Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 18;76(Pt 10):1653–1656. doi: 10.1107/S2056989020012438

Crystal structure of 6-azido-6-de­oxy-1,2-O-iso­propyl­idene-α-d-gluco­furan­ose

Adam Wood a,b, Paul V Bernhardt c, Ian van Altena a, Michela I Simone a,b,*
PMCID: PMC7534240  PMID: 33117583

Short syntheses to high Fsp 3 index natural-product analogues such as imino­sugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. In this case only an iso­propyl­idene group was employed towards the synthesis of seven-membered ring imino­sugars.

Keywords: crystal structure, imino­sugar, d-glucose, tosyl­ation, azide, regioselectivity, glycosidase inhibition

Abstract

Short syntheses to high Fsp 3 index natural-product analogues such as imino­sugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. An iso­propyl­idene group was employed towards the synthesis of seven-membered ring imino­sugars and the title compound, C9H15N3O5, was crystallized as an inter­mediate, in which the THF ring is twisted and the dioxolane ring adopts an envelope conformation: the dihedral angle between the rings is 67.50 (13)°. In the crystal, the hydroxyl groups participate in O—H⋯(O,O) and O—H⋯N hydrogen-bonding inter­actions, which generate chains of mol­ecules propagating parallel to the a-axis direction. There is a notable non-classical C—H⋯O hydrogen bond, which cross-links the [100] chains into (001) sheets.

Chemical context  

The installation of various functionalities via N- and/or O-alkyl­ation has been shown to impart improved biological profiles and potencies to imino­sugars (Šesták et al., 2018; Prichard et al., 2018; Simone et al., 2012; Sayce et al., 2016, Woodhouse et al., 2008; Johnson & Houston, 2002). Diminishing the number of synthetic steps to the imino­sugar building blocks that are precursors to their alkyl­ated con­geners is advantageous. Many imino­sugar syntheses start from monosaccharide starting materials (Wood et al., 2018; Lee et al., 2012; Rasmussen & Jensen, 2011). Reducing the number of protecting groups and removing the need for purification by chromatography are useful strategies to a more expedited synthesis of analogues (Katritzky et al., 1991; Steiner et al., 2009; Liu et al., 2014).graphic file with name e-76-01653-scheme1.jpg

In the present study, the only protecting group that was used to synthesize seven-membered ring imino­sugars was an iso­propyl­idene group (acetonide) to make inter­mediate 1 from d-glucose. Selective tosyl­ation of the primary hydroxyl group, followed by nucleophilic displacement with sodium azide afforded the title compound 3, C9H15N3O5 (Tsuchiya et al., 1981; Fleet et al., 1989), see Scheme 1 .

Primary alcohols can be tosyl­ated regioselectively over secondary alcohols (Johnson et al., 1963). There are examples of mono­tosyl­ation of monosaccharides and analogues using di-n-butyl­tin oxide and di­methyl­amino­pyridine as catalyst (Tsuda et al., 1991) and of cyclo­dextrins (Yamamura & Fujita, 1991; Ashton et al., 1991; Fujita et al., 1992). Any mechanistic ambiguities that may have arisen from the SN2 reaction with azide ions was clarified by X-ray crystallographic analysis, which confirmed the structure of the title compound as described below.

Structural commentary  

In compound 3 (Fig. 1), the tetra­hydro­furan (THF) ring is best described as twisted with atoms C3 and C4 displaced by 0.169 (3) and −0.384 (2) Å, respectively, from the plane through C5/C6/O1. The fused dioxolane ring adopts an envelope conformation with O3 displaced by 0.402 (2) Å from the mean plane of the other ring atoms (C5/C6/O4/C7; r.m.s. deviation = 0.005 Å). The dihedral angle between the five-membered rings (all atoms) is 67.50 (13)°. The hydroxyl group O2—H2A and the acetonide oxygen atom O3 project axially from the THF ring, lying respectively above and below in a trans arrangement from one another [O2—C4—C5—O3 = 164.46 (18)°]. The other two groups projecting from the THF ring are O4 of the acetonide and the side chain attached to C3, which sit equatorially. The absolute structure of 3 was not definitively established in the refinement but the configurations of the stereogenic atoms (C2 R, C3 R, C4 S, C5 R and C6 R) were set to match those of the starting material.

Figure 1.

Figure 1

The mol­ecular structure of 3 showing 50% displacement ellipsoids.

Supra­molecular features  

There are no intra­molecular hydrogen-bonding inter­actions in 3 but both hydroxyl groups participate in inter­molecular hydrogen-bonding inter­actions (Table 1, Fig. 2), which generate chains propagating parallel to the a-axis direction. The O5 hydroxyl group donates a hydrogen bond to the proximal azide N atom [O5—H5A⋯N1i; H⋯N = 2.12 Å; O—H⋯N = 157°; symmetry code: (i) x − 1, y, z]. The other group (O2) is involved in an asymmetric, bifurcated hydrogen-bond to the THF ring O atom (O2—H2A⋯O1i; 2.09 Å; 154°) and a weaker contact with one of the dioxolane O-atoms (O2—H2A⋯O4i; 2.71 Å; 150°). There is a notable non-classical hydrogen-bond [C6—H6⋯O5ii; 2.38 Å; 159°; symmetry code: (ii) −x, y − Inline graphic, −z + 2], which cross-links the [100] chains into (001) sheets.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 2.09 2.871 (2) 154
O2—H2A⋯O4i 0.84 2.71 3.462 (2) 150
O5—H5A⋯N1i 0.84 2.12 2.910 (3) 157
C6—H6⋯O5ii 1.00 2.38 3.332 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Partial packing diagram for 3 showing hydrogen bonds as dashed lines.

Database survey  

The most closely related crystal structure in the literature is 4 (Fig. 3), the 4-cyclo­propyl-1,2,3-triazole derivative of compound 3 [Zhang et al., 2013, Cambridge Structural Database (Groom et al., 2016) refcode NINQOS] synthesized from a copper-catalysed azide–alkyne cyclo­addition of the tribenzyl ether analogue of 3 followed by deprotection with NH3/NaOH (Pradere et al., 2008). Conversion of the azide to a triazole removes the hydrogen-bonding capability of the proximal N atom and the packing in this structure is distinctly different with a hydrogen-bonded network being present. Other points of difference in structure 4 relative to 3 include the free hydroxyl group on the THF ring, which adopts an axial conformation, and the dioxolane ring methyl groups tilted closer to the THF ring.

Figure 3.

Figure 3

Structure of 4 (see text).

Other examples of crystal structures of α-d-gluco­furan­ose derivatives constrained by a 1,2-O-iso­propyl­idene or analog­ous protecting group include: 3-O-ethyl-3-C-nitro­methyl-1,2;5,6-di-O-iso­propyl­idene-α-d-gluco­furan­ose (Ivanovs et al., 2016; QENNEF) and 3-O-benzyl-1,2-O-iso­propyl­idene-5-O-methane­sulfonyl-6-O-triphenyl-methyl-α-d-gluco­furan­ose and its azide displacement product (Clarke et al., 2018; QIBFUF). A general observation is that groups departing from O-3 take up axial or quasi-axial orientations relative to the THF ring in all cases examined and as is the case for the 3-O-ethyl group in QENNEF and the benzyl groups in QIBFUF and (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-iso­propyl­idene-β-l-threo­furanos-4-C-yl]-oxazolidin-2-one (Steiner et al., 2009) and the tosyl­ate group in 1,2:5,6-di-O-iso­propyl­idene-3-O-toluene­sulfonyl-α-d-gluco­furan­ose (Mamat et al., 2012). The impact of perfluorination on the conformation of monosaccharide derivatives was probed on (R/S)-N-benzyl-N-(5-de­oxy-1,2-O-iso­propyl­idene-3-O-methyl-α-d-xylo­furanos-5-yl)-2,3,3,3-tetra­fluoro­propanamide and analogous com­pounds (Bilska-Markowska et al., 2017). The crystal structures of α-d-gluco­furan­ose-1,2:3,5-bis­(phen­yl)boronate and α-d-gluco­furan­ose-1,2:3,5-bis(p-tol­yl)boronate highlight modulation in structures according to a temperature gradient (Chandran & Nangia, 2006). The structure of chloro­(cyclo­penta­dien­yl)bis­(1,2:5,6-di-O-iso­propyl­idene-α-d-gluco­furan­os-3-O-yl)titanate provides insight into the use of monosaccharides as ligands in complexes. The titanium atom is bonded to two monosaccharide OH-3, in axial positions, a cyclo­penta­dienyl and a chloride ligand, to take up a three-legged piano stool arrangement (Riediker et al., 1989). The unit cell of (R)-3-de­oxy-1,2:5,6-di-O-iso­propyl­idene-α-d-glu­co­furanos-3-yl-tert-butane­sulfinate contains four symmetry-independent mol­ecules with the tert-butyl and glucose moieties turned away from each other in order to minimize steric repulsion (Chelouan et al., 2018).

Synthesis and crystallization  

1,2- O -Iso­propyl­idene-6- O - p -toluene­sulfonyl-α-d-gluco­furan­ose, 2:

A solution of freshly recrystallized tosyl chloride (0.479 g, 2.55 mmol) in DCM (1.6 ml) was added dropwise over 20 min to a stirring solution of 1,2-O-iso­propyl­idene-α-d-gluco­furan­ose 1 (0.513 g, 2.32 mmol) in pyridine (3.8 ml) and DCM (4.2 ml), under an atmosphere of nitro­gen. The reaction was stirred at room temperature for 48 h. TLC analysis (EtOAc/cyclo­hexane 2:3) revealed the formation of one product (R f = 0.45). After adding DCM (10 ml), the reaction mixture was washed with 1 M HCl (1 ml). The DCM layer was dried to give 1,2-O-iso­propyl­idene-6-O-p-toluene­sulfonyl-α-d-gluco­furan­ose 2 (0.282 g, 32%) as an off-white crystalline solid. δH (CDCl3, 400 MHz) 7.79 (2H, d, J = 8.3 Hz, 2 Ar-H), 7.35 (2H, d, J = 8.1 Hz, 2 Ar-H), 5.88 (1H, d, J = 3.6 Hz, H-1), 4.50 (1H, d, J = 3.6 Hz, H-2), 4.36 (1H, d, J = 2.7 Hz, H-3), 4.29 (1H, dd, J = 10.2, 2.5 Hz, H-6), 4.19 (1H, td, J = 7.7, 2.5 Hz, H-5), 4.11 (1H, dd, J = 10.2, 6.8 Hz, H-6′), 4.01 (1H, dd, J = 7.7, 2.7 Hz, H-4), 2.45 (3H, s, Ar—CH3), 1.45, 1.29 (6H, 2 s, 2 acetonide CH3). δC (acetone-d 6, 100 MHz): 145.2 (ArCq—S), 132.3 (ArCq—CH3), 130.0 (2 ArC), 128.0 (2 ArC), 111.9 (Cq acetonide), 105.1 (C-1), 85.0 (C-2), 79.4 (C-4), 75.0 (C-3), 72.1 (C-6), 68.0 (C-5), 26.8 (acetonide CH3), 26.2 (acetonide CH3), 21.7 (Ar—CH3); νmax (cm−1): 3426, 3322, 2979, 2928, 1378, 1215, 1162, 1058, 1037, 1007, 962, 883, 850, 673, 657, 626.

6-Azido-6-de­oxy-1,2- O -iso­propyl­idene-α-d-gluco­furan­ose, 3:

Sodium azide (0.290 g, 4.46 mmol) was added to a stirring solution of 2 (1.668 g, 4.45 mmol) in DMF (18 ml) at room temperature. The reaction mixture was then heated to 358 K for 42 h. TLC analysis (EtOAc/cyclo­hexane 2:3) revealed complete consumption of the starting material (R f = 0.45) and the formation of one product (R f = 0.30). The crude product was dried and successively dissolved in 1,4-dioxane with addition of hexane to yield an off-white precipitate, which was filtered off. The remaining filtrate contained 6-azido-6-de­oxy-1,2-O-iso­propyl­idene-α-d-gluco­furan­ose, 3. Crystallization was achieved overnight at 248 K, after dissolution in diethyl ether with addition of hexane. The ether–hexane solution was recrystallized to obtain 2nd and 3rd crops of product to yield a combined 0.319 g (29%) of product 3 as a white crystalline solid. δH (CDCl3, 400 MHz): 5.95 (1H, d, J = 3.7 Hz, H-1), 4.53 (1H, d, J = 3.6 Hz, H-2), 4.37 (1H, d, J = 2.8 Hz, H-3), 4.16 (1H, td, J = 6.6, 3.6 Hz, H-5), 4.05 (1H, dd, J = 6.6, 2.8 Hz, H-4), 3.61 (1H, dd, J = 12.7, 3.5 Hz, H-6), 3.55 (1H, dd, J = 12.7, 6.5 Hz, H-6′), 1.49, 1.32 (6H, 2 s, 2 acetonide CH3). νmax (cm−1): 3442, 2992, 2938, 2109, 1385, 1376, 1215, 1164, 1066, 1048, 1008, 955, 881, 854, 788, 674.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (O—H = 0.84, C—H = 0.98–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(O,C) or 1.5U eq(C-methyl).

Table 2. Experimental details.

Crystal data
Chemical formula C9H15N3O5
M r 245.24
Crystal system, space group Monoclinic, P21
Temperature (K) 190
a, b, c (Å) 5.7615 (4), 9.7752 (8), 10.6833 (9)
β (°) 101.255 (8)
V3) 590.11 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.97
Crystal size (mm) 0.40 × 0.30 × 0.02
 
Data collection
Diffractometer Rigaku Xcalibur, EosS2, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2015)
T min, T max 0.741, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 3705, 1788, 1674
R int 0.044
θmax (°) 61.5
(sin θ/λ)max−1) 0.570
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.086, 1.08
No. of reflections 1788
No. of parameters 156
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.15
Absolute structure Flack (1983)
Absolute structure parameter −0.4 (3)

Computer programs: CrysAlis PRO (Rigaku, 2015), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012438/hb7940sup1.cif

e-76-01653-sup1.cif (141.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012438/hb7940Isup2.hkl

e-76-01653-Isup2.hkl (98.5KB, hkl)

CCDC reference: 1968033

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C9H15N3O5 F(000) = 260
Mr = 245.24 Dx = 1.38 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2yb Cell parameters from 1783 reflections
a = 5.7615 (4) Å θ = 6.2–60.6°
b = 9.7752 (8) Å µ = 0.97 mm1
c = 10.6833 (9) Å T = 190 K
β = 101.255 (8)° Plate, colourless
V = 590.11 (8) Å3 0.40 × 0.30 × 0.02 mm
Z = 2

Data collection

Rigaku Xcalibur, EosS2, Gemini ultra diffractometer 1788 independent reflections
Radiation source: fine-focus sealed X-ray tube 1674 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 8.0217 pixels mm-1 θmax = 61.5°, θmin = 4.2°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlisPro; Rigaku, 2015) k = −11→10
Tmin = 0.741, Tmax = 1 l = −12→12
3705 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.0212P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1788 reflections Δρmax = 0.13 e Å3
156 parameters Δρmin = −0.14 e Å3
1 restraint Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.4 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3329 (4) 0.6279 (3) 1.2308 (2) 0.0428 (6)
H1A 0.3365 0.5953 1.3189 0.051*
H1B 0.4098 0.5574 1.1863 0.051*
C2 0.0786 (4) 0.6435 (2) 1.1633 (2) 0.0345 (5)
H2 −0.0043 0.5539 1.1654 0.041*
C3 0.0532 (4) 0.6893 (3) 1.0256 (2) 0.0329 (5)
H3 0.1366 0.7784 1.0212 0.04*
C4 −0.2022 (4) 0.6991 (2) 0.9528 (2) 0.0340 (5)
H4 −0.2721 0.7914 0.9614 0.041*
C5 −0.1750 (4) 0.6702 (2) 0.8164 (2) 0.0342 (5)
H5 −0.3207 0.6292 0.7634 0.041*
C6 0.0389 (4) 0.5759 (3) 0.8297 (2) 0.0357 (5)
H6 −0.0087 0.4799 0.8045 0.043*
C7 0.0728 (4) 0.7525 (3) 0.6883 (2) 0.0393 (6)
C8 0.2544 (5) 0.8648 (3) 0.7005 (3) 0.0524 (7)
H8A 0.3755 0.8406 0.6514 0.079*
H8B 0.3287 0.8765 0.7905 0.079*
H8C 0.1774 0.9504 0.6675 0.079*
C9 −0.0399 (6) 0.7197 (4) 0.5530 (3) 0.0654 (9)
H9A 0.0828 0.6935 0.5056 0.098*
H9B −0.1246 0.8003 0.513 0.098*
H9C −0.1514 0.6438 0.5518 0.098*
N1 0.4698 (3) 0.7562 (3) 1.2362 (2) 0.0498 (6)
N2 0.4455 (3) 0.8362 (3) 1.3223 (2) 0.0464 (5)
N3 0.4413 (5) 0.9168 (3) 1.3977 (3) 0.0654 (7)
O1 0.1584 (3) 0.58380 (19) 0.95897 (16) 0.0426 (4)
O2 −0.3347 (3) 0.5933 (2) 0.99674 (16) 0.0460 (4)
H2A −0.4782 0.6016 0.9625 0.069*
O3 −0.0999 (3) 0.79118 (16) 0.76079 (15) 0.0386 (4)
O4 0.1823 (3) 0.63255 (19) 0.74985 (18) 0.0497 (5)
O5 −0.0267 (3) 0.74186 (18) 1.23341 (15) 0.0390 (4)
H5A −0.1747 0.7349 1.2142 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0349 (12) 0.0567 (16) 0.0369 (12) 0.0109 (11) 0.0075 (9) 0.0070 (11)
C2 0.0268 (11) 0.0403 (13) 0.0379 (12) 0.0022 (10) 0.0099 (9) 0.0035 (10)
C3 0.0271 (12) 0.0395 (12) 0.0340 (12) 0.0030 (9) 0.0105 (9) −0.0009 (10)
C4 0.0246 (12) 0.0409 (13) 0.0376 (12) 0.0017 (9) 0.0086 (10) 0.0029 (10)
C5 0.0257 (12) 0.0402 (14) 0.0352 (12) −0.0063 (9) 0.0027 (9) −0.0005 (10)
C6 0.0323 (12) 0.0412 (13) 0.0349 (12) −0.0046 (10) 0.0094 (9) −0.0029 (10)
C7 0.0339 (13) 0.0491 (14) 0.0368 (13) 0.0019 (11) 0.0112 (10) 0.0015 (11)
C8 0.0435 (14) 0.0534 (18) 0.0639 (18) −0.0069 (12) 0.0193 (13) 0.0006 (14)
C9 0.0598 (18) 0.094 (3) 0.0432 (16) −0.0117 (17) 0.0118 (13) −0.0108 (15)
N1 0.0259 (11) 0.0806 (18) 0.0433 (12) −0.0012 (10) 0.0075 (9) −0.0069 (12)
N2 0.0298 (10) 0.0663 (16) 0.0419 (13) 0.0060 (10) 0.0042 (9) 0.0052 (12)
N3 0.0656 (16) 0.0718 (17) 0.0578 (16) 0.0104 (13) 0.0099 (12) −0.0061 (15)
O1 0.0278 (8) 0.0598 (11) 0.0404 (9) 0.0128 (8) 0.0071 (6) −0.0047 (8)
O2 0.0220 (7) 0.0654 (11) 0.0521 (10) −0.0030 (8) 0.0110 (7) 0.0101 (9)
O3 0.0346 (8) 0.0432 (10) 0.0396 (9) 0.0038 (7) 0.0110 (7) 0.0045 (7)
O4 0.0467 (10) 0.0532 (11) 0.0569 (11) 0.0106 (8) 0.0292 (8) 0.0106 (8)
O5 0.0269 (8) 0.0532 (11) 0.0389 (9) 0.0031 (7) 0.0113 (7) −0.0032 (8)

Geometric parameters (Å, º)

C1—N1 1.477 (4) C6—O1 1.420 (3)
C1—C2 1.509 (3) C6—H6 1
C1—H1A 0.99 C7—O3 1.427 (3)
C1—H1B 0.99 C7—O4 1.429 (3)
C2—O5 1.425 (3) C7—C9 1.499 (4)
C2—C3 1.517 (3) C7—C8 1.505 (4)
C2—H2 1 C8—H8A 0.98
C3—O1 1.451 (3) C8—H8B 0.98
C3—C4 1.527 (3) C8—H8C 0.98
C3—H3 1 C9—H9A 0.98
C4—O2 1.419 (3) C9—H9B 0.98
C4—C5 1.522 (3) C9—H9C 0.98
C4—H4 1 N1—N2 1.236 (3)
C5—O3 1.428 (3) N2—N3 1.131 (4)
C5—C6 1.523 (3) O2—H2A 0.84
C5—H5 1 O5—H5A 0.84
C6—O4 1.411 (3)
N1—C1—C2 113.2 (2) O4—C6—C5 105.36 (19)
N1—C1—H1A 108.9 O1—C6—C5 106.73 (17)
C2—C1—H1A 108.9 O4—C6—H6 111.6
N1—C1—H1B 108.9 O1—C6—H6 111.6
C2—C1—H1B 108.9 C5—C6—H6 111.6
H1A—C1—H1B 107.8 O3—C7—O4 105.03 (18)
O5—C2—C1 106.9 (2) O3—C7—C9 111.3 (2)
O5—C2—C3 109.89 (18) O4—C7—C9 109.7 (2)
C1—C2—C3 113.22 (17) O3—C7—C8 107.8 (2)
O5—C2—H2 108.9 O4—C7—C8 108.8 (2)
C1—C2—H2 108.9 C9—C7—C8 113.7 (2)
C3—C2—H2 108.9 C7—C8—H8A 109.5
O1—C3—C2 107.18 (18) C7—C8—H8B 109.5
O1—C3—C4 104.35 (18) H8A—C8—H8B 109.5
C2—C3—C4 114.43 (17) C7—C8—H8C 109.5
O1—C3—H3 110.2 H8A—C8—H8C 109.5
C2—C3—H3 110.2 H8B—C8—H8C 109.5
C4—C3—H3 110.2 C7—C9—H9A 109.5
O2—C4—C5 110.12 (19) C7—C9—H9B 109.5
O2—C4—C3 108.23 (18) H9A—C9—H9B 109.5
C5—C4—C3 101.95 (16) C7—C9—H9C 109.5
O2—C4—H4 112 H9A—C9—H9C 109.5
C5—C4—H4 112 H9B—C9—H9C 109.5
C3—C4—H4 112 N2—N1—C1 115.41 (19)
O3—C5—C4 109.89 (18) N3—N2—N1 173.0 (3)
O3—C5—C6 103.56 (16) C6—O1—C3 110.24 (17)
C4—C5—C6 104.82 (18) C4—O2—H2A 109.5
O3—C5—H5 112.6 C7—O3—C5 107.83 (18)
C4—C5—H5 112.6 C6—O4—C7 110.02 (17)
C6—C5—H5 112.6 C2—O5—H5A 109.5
O4—C6—O1 109.68 (18)
N1—C1—C2—O5 −60.8 (2) C4—C5—C6—O1 −15.1 (2)
N1—C1—C2—C3 60.3 (3) C2—C1—N1—N2 81.8 (3)
O5—C2—C3—O1 −178.66 (18) C1—N1—N2—N3 172 (2)
C1—C2—C3—O1 61.9 (3) O4—C6—O1—C3 106.5 (2)
O5—C2—C3—C4 −63.5 (3) C5—C6—O1—C3 −7.2 (2)
C1—C2—C3—C4 177.1 (2) C2—C3—O1—C6 148.18 (18)
O1—C3—C4—O2 81.9 (2) C4—C3—O1—C6 26.5 (2)
C2—C3—C4—O2 −34.9 (3) O4—C7—O3—C5 −28.5 (2)
O1—C3—C4—C5 −34.2 (2) C9—C7—O3—C5 90.2 (3)
C2—C3—C4—C5 −151.02 (19) C8—C7—O3—C5 −144.4 (2)
O2—C4—C5—O3 164.46 (17) C4—C5—O3—C7 139.25 (18)
C3—C4—C5—O3 −80.8 (2) C6—C5—O3—C7 27.7 (2)
O2—C4—C5—C6 −84.8 (2) O1—C6—O4—C7 −115.1 (2)
C3—C4—C5—C6 29.9 (2) C5—C6—O4—C7 −0.5 (2)
O3—C5—C6—O4 −16.5 (2) O3—C7—O4—C6 17.4 (2)
C4—C5—C6—O4 −131.67 (19) C9—C7—O4—C6 −102.3 (2)
O3—C5—C6—O1 100.11 (19) C8—C7—O4—C6 132.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1i 0.84 2.09 2.871 (2) 154
O2—H2A···O4i 0.84 2.71 3.462 (2) 150
O5—H5A···N1i 0.84 2.12 2.910 (3) 157
C6—H6···O5ii 1.00 2.38 3.332 (3) 159

Symmetry codes: (i) x−1, y, z; (ii) −x, y−1/2, −z+2.

Funding Statement

This work was funded by B18 Project grant . Faculty of Science University of Newcastle grant . Priority Research Centre for Drug Development, University of Newcastle grant .

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Ashton, P. R., Ellwood, P., Staton, I. & Stoddart, J. F. (1991). J. Org. Chem. 56, 7274–7280.
  3. Bilska-Markowska, M., Siodla, T., Patyk-Kaźmierczak, S., Katrusiak, A. & Koroniak, H. (2017). New J. Chem. 41, 12631–12644.
  4. Chandran, S. K. & Nangia, A. (2006). CrystEngComm, 8, 581–585.
  5. Chelouan, A., Bao, S., Friess, S., Herrera, A., Heinemann, F. W., Escalona, A., Grasruck, A. & Dorta, R. (2018). Organometallics, 37, 3983–3992.
  6. Clarke, Z., Barnes, E., Prichard, K. L., Mares, L. J., Clegg, J. K., McCluskey, A., Houston, T. A. & Simone, M. I. (2018). Acta Cryst. E74, 862–867. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Fleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1989). Tetrahedron, 45, 327–336.
  10. Fujita, K. E., Ohta, K., Masunari, K., Obe, K. & Yamamura, H. (1992). Tetrahedron Lett. 33, 5519–5520.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. IUPAC (1996). Pure Appl. Chem. 68, 1919–2008.
  13. Ivanovs, I., Bērziņa, S., Lugiņina, J., Belyakov, S. & Rjabovs, V. (2016). Heterocycl. Commun. 22, 95–98.
  14. Johnson, L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905–8908.
  15. Johnson, W. S., Collins, J. C., Pappo, R., Rubin, M. B., Kropp, P. J., Johns, W. F., Pike, J. E. & Bartmann, W. (1963). J. Am. Chem. Soc. 85, 1409–1430.
  16. Katritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683–2732.
  17. Lee, J. C., Francis, S., Dutta, D., Gupta, V., Yang, Y., Zhu, J., Tash, J. S., Schönbrunn, E. & Georg, G. I. (2012). J. Org. Chem. 77, 3082–3098. [DOI] [PMC free article] [PubMed]
  18. Liu, Z., Yoshihara, A., Wormald, M. R., Jenkinson, S. F., Gibson, V., Izumori, K. & Fleet, G. W. J. (2014). Org. Lett. 16, 5663–5665. [DOI] [PubMed]
  19. Mamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105–109.
  20. Pradere, U., Roy, V., McBrayer, T. R., Schinazi, R. F. & Agrofoglio, L. A. (2008). Tetrahedron, 64, 9044–9051. [DOI] [PMC free article] [PubMed]
  21. Prichard, K., Campkin, D., O’Brien, N., Kato, A., Fleet, G. W. J. & Simone, M. I. (2018). Chem. Biol. Drug Des. 92, 1171–1197. [DOI] [PubMed]
  22. Rasmussen, T. S. & Jensen, H. H. (2011). Carbohydr. Res. 346, 2855–2861. [DOI] [PubMed]
  23. Riediker, M., Hafner, A., Piantini, U., Rihs, G. & Togni, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 499–500.
  24. Rigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
  25. Sayce, A. C., Alonzi, D. S., Killingbeck, S. S., Tyrrell, B. E., Hill, M. L., Caputo, A. T., Iwaki, R., Kinami, K., Ide, D., Kiappes, J. L., Beatty, P. R., Kato, A., Harris, E., Dwek, R. A., Miller, J. L. & Zitzmann, N. (2016). PLoS Negl. Trop. Dis. 10, e0004524. [DOI] [PMC free article] [PubMed]
  26. Šesták, S., Bella, M., Klunda, T., Gurská, S., Džubák, P., Wöls, F., Wilson, I. B. H., Sladek, V., Hajdúch, M., Poláková, M. & Kóňa, J. (2018). ChemMedChem, 13, 373–383. [DOI] [PMC free article] [PubMed]
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408.
  29. Steiner, A. J., Stütz, A. E., Tarling, C. A., Withers, S. G. & Wrodnigg, T. M. (2009). Aust. J. Chem. 62, 553–557.
  30. Steiner, B., Langer, V. & Koóš, M. (2009). Carbohydr. Res. 344, 2079–2082. [DOI] [PubMed]
  31. Tsuchiya, T., Miyake, T., Kageyama, S., Umezawa, S., Umezawa, H. & Takita, T. (1981). Tetrahedron Lett. 22, 1413–1416.
  32. Tsuda, Y., Nishimura, M., Kobayashi, T., Sato, Y. & Kanemitsu, K. (1991). Chem. Pharm. Bull. 39, 2883–2887.
  33. Wood, A., Prichard, K. L., Clarke, Z., Houston, T. A., Fleet, G. W. J. & Simone, M. I. (2018). Eur. J. Org. Chem. pp. 6812–6829.
  34. Woodhouse, S. D., Smith, C., Michelet, M., Branza-Nichita, N., Hussey, M., Dwek, R. A. & Zitzmann, N. (2008). Antimicrob. Agents Chemother. 52, 1820–1828. [DOI] [PMC free article] [PubMed]
  35. Yamamura, H. & Fujita, K. (1991). Chem. Pharm. Bull. 39, 2505–2508.
  36. Zhang, Q., He, P., Zhou, G., Yu, K. & Liu, H. (2013). Acta Cryst. E69, o1386. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012438/hb7940sup1.cif

e-76-01653-sup1.cif (141.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012438/hb7940Isup2.hkl

e-76-01653-Isup2.hkl (98.5KB, hkl)

CCDC reference: 1968033

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES