0018 (13)
C11A 0.0324 (14) 0.0413 (17) 0.0430 (15) 0.0024 (13) 0.0031 (12) −0.0024 (13)
N11 0.0502 (14) 0.0387 (14) 0.0478 (13) 0.0101 (12) 0.0113 (11) 0.0044 (11)
C12 0.063 (2) 0.0390 (17) 0.0585 (18) 0.0109 (16) 0.0202 (15) 0.0089 (14)
C13 0.070 (2) 0.0381 (17) 0.0485 (17) 0.0090 (16) 0.0081 (15) −0.0001 (14)
N14 0.0435 (14) 0.0375 (14) 0.0601 (15) −0.0027 (12) 0.0058 (12) 0.0006 (12)
C15 0.0501 (18) 0.0459 (18) 0.0577 (18) 0.0016 (15) 0.0125 (14) 0.0069 (15)
C16 0.0513 (18) 0.0410 (17) 0.0497 (16) 0.0081 (15) 0.0095 (14) −0.0012 (13)
C17 0.047 (2) 0.085 (3) 0.102 (3) −0.011 (2) −0.0084 (18) 0.011 (2)
C21 0.0397 (16) 0.0394 (17) 0.0491 (16) 0.0045 (14) 0.0143 (13) 0.0086 (14)
C22 0.0489 (18) 0.0438 (18) 0.0572 (18) 0.0033 (15) 0.0155 (14) 0.0068 (15)
C23 0.0553 (19) 0.0463 (19) 0.063 (2) 0.0138 (16) 0.0242 (16) 0.0188 (16)
C24 0.0485 (18) 0.072 (2) 0.0536 (19) 0.0149 (18) 0.0167 (15) 0.0165 (18)
C25 0.0393 (16) 0.061 (2) 0.0470 (17) 0.0030 (16) 0.0125 (13) 0.0008 (15)
C26 0.0447 (16) 0.0402 (17) 0.0545 (17) 0.0030 (15) 0.0163 (14) 0.0049 (14)
C27 0.0453 (17) 0.0438 (19) 0.0538 (18) 0.0053 (16) 0.0106 (14) 0.0073 (15)
O21 0.0881 (17) 0.0404 (14) 0.0693 (14) −0.0031 (12) −0.0071 (12) 0.0128 (11)
O22 0.0648 (14) 0.0430 (13) 0.0590 (12) 0.0008 (11) −0.0045 (11) 0.0028 (11)
N23 0.081 (2) 0.055 (2) 0.093 (2) 0.0222 (19) 0.0367 (19) 0.0277 (19)
O23 0.105 (2) 0.0486 (17) 0.154 (3) 0.0056 (16) 0.002 (2) 0.0118 (18)
O24 0.162 (3) 0.081 (2) 0.0900 (19) 0.050 (2) 0.0330 (19) 0.0453 (16)
N25 0.0485 (16) 0.091 (3) 0.0623 (19) 0.0074 (18) 0.0129 (14) −0.0078 (19)
O25 0.094 (2) 0.080 (2) 0.0763 (17) −0.0145 (17) 0.0107 (14) −0.0151 (15)
O26 0.0714 (16) 0.134 (3) 0.0680 (16) 0.0246 (17) −0.0131 (13) −0.0087 (16)
C31 0.0415 (16) 0.0395 (18) 0.0516 (17) −0.0065 (14) 0.0034 (13) 0.0010 (14)
C32 0.0388 (15) 0.053 (2) 0.0468 (16) −0.0075 (15) 0.0045 (13) −0.0017 (15)
C33 0.0401 (16) 0.0412 (17) 0.0525 (17) −0.0044 (14) 0.0055 (13) −0.0082 (14)
C34 0.0549 (19) 0.0364 (17) 0.0552 (18) −0.0009 (15) 0.0003 (14) −0.0012 (14)
C35 0.062 (2) 0.0405 (18) 0.0459 (17) 0.0014 (16) 0.0009 (14) −0.0030 (14)
C36 0.0569 (19) 0.0342 (17) 0.0590 (19) 0.0008 (15) 0.0043 (15) −0.0028 (14)
C37 0.0404 (17) 0.050 (2) 0.061 (2) −0.0055 (16) 0.0050 (14) 0.0099 (16)
O31 0.0908 (18) 0.0440 (14) 0.0705 (14) 0.0092 (13) 0.0068 (12) 0.0120 (12)
O32 0.0626 (14) 0.0772 (17) 0.0547 (13) 0.0112 (13) 0.0042 (11) 0.0133 (12)
N33 0.0556 (17) 0.0492 (17) 0.0646 (18) −0.0003 (14) 0.0084 (14) −0.0133 (15)
O33 0.0948 (18) 0.0762 (17) 0.0617 (15) 0.0086 (14) 0.0136 (13) −0.0210 (13)
O34 0.106 (2) 0.0430 (14) 0.0829 (16) 0.0133 (14) 0.0195 (14) 0.0012 (13)
N35 0.116 (3) 0.0491 (19) 0.0548 (17) 0.018 (2) 0.0041 (17) −0.0039 (15)
O35 0.146 (15) 0.058 (5) 0.052 (5) 0.019 (7) 0.012 (7) 0.004 (4)
O36 0.116 (9) 0.047 (4) 0.069 (4) 0.013 (4) 0.009 (6) −0.017 (3)
N45 0.116 (3) 0.0491 (19) 0.0548 (17) 0.018 (2) 0.0041 (17) −0.0039 (15)
O45 0.122 (10) 0.067 (5) 0.056 (4) 0.025 (5) −0.009 (5) 0.006 (4)
O46 0.171 (10) 0.064 (5) 0.062 (3) 0.038 (7) 0.026 (6) −0.007 (3)

Geometric parameters (Å, º)

C1—C2 1.380 (4) C16—H16B 0.9700
C1—C11A 1.388 (4) C17—H17A 0.9600
C1—H1 0.9300 C17—H17B 0.9600
C2—C3 1.364 (5) C17—H17C 0.9600
C2—H2 0.9300 C21—C26 1.378 (4)
C3—C4 1.371 (4) C21—C22 1.384 (4)
C3—H3 0.9300 C21—C27 1.498 (4)
C4—C4A 1.393 (4) C22—C23 1.378 (4)
C4—H4 0.9300 C22—H22 0.9300
C4A—C11A 1.392 (4) C23—C24 1.373 (4)
C4A—N5 1.410 (3) C23—N23 1.469 (4)
N5—C5A 1.424 (3) C24—C25 1.364 (4)
N5—H5 0.88 (3) C24—H24 0.9300
C5A—C6 1.382 (4) C25—C26 1.379 (4)
C5A—C9A 1.394 (4) C25—N25 1.478 (4)
C6—C7 1.380 (4) C26—H26 0.9300
C6—H6 0.9300 C27—O21 1.218 (3)
C7—C8 1.372 (4) C27—O22 1.290 (3)
C7—H7 0.9300 O22—H22A 1.11 (4)
C8—C9 1.376 (4) N23—O24 1.210 (4)
C8—Cl8 1.749 (3) N23—O23 1.221 (4)
C9—C9A 1.394 (4) N25—O26 1.220 (3)
C9—H9 0.9300 N25—O25 1.220 (4)
C9A—N10 1.404 (3) C31—C32 1.380 (4)
N10—C11 1.287 (3) C31—C36 1.384 (4)
C11—N11 1.394 (3) C31—C37 1.510 (4)
C11—C11A 1.489 (4) C32—C33 1.375 (4)
N11—C12 1.455 (3) C32—H32 0.9300
N11—C16 1.455 (3) C33—C34 1.378 (4)
C12—C13 1.500 (4) C33—N33 1.472 (4)
C12—H12A 0.9700 C34—C35 1.372 (4)
C12—H12B 0.9700 C34—H34 0.9300
C13—N14 1.494 (3) C35—C36 1.376 (4)
C13—H13A 0.9700 C35—N35 1.473 (4)
C13—H13B 0.9700 C36—H36 0.9300
N14—C17 1.490 (4) C37—O31 1.226 (4)
N14—C15 1.495 (3) C37—O32 1.274 (3)
N14—H14 1.00 (3) O32—H22A 1.35 (4)
C15—C16 1.512 (4) N33—O34 1.217 (3)
C15—H15A 0.9700 N33—O33 1.218 (3)
C15—H15B 0.9700 N35—O35 1.224 (8)
C16—H16A 0.9700 N35—O36 1.249 (6)
C2—C1—C11A 121.5 (3) H15A—C15—H15B 108.0
C2—C1—H1 119.2 N11—C16—C15 111.7 (2)
C11A—C1—H1 119.2 N11—C16—H16A 109.3
C3—C2—C1 119.8 (3) C15—C16—H16A 109.3
C3—C2—H2 120.1 N11—C16—H16B 109.3
C1—C2—H2 120.1 C15—C16—H16B 109.3
C2—C3—C4 120.1 (3) H16A—C16—H16B 107.9
C2—C3—H3 120.0 N14—C17—H17A 109.5
C4—C3—H3 120.0 N14—C17—H17B 109.5
C3—C4—C4A 120.8 (3) H17A—C17—H17B 109.5
C3—C4—H4 119.6 N14—C17—H17C 109.5
C4A—C4—H4 119.6 H17A—C17—H17C 109.5
C11A—C4A—C4 119.6 (3) H17B—C17—H17C 109.5
C11A—C4A—N5 120.7 (2) C26—C21—C22 119.2 (3)
C4—C4A—N5 119.7 (3) C26—C21—C27 119.2 (3)
C4A—N5—C5A 117.7 (2) C22—C21—C27 121.6 (3)
C4A—N5—H5 112.6 (18) C23—C22—C21 118.9 (3)
C5A—N5—H5 108.5 (18) C23—C22—H22 120.5
C6—C5A—C9A 119.3 (2) C21—C22—H22 120.5
C6—C5A—N5 118.7 (2) C24—C23—C22 122.7 (3)
C9A—C5A—N5 121.8 (2) C24—C23—N23 118.8 (3)
C7—C6—C5A 121.9 (3) C22—C23—N23 118.5 (3)
C7—C6—H6 119.1 C25—C24—C23 117.1 (3)
C5A—C6—H6 119.1 C25—C24—H24 121.4
C8—C7—C6 118.4 (3) C23—C24—H24 121.4
C8—C7—H7 120.8 C24—C25—C26 122.1 (3)
C6—C7—H7 120.8 C24—C25—N25 119.3 (3)
C7—C8—C9 121.0 (3) C26—C25—N25 118.5 (3)
C7—C8—Cl8 119.8 (2) C21—C26—C25 119.9 (3)
C9—C8—Cl8 119.2 (2) C21—C26—H26 120.1
C8—C9—C9A 120.7 (3) C25—C26—H26 120.1
C8—C9—H9 119.7 O21—C27—O22 124.3 (3)
C9A—C9—H9 119.7 O21—C27—C21 119.5 (3)
C9—C9A—C5A 118.6 (3) O22—C27—C21 116.2 (3)
C9—C9A—N10 115.3 (2) C27—O22—H22A 114.6 (17)
C5A—C9A—N10 125.5 (2) O24—N23—O23 124.1 (3)
C11—N10—C9A 124.3 (2) O24—N23—C23 117.7 (4)
N10—C11—N11 116.5 (2) O23—N23—C23 118.1 (3)
N10—C11—C11A 128.5 (2) O26—N25—O25 124.8 (3)
N11—C11—C11A 114.4 (2) O26—N25—C25 117.9 (3)
C1—C11A—C4A 118.1 (2) O25—N25—C25 117.3 (3)
C1—C11A—C11 119.7 (3) C32—C31—C36 119.8 (3)
C4A—C11A—C11 122.2 (2) C32—C31—C37 120.4 (3)
C11—N11—C12 119.3 (2) C36—C31—C37 119.7 (3)
C11—N11—C16 120.9 (2) C33—C32—C31 119.1 (3)
C12—N11—C16 111.7 (2) C33—C32—H32 120.4
N11—C12—C13 113.0 (2) C31—C32—H32 120.4
N11—C12—H12A 109.0 C32—C33—C34 122.6 (3)
C13—C12—H12A 109.0 C32—C33—N33 119.4 (3)
N11—C12—H12B 109.0 C34—C33—N33 118.0 (3)
C13—C12—H12B 109.0 C35—C34—C33 116.7 (3)
H12A—C12—H12B 107.8 C35—C34—H34 121.6
N14—C13—C12 109.5 (2) C33—C34—H34 121.6
N14—C13—H13A 109.8 C34—C35—C36 122.8 (3)
C12—C13—H13A 109.8 C34—C35—N35 118.3 (3)
N14—C13—H13B 109.8 C36—C35—N35 119.0 (3)
C12—C13—H13B 109.8 C35—C36—C31 119.0 (3)
H13A—C13—H13B 108.2 C35—C36—H36 120.5
C17—N14—C13 112.7 (2) C31—C36—H36 120.5
C17—N14—C15 111.9 (2) O31—C37—O32 126.1 (3)
C13—N14—C15 109.5 (2) O31—C37—C31 118.7 (3)
C17—N14—H14 108.2 (16) O32—C37—C31 115.2 (3)
C13—N14—H14 108.3 (16) C37—O32—H22A 119.2 (14)
C15—N14—H14 105.9 (15) O34—N33—O33 124.1 (3)
N14—C15—C16 111.3 (2) O34—N33—C33 118.0 (3)
N14—C15—H15A 109.4 O33—N33—C33 117.9 (3)
C16—C15—H15A 109.4 O35—N35—O36 126.1 (11)
N14—C15—H15B 109.4 O35—N35—C35 118.6 (11)
C16—C15—H15B 109.4 O36—N35—C35 115.0 (7)
C11A—C1—C2—C3 −0.1 (5) N14—C15—C16—N11 54.9 (3)
C1—C2—C3—C4 −2.2 (5) C26—C21—C22—C23 1.2 (4)
C2—C3—C4—C4A 1.1 (5) C27—C21—C22—C23 −179.4 (2)
C3—C4—C4A—C11A 2.1 (4) C21—C22—C23—C24 −1.6 (4)
C3—C4—C4A—N5 −179.0 (3) C21—C22—C23—N23 179.2 (2)
C11A—C4A—N5—C5A −56.2 (3) C22—C23—C24—C25 0.8 (4)
C4—C4A—N5—C5A 125.0 (3) N23—C23—C24—C25 −179.9 (3)
C4A—N5—C5A—C6 −125.3 (3) C23—C24—C25—C26 0.3 (4)
C4A—N5—C5A—C9A 59.5 (3) C23—C24—C25—N25 179.0 (2)
C9A—C5A—C6—C7 3.9 (4) C22—C21—C26—C25 −0.1 (4)
N5—C5A—C6—C7 −171.3 (2) C27—C21—C26—C25 −179.6 (2)
C5A—C6—C7—C8 −1.0 (4) C24—C25—C26—C21 −0.7 (4)
C6—C7—C8—C9 −2.5 (4) N25—C25—C26—C21 −179.4 (2)
C6—C7—C8—Cl8 174.8 (2) C26—C21—C27—O21 −7.7 (4)
C7—C8—C9—C9A 3.2 (4) C22—C21—C27—O21 172.9 (3)
Cl8—C8—C9—C9A −174.1 (2) C26—C21—C27—O22 172.8 (2)
C8—C9—C9A—C5A −0.3 (4) C22—C21—C27—O22 −6.7 (4)
C8—C9—C9A—N10 172.0 (2) C24—C23—N23—O24 −0.1 (4)
C6—C5A—C9A—C9 −3.2 (4) C22—C23—N23—O24 179.2 (3)
N5—C5A—C9A—C9 171.9 (2) C24—C23—N23—O23 177.3 (3)
C6—C5A—C9A—N10 −174.5 (2) C22—C23—N23—O23 −3.4 (4)
N5—C5A—C9A—N10 0.6 (4) C24—C25—N25—O26 6.9 (4)
C9—C9A—N10—C11 155.9 (2) C26—C25—N25—O26 −174.3 (3)
C5A—C9A—N10—C11 −32.5 (4) C24—C25—N25—O25 −173.5 (3)
C9A—N10—C11—N11 −174.9 (2) C26—C25—N25—O25 5.3 (4)
C9A—N10—C11—C11A −4.2 (4) C36—C31—C32—C33 0.8 (4)
C2—C1—C11A—C4A 3.3 (4) C37—C31—C32—C33 −175.0 (2)
C2—C1—C11A—C11 −175.9 (3) C31—C32—C33—C34 −0.5 (4)
C4—C4A—C11A—C1 −4.2 (4) C31—C32—C33—N33 178.2 (2)
N5—C4A—C11A—C1 176.9 (2) C32—C33—C34—C35 −0.3 (4)
C4—C4A—C11A—C11 174.9 (2) N33—C33—C34—C35 −179.0 (3)
N5—C4A—C11A—C11 −3.9 (4) C33—C34—C35—C36 0.8 (5)
N10—C11—C11A—C1 −141.2 (3) C33—C34—C35—N35 179.4 (3)
N11—C11—C11A—C1 29.6 (3) C34—C35—C36—C31 −0.4 (5)
N10—C11—C11A—C4A 39.7 (4) N35—C35—C36—C31 −179.1 (3)
N11—C11—C11A—C4A −149.5 (2) C32—C31—C36—C35 −0.4 (4)
N10—C11—N11—C12 9.7 (4) C37—C31—C36—C35 175.5 (3)
C11A—C11—N11—C12 −162.3 (2) C32—C31—C37—O31 177.8 (3)
N10—C11—N11—C16 −136.6 (3) C36—C31—C37—O31 1.9 (4)
C11A—C11—N11—C16 51.4 (3) C32—C31—C37—O32 −0.2 (4)
C11—N11—C12—C13 −94.0 (3) C36—C31—C37—O32 −176.1 (3)
C16—N11—C12—C13 55.2 (3) C32—C33—N33—O34 −173.7 (3)
N11—C12—C13—N14 −57.1 (3) C34—C33—N33—O34 5.0 (4)
C12—C13—N14—C17 −177.7 (3) C32—C33—N33—O33 5.9 (4)
C12—C13—N14—C15 57.1 (3) C34—C33—N33—O33 −175.4 (3)
C17—N14—C15—C16 177.5 (3) C34—C35—N35—O35 −15.5 (15)
C13—N14—C15—C16 −56.8 (3) C36—C35—N35—O35 163.2 (15)
C11—N11—C16—C15 95.5 (3) C34—C35—N35—O36 158.5 (11)
C12—N11—C16—C15 −53.1 (3) C36—C35—N35—O36 −22.8 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5···O21 0.88 (3) 2.23 (3) 3.079 (3) 162 (3)
O22—H22A···O32 1.11 (4) 1.35 (4) 2.453 (3) 169 (3)
C4—H4···O21 0.93 2.48 3.280 (4) 144
C13—H13A···O34 0.97 2.60 3.539 (4) 164
N14—H14···O31i 1.00 (3) 1.70 (3) 2.689 (3) 169 (3)
C1—H1···O35ii 0.93 2.39 3.292 (13) 164
C7—H7···O36iii 0.93 2.34 3.242 (13) 163
C7—H7···O46iii 0.93 2.37 3.253 (14) 159

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by University Grants Commission grant .

References

  1. Belot, J. A., Clark, J., Cowan, J. A., Harbison, G. S., Kolesnikov, A. I., Kye, Y.-S., Schultz, A. J., Silvernail, C. & Zhao, X. (2004). J. Phys. Chem. B, 108, 6922–6926.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  4. Breier, A., Buchanan, R. W., Kirkpatrick, B., David, O. R., Irish, D., Summerfelt, A. & Carpenter, J. W. Jr (1994). Am. J. Psychiatry, 151, 20–26. [DOI] [PubMed]
  5. Emsley, J. (1980). Chem. Soc. Rev. 9, 91–124.
  6. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  10. Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750–1753.
  11. Gerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. (1997). Chem. Biol. 4, 259–267. [DOI] [PubMed]
  12. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406–413. [DOI] [PMC free article] [PubMed]
  15. Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649. [DOI] [PubMed]
  16. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  17. Peet, P. L. van der, Gunawan, C., Abdul-Rida, A., Ma, S., Scott, D. J., Gundlach, A. L., Bathgate, R. A. D., White, J. M. & Williams, S. J. (2018). MethodsX, 5, 257–267. [DOI] [PMC free article] [PubMed]
  18. Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.
  19. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  20. Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292–298. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Speakman, J. C. (1972). Struct. Bond. 12, 141–199.
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Verma, V., Bannigan, P., Lusi, M., Crowley, C. M., Hudson, S., Hodnett, B. K. & Davern, P. (2018). CrystEngComm, 20, 4370–4382.
  26. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012268/hb7944sup1.cif

e-76-01629-sup1.cif (504.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012268/hb7944Isup2.hkl

e-76-01629-Isup2.hkl (546KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020012268/hb7944Isup3.cml

CCDC reference: 2027224

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES