Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 22;76(Pt 10):1665–1668. doi: 10.1107/S2056989020012657

The novel high-pressure/high-temperature compound Co12P7 determined from synchrotron data

Claire Zurkowski a,*, Barbara Lavina b, Stella Chariton c, Sergey Tkachev c, Vitali Prakapenka c, Andrew Campbell a
PMCID: PMC7534243  PMID: 33117586

Co12P7, synthesized at high pressure/temperature conditions, crystallizes isotypically with ordered Cr12P7 in space-group type P Inline graphic.

Keywords: crystal structure, synchrotron, high-pressure synthesis, cobalt phosphide, M12P7 phase

Abstract

The structural properties of cobalt phosphides were investigated at high pressures and temperatures to better understand the behavior of metal-rich phosphides in Earth and planetary inter­iors. Using single-crystal X-ray diffraction synchrotron data and a laser-heated diamond anvil cell, we discovered a new high pressure–temperature (HP–HT) cobalt phosphide, Co12P7, dodeca­cobalt hepta­phosphide, synthesized at 27 GPa and 1740 K, and at 48 GPa and 1790 K. Co12P7 adopts a structure initially proposed for Cr12P7 (space-group type P Inline graphic, Z =1), consisting of chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetra­hedra. This arrangement leaves space for trigonal–prismatic channels running parallel to the c axis. Coupled disordering of metal and phospho­rus atoms has been observed in this structure for related M 12P7 (M = Cr, V) compounds, but all Co and P sites are ordered in Co12P7. All atomic sites in this crystal structure are situated on special positions. Upon decompression to ambient conditions, peak broadening and loss of reflections at high angles was observed, suggesting phase instability.

Chemical context  

Cobalt phosphides have previously been examined in the context of binary phase relations and thermodynamics (Okamoto & Massalski, 1990; Schlesinger, 2002) and have gained attention for their unique conductive properties (Prins & Bussell, 2012; Popczun et al., 2014; Pan et al., 2016; Pramanik et al., 2017), magnetic properties (Fujii et al., 1988; Jeitschko et al., 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989), and ability to store lanthanide cations (Jeitschko et al., 1978). Cobalt phosphides also serve as structural analogs to iron-rich phosphides and sulfides in planetary core-forming alloys. Previous studies of CoP and Co2P indicate that their phase relations tend to precede in pressure the stability of isostructural Fe-phosphides and Fe-sulfides (Rundqvist, 1960; Ellner & Mittemeijer, 2001; Dera et al., 2008; Tateno et al., 2019; Rundqvist, 1962; Ono & Kikegawa, 2006; Ono et al. 2008). Hence, understanding the behavior of cobalt phosphides at high pressures provides insight into the ultra-high pressure behavior of iron sulfides and phosphides.

There are few structures reported in the literature for transition-metal phosphides with the composition M 12P7. Baurecht et al. (1971) first examined Cr12P7 and determined that it adopts a hexa­gonal lattice with space group P Inline graphic, Z = 1. The structure consists of columns of alternating tetra­hedral and pyramidal polyhedra and columns of stacked triangular–prismatic polyhedra extending along the c-axis direction. Chromium atoms occupy half of all possible tetra­hedral and pyramidal sites while the triangular–prismatic sites are empty (Baurecht et al., 1971). The polyhedra in the unit cell can be described as Cr9 PCr3 T[] 2 PrP7 (P = pyramidal, T = tetra­hedral, Pr = trigonal–prismatic, [] = empty site) (Maaref et al., 1981). Coupled disordering of two half-atoms of the corresponding metal with two half-atoms of phospho­rus within the tetra­hedral and pyramidal sites has been observed in this structure for compounds Th7S12, V12P7, and Cr12P7, increasing the symmetry to the P63/m space group (Zachariasen, 1949; Olofsson & Ganglberger 1970; Chun & Carpenter, 1979).

At ambient conditions the M 12P7 composition is not observed in the binary systems with M = Co, Ni, Fe. Dhahri (1996) concluded that Co12P7, Ni12P7 and Fe12P7 do not occur in the Cr12P7 structure type at ambient conditions because, unlike Cr and V, the elements Co, Ni and Fe do not preferentially occupy pyramidal sites. In support of this conclusion, the Zn2Fe12P7 structure type (P Inline graphic, Z = 1) with many structural similarities to the Cr12P7 structure type, has been observed in Ln 2 M 12P7 (Ln = rare-earth element; M = Co, Ni, Fe) compounds where the pyramidal-to-tetra­hedral site ratio is 1:3 (Jeitschko et al., 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989). Ordering is present in the Co-, Fe-, Ni-rich Zn2Fe12P7 isomorphs (Jeitschko et al., 1984). No other structure types for the composition M 12P7 (M = Co, Ni, Fe) have been reported so far.

The effect of pressure and temperature on stabilizing Co in both the tetra­hedral and pyramidal sites and ordering of Co and P in the Cr12P7-type structure has not been examined previously. In the current study, we report the synthesis of a Co12P7 phase at 27 GPa and 1750 K, and at 48 GPa and 1790 K; both phases are isostructural and crystallize in space group P Inline graphic. Structure refinements revealed that Co and P sites are ordered in the high P–T structure and Co atoms occupy tetra­hedral and pyramidal coordinations. Using single-crystal diffraction techniques, we report refined atomic coordinate sites of Co12P7 at 48 GPa and 15 GPa.

Structural commentary  

Refinement of the structure confirms that Co12P7 assumes the ordered Cr12P7 structure type (Baurecht et al., 1971; Chun & Carpenter, 1979). Two of the Co sites (Co0, Co1) occupy Wyckoff position 3 j (point group symmetry m..), the other two Co sites (Co2, Co3) Wyckoff position 3 k (m..), one P site (P5) Wyckoff position 3 j, one P site (P4) Wyckoff position 3 k, and one P site (P6) Wyckoff position 1 a (Inline graphic..). The Co sites occupy tetra­hedral (cyan) and pyramidal (violet) sites as imaged in Fig. 1. Chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetra­hedra build up the framework with trigonal–prismatic channels running parallel to the c axis.

Figure 1.

Figure 1

Crystal structure of Co12P7 based on the 48 GPa data set with atoms of the asymmetric unit labeled. CoP4 tetra­hedra are shaded in cyan and CoP5 square pyramids are shaded in violet.

Ranges of inter­atomic Co—P distances and polyhedral volumes are provided in Table 1 and Fig. 2 with CoP4 tetra­hedra represented by a cyan polyhedron and CoP5 pyramids represented by violet polyhedra. Co0 atoms occupy a distorted tetra­hedral site with one P atom at a short distance, two at inter­mediate distances and one at a long distance (Table 1, Fig. 2). Co1 and Co2 atoms occupy square pyramids with two inter­mediate and two long inter­atomic distances at the base. Co3 atoms occupy a less distorted square pyramid with two elongated and two truncated bonds at the base (Fig. 2). Inter­atomic distances at 48 GPa range from 2.063 (2)–2.102 (2) Å in the tetra­hedral polyhedra, 2.147 (4)–2.220 (4) Å for Co1—P polyhedra, 2.197 (4)–2.317 (2) Å for Co2—P polyhedra and 2.194 (3)–2.219 (3) Å for Co3—P polyhedra (Table 1). These inter­atomic distances are comparable to those observed in Co2P and CoP (Rundqvist 1960, 1962).

Table 1. Selected structural parameters for Co12P7 at 48 GPa.

Group Maximal bond length (Å) minimal bond length (Å) Polyhedron volume (Å3) Distortion index
CoP4 (Co0—P4, —P5, —P6) 2.102 (2) 2.063 (2) 4.5433 0.00656
CoP5 (Co1—P4, —P5) 2.220 (4) 2.147 (4) 8.1257 0.01085
CoP5 (Co2—P4, —P5, —P6) 2.317 (2) 2.197 (4) 9.0766 0.01432
CoP5 (Co3—P4, —P5) 2.219 (3) 2.194 (3) 8.3239 0.00514

Figure 2.

Figure 2

Co—P polyhedra as observed in the Co12P7 structure (48 GPa data set) showing varying degrees of volume and distortion, qu­anti­fied in Table 1. CoP4 tetra­hedra are shaded in cyan and CoP5 square pyramids are shaded in violet. Displacement ellipsoids are drawn at the 50% probability level.

A grain of Co12P7 was decompressed to ambient conditions where 44 total reflections were identified in reciprocal space and indexed to a unit cell of a = 8.47 (1) Å, c = 3.37 (1) Å. These unit-cell parameters are in agreement with the pressure–volume trend observed, but peak broadening and loss of reflections at high angles may reflect the onset of phase instability on decompression.

Synthesis and crystallization  

The synthesis of Co12P7 was performed at high pressures and temperatures in a laser-heated diamond anvil cell (LHDAC). Two samples were loaded for this study in which Co12P7 was synthesized at 26.9 (8) GPa and 1740 (110) K and 48.2 (5) GPa and 1790 (200) K, respectively. Pressure was generated in BX-90-type (70° angular opening) diamond anvil cells (DACs) with 300 µm culet, Boehler–Almax type diamonds and seats. Co–P samples and a ruby sphere for pressure calibration were loaded into a sample chamber drilled from a rhenium gasket. The chamber was subsequently filled with compressed neon gas (Rivers et al., 2008). Pressure was determined using the ruby fluorescence scale and the Ne equation of state (Mao & Bell, 1976; Fei et al., 2007).

Samples were heated from both sides with 100W Yb-doped fiber lasers at beamline 13-ID-D (GeoSoilEnviroCARS) of the Advanced Photon Source (APS), Argonne National Laboratory. Heating cycles typically lasted ∼15 minutes at target temperatures prior to quench. The lasers were shaped with ∼15 µm flat tops and temperature was measured spectroradiometrically from a 6 µm central region of the laser heated spot using a gray body approximation (Heinz & Jeanloz, 1987). Axial temperature gradients through the sample were accounted for by applying a 3% correction on temperature measurements (Campbell et al., 2007, 2009).

Upon quench from high temperatures, high-pressure samples consisted of agglomerates of Co12P7 and Pnma Co2P (Rundqvist, 1960) crystals of variable grain sizes up to ∼5 µm in diameter. Grains of target phases were identified in reciprocal space and sorted out from the scattering contribution of other grains, neon and diamond. Diffraction data were processed using Dioptas (Prescher & Prakapenka, 2015) and CrysAlis Pro (Rigaku OD, 2018). Decompression data were collected for both samples in two experimental stations; here we report two selected refinements of the Co12P7 structure at 48.2 (5) GPa and 15.4 (2) GPa.

Refinement  

Crystal data, data collection and structure refinement details at 48 GPa and 15 GPa are summarized in Table 2.

Table 2. Experimental details.

  48 GPa 15 GPa
Crystal data
Chemical formula Co12P7 Co12P7
M r 923.95 923.95
Crystal system, space group Hexagonal, P Inline graphic Hexagonal, P Inline graphic
Temperature (K) 293 293
a, c (Å) 7.9700 (14), 3.2034 (4) 8.253 (5), 3.2902 (18)
V3) 176.22 (7) 194.1 (3)
Z 1 1
Radiation type Synchrotron, λ = 0.29521 Å Synchrotron, λ = 0.3344 Å
μ (mm−1) 2.47 3.17
Crystal size (mm) 0.01 × 0.01 × 0.01 0.01 × 0.01 × 0.01
 
Data collection
Diffractometer 13IDD @ APS 13BMD @ APS
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018) Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.789, 1.000 0.546, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 336, 292, 279 592, 321, 253
R int 0.006 0.055
(sin θ/λ)max−1) 0.874 0.762
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.096, 1.12 0.053, 0.105, 1.11
No. of reflections 292 321
No. of parameters 32 32
Δρmax, Δρmin (e Å−3) 2.35, −1.81 1.70, −1.74
Absolute structure Flack x determined using 75 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 78 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.42 (6) 0.4 (2)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

Monochromatic X-ray diffraction measurements took place at beamlines 13-ID-D (2 µm x 3 µm beam, λ = 0.2952 Å) and 13-BM-D (5 µm × 8 µm beam, λ = 0.3344 Å) at APS (Table 2). Diffraction measurements were collected at synthesis pressures and upon decompression. At target pressure steps, 10 x 10 µm still image maps were collected in 2 µm steps around the heated region. At selected map locations exhibiting the largest crystallites, rotation images were collected spanning ±30° at a rate of 1s per 0.5° step.

Grains of Co12P7 identified in reciprocal space were indexed to a primitive hexa­gonal lattice. Analysis of systematic absences indicated space group P Inline graphic with Z = 1. Two grains from distinct loadings and measured at different beamlines were selected for structural refinements as they showed the largest number of observed reflections and good statistical parameters (Table 2). Structure factors measured in microdiffraction in the LHDAC show some well-known limitations, such as limited resolution and redundancy, reflections overlapped by parasitic scattering, diamond diffraction (Loveday et al., 1990) and, more notably, variable volume of illuminated crystal during rotation. As could be expected, we identified eight and five outlier reflections in the refinements for the 48 GPa and 15 GPa data sets, respectively, and omitted them in the final calculations. Based on the ratio ‘observed reflections/refined parameters’ and statistical tests (Hamilton, 1965), we concluded that the P sites should be refined with isotropic displacement parameters (U iso) whereas the Co sites could be refined with anisotropic displacement parameters. After convergence, site occupancies of Co atoms and P atoms were released in alternate runs. Within uncertainty (< 1.2% for Co and < 1.3% for P), all sites are fully occupied.

Supplementary Material

Crystal structure: contains datablock(s) Co12P7_at_48GPa, Co12P7_at_15GPa. DOI: 10.1107/S2056989020012657/wm5583sup1.cif

e-76-01665-sup1.cif (86.9KB, cif)

Structure factors: contains datablock(s) Co12P7_at_48GPa. DOI: 10.1107/S2056989020012657/wm5583Co12P7_at_48GPasup2.hkl

Structure factors: contains datablock(s) Co12P7_at_15GPa. DOI: 10.1107/S2056989020012657/wm5583Co12P7_at_15GPasup3.hkl

CCDC references: 2032430, 2032429

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Crystal data

Co12P7 Dx = 8.706 Mg m3
Mr = 923.95 Synchrotron radiation, λ = 0.29521 Å
Hexagonal, P6 Cell parameters from 292 reflections
a = 7.9700 (14) Å θ = 2.3–14.9°
c = 3.2034 (4) Å µ = 2.47 mm1
V = 176.22 (7) Å3 T = 293 K
Z = 1 Irregular, black
F(000) = 429 0.01 × 0.01 × 0.01 mm

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Data collection

13IDD @ APS diffractometer 279 reflections with I > 2σ(I)
Radiation source: synchrotron Rint = 0.006
ω scans θmax = 15.0°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) h = −6→8
Tmin = 0.789, Tmax = 1.000 k = −10→9
336 measured reflections l = −5→5
292 independent reflections

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037 (Δ/σ)max < 0.001
wR(F2) = 0.096 Δρmax = 2.35 e Å3
S = 1.12 Δρmin = −1.81 e Å3
292 reflections Absolute structure: Flack x determined using 75 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
32 parameters Absolute structure parameter: 0.42 (6)

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co0 0.0185 (3) 0.2676 (3) 0.0000 0.0047 (4)
Co1 0.1313 (3) 0.6239 (3) 0.0000 0.0047 (4)
Co2 0.2161 (3) 0.2037 (4) 0.5000 0.0071 (4)
Co3 0.5185 (3) 0.1341 (3) 0.5000 0.0051 (4)
P4 0.1693 (5) 0.4529 (5) 0.5000 0.0062 (6)*
P5 0.4454 (5) 0.2795 (6) 0.0000 0.0050 (6)*
P6 0.0000 0.0000 0.0000 0.0069 (9)*

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co0 0.0044 (8) 0.0030 (8) 0.0062 (5) 0.0015 (7) 0.000 0.000
Co1 0.0038 (8) 0.0024 (7) 0.0071 (8) 0.0009 (6) 0.000 0.000
Co2 0.0081 (8) 0.0069 (9) 0.0079 (6) 0.0049 (7) 0.000 0.000
Co3 0.0038 (8) 0.0028 (8) 0.0069 (7) 0.0005 (6) 0.000 0.000

Dodecacobalt heptaphosphide (Co12P7_at_48GPa). Geometric parameters (Å, º)

Co0—P6 2.0629 (18) Co2—Co3 2.730 (2)
Co0—P5i 2.091 (4) Co3—P5xi 2.194 (3)
Co0—P4 2.102 (2) Co3—P5xii 2.194 (3)
Co0—P4ii 2.102 (2) Co3—P4viii 2.197 (5)
Co0—Co3iii 2.458 (2) Co3—P5vii 2.218 (3)
Co0—Co3i 2.458 (2) Co3—P5 2.219 (3)
Co0—Co2ii 2.4710 (19) Co3—Co0viii 2.458 (2)
Co0—Co2 2.4710 (19) Co3—Co0ix 2.458 (2)
Co0—Co2iii 2.497 (2) Co3—Co3xii 2.474 (3)
Co0—Co2i 2.497 (2) Co3—Co3xiii 2.475 (3)
Co0—Co1 2.514 (3) Co3—Co1viii 2.578 (2)
Co0—Co1iv 2.515 (2) Co3—Co1ix 2.578 (2)
Co1—P5v 2.147 (4) P4—Co0vii 2.102 (2)
Co1—P4v 2.180 (3) P4—Co1x 2.180 (3)
Co1—P4vi 2.180 (3) P4—Co1iv 2.180 (3)
Co1—P4ii 2.220 (3) P4—Co3i 2.197 (5)
Co1—P4 2.220 (3) P4—Co1vii 2.220 (3)
Co1—Co0v 2.515 (2) P4—P4iv 2.674 (6)
Co1—Co1v 2.546 (3) P4—P4v 2.674 (6)
Co1—Co1iv 2.546 (3) P5—Co0viii 2.091 (4)
Co1—Co3iii 2.578 (2) P5—Co1iv 2.147 (4)
Co1—Co3i 2.578 (2) P5—Co3xiii 2.194 (3)
Co1—Co2v 2.639 (2) P5—Co3xiv 2.194 (3)
Co2—P4 2.197 (4) P5—Co3ii 2.218 (3)
Co2—P5 2.273 (3) P5—Co2ii 2.273 (3)
Co2—P5vii 2.273 (3) P6—Co0i 2.0629 (18)
Co2—P6 2.3174 (17) P6—Co0viii 2.0629 (18)
Co2—P6vii 2.3174 (17) P6—Co2xv 2.3174 (17)
Co2—Co0vii 2.4710 (19) P6—Co2viii 2.3174 (17)
Co2—Co0viii 2.497 (2) P6—Co2ii 2.3174 (17)
Co2—Co0ix 2.497 (2) P6—Co2iii 2.3175 (17)
Co2—Co1x 2.639 (2) P6—Co2i 2.3175 (17)
Co2—Co1iv 2.639 (2)
P6—Co0—P5i 96.84 (13) P4—Co2—Co3 138.57 (14)
P6—Co0—P4 116.54 (11) P5—Co2—Co3 51.66 (8)
P5i—Co0—P4 114.33 (11) P5vii—Co2—Co3 51.66 (8)
P6—Co0—P4ii 116.54 (11) P6—Co2—Co3 106.26 (8)
P5i—Co0—P4ii 114.33 (11) P6vii—Co2—Co3 106.26 (8)
P4—Co0—P4ii 99.31 (14) Co0vii—Co2—Co3 139.47 (4)
P6—Co0—Co3iii 126.74 (6) Co0—Co2—Co3 139.47 (4)
P5i—Co0—Co3iii 57.69 (9) Co0viii—Co2—Co3 55.89 (7)
P4—Co0—Co3iii 116.61 (12) Co0ix—Co2—Co3 55.89 (7)
P4ii—Co0—Co3iii 56.96 (11) Co1x—Co2—Co3 96.63 (8)
P6—Co0—Co3i 126.74 (6) Co1iv—Co2—Co3 96.63 (8)
P5i—Co0—Co3i 57.69 (9) P5xi—Co3—P5xii 93.78 (15)
P4—Co0—Co3i 56.96 (11) P5xi—Co3—P4viii 107.43 (14)
P4ii—Co0—Co3i 116.61 (12) P5xii—Co3—P4viii 107.43 (14)
Co3iii—Co0—Co3i 81.31 (9) P5xi—Co3—P5vii 77.38 (14)
P6—Co0—Co2ii 60.69 (6) P5xii—Co3—P5vii 146.69 (16)
P5i—Co0—Co2ii 129.60 (8) P4viii—Co3—P5vii 105.86 (14)
P4—Co0—Co2ii 116.07 (13) P5xi—Co3—P5 146.69 (16)
P4ii—Co0—Co2ii 56.73 (11) P5xii—Co3—P5 77.38 (14)
Co3iii—Co0—Co2ii 98.20 (5) P4viii—Co3—P5 105.86 (14)
Co3i—Co0—Co2ii 170.85 (9) P5vii—Co3—P5 92.44 (15)
P6—Co0—Co2 60.69 (6) P5xi—Co3—Co0viii 160.35 (15)
P5i—Co0—Co2 129.60 (8) P5xii—Co3—Co0viii 89.46 (9)
P4—Co0—Co2 56.73 (11) P4viii—Co3—Co0viii 53.31 (7)
P4ii—Co0—Co2 116.07 (13) P5vii—Co3—Co0viii 109.66 (12)
Co3iii—Co0—Co2 170.85 (9) P5—Co3—Co0viii 52.82 (11)
Co3i—Co0—Co2 98.20 (5) P5xi—Co3—Co0ix 89.46 (9)
Co2ii—Co0—Co2 80.81 (8) P5xii—Co3—Co0ix 160.35 (15)
P6—Co0—Co2iii 60.19 (6) P4viii—Co3—Co0ix 53.31 (7)
P5i—Co0—Co2iii 58.60 (11) P5vii—Co3—Co0ix 52.82 (11)
P4—Co0—Co2iii 169.97 (10) P5—Co3—Co0ix 109.66 (12)
P4ii—Co0—Co2iii 90.40 (8) Co0viii—Co3—Co0ix 81.32 (9)
Co3iii—Co0—Co2iii 66.85 (7) P5xi—Co3—Co3xii 56.36 (10)
Co3i—Co0—Co2iii 116.27 (10) P5xii—Co3—Co3xii 56.36 (10)
Co2ii—Co0—Co2iii 71.44 (10) P4viii—Co3—Co3xii 151.84 (16)
Co2—Co0—Co2iii 120.88 (10) P5vii—Co3—Co3xii 93.38 (11)
P6—Co0—Co2i 60.19 (6) P5—Co3—Co3xii 93.38 (11)
P5i—Co0—Co2i 58.60 (11) Co0viii—Co3—Co3xii 138.36 (5)
P4—Co0—Co2i 90.40 (8) Co0ix—Co3—Co3xii 138.36 (5)
P4ii—Co0—Co2i 169.97 (10) P5xi—Co3—Co3xiii 93.99 (11)
Co3iii—Co0—Co2i 116.27 (10) P5xii—Co3—Co3xiii 93.99 (11)
Co3i—Co0—Co2i 66.85 (7) P4viii—Co3—Co3xiii 148.16 (16)
Co2ii—Co0—Co2i 120.88 (10) P5vii—Co3—Co3xiii 55.42 (11)
Co2—Co0—Co2i 71.44 (10) P5—Co3—Co3xiii 55.42 (11)
Co2iii—Co0—Co2i 79.79 (9) Co0viii—Co3—Co3xiii 105.12 (10)
P6—Co0—Co1 165.52 (9) Co0ix—Co3—Co3xiii 105.12 (10)
P5i—Co0—Co1 97.64 (13) Co3xii—Co3—Co3xiii 60.0
P4—Co0—Co1 56.65 (9) P5xi—Co3—Co1viii 107.55 (12)
P4ii—Co0—Co1 56.65 (9) P5xii—Co3—Co1viii 52.72 (10)
Co3iii—Co0—Co1 62.44 (6) P4viii—Co3—Co1viii 54.71 (8)
Co3i—Co0—Co1 62.44 (6) P5vii—Co3—Co1viii 160.55 (15)
Co2ii—Co0—Co1 109.16 (7) P5—Co3—Co1viii 92.62 (8)
Co2—Co0—Co1 109.16 (7) Co0viii—Co3—Co1viii 59.83 (7)
Co2iii—Co0—Co1 128.86 (7) Co0ix—Co3—Co1viii 107.89 (10)
Co2i—Co0—Co1 128.86 (7) Co3xii—Co3—Co1viii 105.04 (11)
P6—Co0—Co1iv 104.70 (9) Co3xiii—Co3—Co1viii 140.36 (4)
P5i—Co0—Co1iv 158.46 (14) P5xi—Co3—Co1ix 52.72 (10)
P4—Co0—Co1iv 55.49 (9) P5xii—Co3—Co1ix 107.55 (12)
P4ii—Co0—Co1iv 55.49 (9) P4viii—Co3—Co1ix 54.71 (8)
Co3iii—Co0—Co1iv 107.42 (7) P5vii—Co3—Co1ix 92.62 (8)
Co3i—Co0—Co1iv 107.42 (7) P5—Co3—Co1ix 160.55 (15)
Co2ii—Co0—Co1iv 63.90 (7) Co0viii—Co3—Co1ix 107.89 (10)
Co2—Co0—Co1iv 63.90 (7) Co0ix—Co3—Co1ix 59.83 (7)
Co2iii—Co0—Co1iv 133.74 (7) Co3xii—Co3—Co1ix 105.04 (11)
Co2i—Co0—Co1iv 133.74 (7) Co3xiii—Co3—Co1ix 140.36 (4)
Co1—Co0—Co1iv 60.82 (8) Co1viii—Co3—Co1ix 76.82 (8)
P5v—Co1—P4v 108.68 (12) P5xi—Co3—Co2 130.38 (8)
P5v—Co1—P4vi 108.68 (12) P5xii—Co3—Co2 130.38 (8)
P4v—Co1—P4vi 94.55 (18) P4viii—Co3—Co2 82.57 (13)
P5v—Co1—P4ii 108.29 (12) P5vii—Co3—Co2 53.49 (10)
P4v—Co1—P4ii 143.01 (13) P5—Co3—Co2 53.49 (10)
P4vi—Co1—P4ii 74.85 (14) Co0viii—Co3—Co2 57.26 (7)
P5v—Co1—P4 108.29 (12) Co0ix—Co3—Co2 57.26 (7)
P4v—Co1—P4 74.85 (14) Co3xii—Co3—Co2 125.59 (11)
P4vi—Co1—P4 143.01 (13) Co3xiii—Co3—Co2 65.59 (11)
P4ii—Co1—P4 92.36 (16) Co1viii—Co3—Co2 116.75 (8)
P5v—Co1—Co0 89.08 (13) Co1ix—Co3—Co2 116.75 (8)
P4v—Co1—Co0 127.10 (9) Co0—P4—Co0vii 99.31 (14)
P4vi—Co1—Co0 127.10 (9) Co0—P4—Co1x 144.1 (2)
P4ii—Co1—Co0 52.26 (8) Co0vii—P4—Co1x 71.92 (7)
P4—Co1—Co0 52.26 (8) Co0—P4—Co1iv 71.92 (7)
P5v—Co1—Co0v 91.74 (12) Co0vii—P4—Co1iv 144.1 (2)
P4v—Co1—Co0v 52.58 (9) Co1x—P4—Co1iv 94.55 (17)
P4vi—Co1—Co0v 52.58 (9) Co0—P4—Co2 70.15 (11)
P4ii—Co1—Co0v 127.40 (9) Co0vii—P4—Co2 70.15 (11)
P4—Co1—Co0v 127.40 (9) Co1x—P4—Co2 74.16 (12)
Co0—Co1—Co0v 179.18 (8) Co1iv—P4—Co2 74.16 (12)
P5v—Co1—Co1v 151.31 (16) Co0—P4—Co3i 69.73 (11)
P4v—Co1—Co1v 55.38 (11) Co0vii—P4—Co3i 69.73 (11)
P4vi—Co1—Co1v 55.38 (11) Co1x—P4—Co3i 132.68 (9)
P4ii—Co1—Co1v 91.21 (10) Co1iv—P4—Co3i 132.68 (9)
P4—Co1—Co1v 91.21 (10) Co2—P4—Co3i 116.01 (16)
Co0—Co1—Co1v 119.61 (8) Co0—P4—Co1 71.09 (7)
Co0v—Co1—Co1v 59.56 (10) Co0vii—P4—Co1 140.9 (2)
P5v—Co1—Co1iv 148.69 (16) Co1x—P4—Co1 136.84 (16)
P4v—Co1—Co1iv 92.13 (10) Co1iv—P4—Co1 70.69 (9)
P4vi—Co1—Co1iv 92.13 (10) Co2—P4—Co1 133.80 (8)
P4ii—Co1—Co1iv 53.93 (10) Co3i—P4—Co1 71.42 (12)
P4—Co1—Co1iv 53.93 (10) Co0—P4—Co1vii 140.9 (2)
Co0—Co1—Co1iv 59.61 (8) Co0vii—P4—Co1vii 71.09 (7)
Co0v—Co1—Co1iv 119.56 (10) Co1x—P4—Co1vii 70.69 (9)
Co1v—Co1—Co1iv 60.0 Co1iv—P4—Co1vii 136.84 (17)
P5v—Co1—Co3iii 54.42 (8) Co2—P4—Co1vii 133.80 (8)
P4v—Co1—Co3iii 163.07 (13) Co3i—P4—Co1vii 71.42 (12)
P4vi—Co1—Co3iii 92.51 (9) Co1—P4—Co1vii 92.36 (16)
P4ii—Co1—Co3iii 53.87 (11) Co0—P4—P4iv 125.14 (14)
P4—Co1—Co3iii 107.88 (12) Co0vii—P4—P4iv 125.14 (14)
Co0—Co1—Co3iii 57.72 (8) Co1x—P4—P4iv 53.25 (12)
Co0v—Co1—Co3iii 122.84 (8) Co1iv—P4—P4iv 53.25 (12)
Co1v—Co1—Co3iii 139.67 (4) Co2—P4—P4iv 94.4 (2)
Co1iv—Co1—Co3iii 102.97 (11) Co3i—P4—P4iv 149.6 (2)
P5v—Co1—Co3i 54.42 (8) Co1—P4—P4iv 87.91 (10)
P4v—Co1—Co3i 92.51 (9) Co1vii—P4—P4iv 87.91 (10)
P4vi—Co1—Co3i 163.07 (13) Co0—P4—P4v 122.98 (14)
P4ii—Co1—Co3i 107.88 (12) Co0vii—P4—P4v 122.98 (14)
P4—Co1—Co3i 53.87 (11) Co1x—P4—P4v 88.73 (10)
Co0—Co1—Co3i 57.72 (8) Co1iv—P4—P4v 88.73 (10)
Co0v—Co1—Co3i 122.84 (8) Co2—P4—P4v 154.4 (2)
Co1v—Co1—Co3i 139.67 (4) Co3i—P4—P4v 89.6 (2)
Co1iv—Co1—Co3i 102.97 (11) Co1—P4—P4v 51.90 (11)
Co3iii—Co1—Co3i 76.82 (8) Co1vii—P4—P4v 51.90 (11)
P5v—Co1—Co2v 55.58 (8) P4iv—P4—P4v 60.0
P4v—Co1—Co2v 53.20 (10) Co0viii—P5—Co1iv 126.72 (19)
P4vi—Co1—Co2v 107.02 (11) Co0viii—P5—Co3xiii 132.10 (9)
P4ii—Co1—Co2v 163.76 (12) Co1iv—P5—Co3xiii 72.86 (12)
P4—Co1—Co2v 94.83 (9) Co0viii—P5—Co3xiv 132.10 (9)
Co0—Co1—Co2v 123.33 (7) Co1iv—P5—Co3xiv 72.86 (12)
Co0v—Co1—Co2v 57.23 (6) Co3xiii—P5—Co3xiv 93.78 (15)
Co1v—Co1—Co2v 103.16 (10) Co0viii—P5—Co3ii 69.48 (13)
Co1iv—Co1—Co2v 140.65 (5) Co1iv—P5—Co3ii 133.45 (8)
Co3iii—Co1—Co2v 109.96 (9) Co3xiii—P5—Co3ii 133.08 (18)
Co3i—Co1—Co2v 65.62 (7) Co3xiv—P5—Co3ii 68.22 (10)
P4—Co2—P5 103.71 (12) Co0viii—P5—Co3 69.48 (13)
P4—Co2—P5vii 103.71 (12) Co1iv—P5—Co3 133.45 (8)
P5—Co2—P5vii 89.59 (15) Co3xiii—P5—Co3 68.22 (10)
P4—Co2—P6 103.35 (9) Co3xiv—P5—Co3 133.08 (18)
P5—Co2—P6 85.20 (8) Co3ii—P5—Co3 92.44 (15)
P5vii—Co2—P6 152.92 (13) Co0viii—P5—Co2 69.66 (13)
P4—Co2—P6vii 103.35 (9) Co1iv—P5—Co2 73.26 (11)
P5—Co2—P6vii 152.92 (13) Co3xiii—P5—Co2 78.50 (8)
P5vii—Co2—P6vii 85.20 (8) Co3xiv—P5—Co2 146.03 (19)
P6—Co2—P6vii 87.44 (8) Co3ii—P5—Co2 139.1 (2)
P4—Co2—Co0vii 53.12 (8) Co3—P5—Co2 74.85 (8)
P5—Co2—Co0vii 155.85 (14) Co0viii—P5—Co2ii 69.66 (13)
P5vii—Co2—Co0vii 89.95 (7) Co1iv—P5—Co2ii 73.25 (11)
P6—Co2—Co0vii 105.40 (8) Co3xiii—P5—Co2ii 146.03 (19)
P6vii—Co2—Co0vii 50.91 (5) Co3xiv—P5—Co2ii 78.50 (8)
P4—Co2—Co0 53.12 (8) Co3ii—P5—Co2ii 74.85 (8)
P5—Co2—Co0 89.95 (7) Co3—P5—Co2ii 139.1 (2)
P5vii—Co2—Co0 155.85 (14) Co2—P5—Co2ii 89.59 (15)
P6—Co2—Co0 50.91 (5) Co0i—P6—Co0 120.0
P6vii—Co2—Co0 105.40 (8) Co0i—P6—Co0viii 120.0
Co0vii—Co2—Co0 80.81 (8) Co0—P6—Co0viii 120.0
P4—Co2—Co0viii 140.08 (4) Co0i—P6—Co2xv 69.24 (6)
P5—Co2—Co0viii 51.74 (11) Co0—P6—Co2xv 136.27 (4)
P5vii—Co2—Co0viii 106.53 (11) Co0viii—P6—Co2xv 68.40 (6)
P6—Co2—Co0viii 50.57 (5) Co0i—P6—Co2viii 69.24 (6)
P6vii—Co2—Co0viii 104.56 (10) Co0—P6—Co2viii 136.27 (4)
Co0vii—Co2—Co0viii 149.98 (11) Co0viii—P6—Co2viii 68.40 (6)
Co0—Co2—Co0viii 91.97 (7) Co2xv—P6—Co2viii 87.45 (8)
P4—Co2—Co0ix 140.08 (4) Co0i—P6—Co2 136.27 (4)
P5—Co2—Co0ix 106.54 (11) Co0—P6—Co2 68.40 (6)
P5vii—Co2—Co0ix 51.74 (11) Co0viii—P6—Co2 69.24 (6)
P6—Co2—Co0ix 104.56 (10) Co2xv—P6—Co2 137.63 (3)
P6vii—Co2—Co0ix 50.57 (5) Co2viii—P6—Co2 77.49 (6)
Co0vii—Co2—Co0ix 91.97 (7) Co0i—P6—Co2ii 136.27 (4)
Co0—Co2—Co0ix 149.98 (11) Co0—P6—Co2ii 68.40 (6)
Co0viii—Co2—Co0ix 79.79 (9) Co0viii—P6—Co2ii 69.24 (6)
P4—Co2—Co1x 52.64 (9) Co2xv—P6—Co2ii 77.49 (6)
P5—Co2—Co1x 103.19 (12) Co2viii—P6—Co2ii 137.64 (3)
P5vii—Co2—Co1x 51.16 (10) Co2—P6—Co2ii 87.44 (8)
P6—Co2—Co1x 155.65 (9) Co0i—P6—Co2iii 68.40 (6)
P6vii—Co2—Co1x 94.13 (4) Co0—P6—Co2iii 69.24 (6)
Co0vii—Co2—Co1x 58.87 (6) Co0viii—P6—Co2iii 136.27 (4)
Co0—Co2—Co1x 105.65 (9) Co2xv—P6—Co2iii 77.49 (6)
Co0viii—Co2—Co1x 149.97 (10) Co2viii—P6—Co2iii 137.63 (3)
Co0ix—Co2—Co1x 95.00 (6) Co2—P6—Co2iii 137.63 (3)
P4—Co2—Co1iv 52.64 (9) Co2ii—P6—Co2iii 77.49 (6)
P5—Co2—Co1iv 51.16 (10) Co0i—P6—Co2i 68.40 (6)
P5vii—Co2—Co1iv 103.19 (13) Co0—P6—Co2i 69.24 (6)
P6—Co2—Co1iv 94.13 (4) Co0viii—P6—Co2i 136.27 (4)
P6vii—Co2—Co1iv 155.65 (9) Co2xv—P6—Co2i 137.63 (3)
Co0vii—Co2—Co1iv 105.65 (9) Co2viii—P6—Co2i 77.49 (6)
Co0—Co2—Co1iv 58.87 (6) Co2—P6—Co2i 77.49 (6)
Co0viii—Co2—Co1iv 95.00 (6) Co2ii—P6—Co2i 137.63 (3)
Co0ix—Co2—Co1iv 149.97 (10) Co2iii—P6—Co2i 87.44 (8)
Co1x—Co2—Co1iv 74.74 (7)

Symmetry codes: (i) −y, xy, z; (ii) x, y, z−1; (iii) −y, xy, z−1; (iv) −y+1, xy+1, z; (v) −x+y, −x+1, z; (vi) −x+y, −x+1, z−1; (vii) x, y, z+1; (viii) −x+y, −x, z; (ix) −x+y, −x, z+1; (x) −y+1, xy+1, z+1; (xi) −y+1, xy, z+1; (xii) −y+1, xy, z; (xiii) −x+y+1, −x+1, z; (xiv) −x+y+1, −x+1, z−1; (xv) −x+y, −x, z−1.

(Co12P7_at_15GPa). Crystal data

Co12P7 Dx = 7.905 Mg m3
Mr = 923.95 Synchrotron radiation, λ = 0.3344 Å
Hexagonal, P6 Cell parameters from 249 reflections
a = 8.253 (5) Å θ = 2.9–14.7°
c = 3.2902 (18) Å µ = 3.17 mm1
V = 194.1 (3) Å3 T = 293 K
Z = 1 Irregular, black
F(000) = 429 0.01 × 0.01 × 0.01 mm

(Co12P7_at_15GPa). Data collection

13BMD @ APS diffractometer 253 reflections with I > 2σ(I)
Radiation source: synchrotron Rint = 0.055
/w scan θmax = 14.8°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) h = −11→12
Tmin = 0.546, Tmax = 1.000 k = −9→8
592 measured reflections l = −4→4
321 independent reflections

(Co12P7_at_15GPa). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0219P)2 + 2.8589P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053 (Δ/σ)max < 0.001
wR(F2) = 0.105 Δρmax = 1.70 e Å3
S = 1.11 Δρmin = −1.74 e Å3
321 reflections Absolute structure: Flack x determined using 78 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
32 parameters Absolute structure parameter: 0.4 (2)

(Co12P7_at_15GPa). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Co12P7_at_15GPa). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co0 0.0153 (6) 0.2651 (6) 0.0000 0.0114 (8)
Co1 0.1320 (7) 0.6234 (7) 0.0000 0.0123 (9)
Co2 0.2135 (6) 0.2038 (8) 0.5000 0.0151 (9)
Co3 0.5195 (7) 0.1363 (7) 0.5000 0.0107 (9)
P4 0.1656 (11) 0.4503 (11) 0.5000 0.0102 (15)*
P5 0.4425 (12) 0.2809 (13) 0.0000 0.0086 (15)*
P6 0.0000 0.0000 0.0000 0.012 (3)*

(Co12P7_at_15GPa). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co0 0.014 (2) 0.016 (2) 0.0072 (18) 0.009 (2) 0.000 0.000
Co1 0.019 (2) 0.016 (2) 0.003 (2) 0.0101 (18) 0.000 0.000
Co2 0.024 (2) 0.020 (3) 0.005 (2) 0.014 (2) 0.000 0.000
Co3 0.011 (2) 0.012 (2) 0.008 (2) 0.0052 (16) 0.000 0.000

(Co12P7_at_15GPa). Geometric parameters (Å, º)

Co0—P6 2.128 (5) Co2—Co1iv 2.731 (5)
Co0—P5i 2.148 (10) Co2—Co3 2.846 (7)
Co0—P4 2.165 (6) Co3—P5xi 2.263 (7)
Co0—P4ii 2.165 (6) Co3—P5xii 2.263 (7)
Co0—Co3iii 2.538 (5) Co3—P4viii 2.266 (10)
Co0—Co3i 2.538 (5) Co3—P5vii 2.301 (8)
Co0—Co2ii 2.543 (6) Co3—P5 2.301 (8)
Co0—Co2 2.543 (6) Co3—Co3xiii 2.536 (9)
Co0—Co2iii 2.571 (6) Co3—Co3xii 2.536 (9)
Co0—Co2i 2.571 (6) Co3—Co0viii 2.538 (5)
Co0—Co1 2.612 (7) Co3—Co0ix 2.538 (5)
Co0—Co1iv 2.634 (7) Co3—Co1viii 2.674 (5)
Co1—P5v 2.202 (10) Co3—Co1ix 2.674 (5)
Co1—P4v 2.266 (7) P4—Co0vii 2.165 (6)
Co1—P4vi 2.266 (7) P4—Co1x 2.266 (7)
Co1—P4ii 2.284 (7) P4—Co1iv 2.266 (7)
Co1—P4 2.285 (7) P4—Co3i 2.266 (10)
Co1—Co1v 2.624 (9) P4—Co1vii 2.285 (7)
Co1—Co1iv 2.624 (9) P5—Co0viii 2.148 (10)
Co1—Co0v 2.634 (7) P5—Co1iv 2.202 (10)
Co1—Co3iii 2.674 (5) P5—Co3xiii 2.263 (7)
Co1—Co3i 2.674 (5) P5—Co3xiv 2.263 (7)
Co1—Co2v 2.731 (5) P5—Co3ii 2.301 (8)
Co2—P4 2.258 (9) P5—Co2ii 2.341 (7)
Co2—P5vii 2.341 (7) P6—Co0i 2.128 (5)
Co2—P5 2.341 (7) P6—Co0viii 2.128 (5)
Co2—P6 2.383 (4) P6—Co2xv 2.383 (4)
Co2—P6vii 2.383 (4) P6—Co2iii 2.383 (4)
Co2—Co0vii 2.543 (6) P6—Co2i 2.383 (4)
Co2—Co0viii 2.571 (6) P6—Co2viii 2.383 (4)
Co2—Co0ix 2.571 (6) P6—Co2ii 2.383 (4)
Co2—Co1x 2.731 (5)
P6—Co0—P5i 96.9 (3) P5vii—Co2—Co1iv 102.3 (3)
P6—Co0—P4 116.4 (2) P5—Co2—Co1iv 50.7 (2)
P5i—Co0—P4 114.7 (3) P6—Co2—Co1iv 94.84 (11)
P6—Co0—P4ii 116.4 (2) P6vii—Co2—Co1iv 156.4 (2)
P5i—Co0—P4ii 114.7 (3) Co0vii—Co2—Co1iv 106.0 (2)
P4—Co0—P4ii 98.9 (4) Co0—Co2—Co1iv 59.81 (15)
P6—Co0—Co3iii 127.43 (16) Co0viii—Co2—Co1iv 94.89 (12)
P5i—Co0—Co3iii 58.1 (2) Co0ix—Co2—Co1iv 148.9 (2)
P4—Co0—Co3iii 116.1 (3) Co1x—Co2—Co1iv 74.08 (17)
P4ii—Co0—Co3iii 56.9 (2) P4—Co2—Co3 138.5 (3)
P6—Co0—Co3i 127.43 (16) P5vii—Co2—Co3 51.6 (2)
P5i—Co0—Co3i 58.1 (2) P5—Co2—Co3 51.6 (2)
P4—Co0—Co3i 56.9 (2) P6—Co2—Co3 106.1 (2)
P4ii—Co0—Co3i 116.1 (3) P6vii—Co2—Co3 106.1 (2)
Co3iii—Co0—Co3i 80.8 (2) Co0vii—Co2—Co3 139.57 (11)
P6—Co0—Co2ii 60.57 (16) Co0—Co2—Co3 139.58 (11)
P5i—Co0—Co2ii 129.6 (2) Co0viii—Co2—Co3 55.61 (16)
P4—Co0—Co2ii 115.7 (3) Co0ix—Co2—Co3 55.61 (16)
P4ii—Co0—Co2ii 56.6 (2) Co1x—Co2—Co3 95.9 (2)
Co3iii—Co0—Co2ii 98.44 (12) Co1iv—Co2—Co3 95.9 (2)
Co3i—Co0—Co2ii 170.2 (3) P5xi—Co3—P5xii 93.3 (4)
P6—Co0—Co2 60.57 (16) P5xi—Co3—P4viii 106.5 (3)
P5i—Co0—Co2 129.6 (2) P5xii—Co3—P4viii 106.5 (3)
P4—Co0—Co2 56.6 (2) P5xi—Co3—P5vii 79.0 (4)
P4ii—Co0—Co2 115.7 (3) P5xii—Co3—P5vii 148.1 (4)
Co3iii—Co0—Co2 170.2 (3) P4viii—Co3—P5vii 105.3 (3)
Co3i—Co0—Co2 98.44 (12) P5xi—Co3—P5 148.1 (4)
Co2ii—Co0—Co2 80.6 (2) P5xii—Co3—P5 79.0 (4)
P6—Co0—Co2iii 60.07 (15) P4viii—Co3—P5 105.3 (3)
P5i—Co0—Co2iii 58.7 (2) P5vii—Co3—P5 91.3 (4)
P4—Co0—Co2iii 170.1 (3) P5xi—Co3—Co3xiii 95.1 (3)
P4ii—Co0—Co2iii 90.7 (2) P5xii—Co3—Co3xiii 95.1 (3)
Co3iii—Co0—Co2iii 67.70 (14) P4viii—Co3—Co3xiii 148.1 (4)
Co3i—Co0—Co2iii 116.8 (2) P5vii—Co3—Co3xiii 55.5 (3)
Co2ii—Co0—Co2iii 71.4 (2) P5—Co3—Co3xiii 55.5 (3)
Co2—Co0—Co2iii 120.6 (2) P5xi—Co3—Co3xii 57.0 (3)
P6—Co0—Co2i 60.07 (15) P5xii—Co3—Co3xii 57.0 (3)
P5i—Co0—Co2i 58.7 (2) P4viii—Co3—Co3xii 151.9 (4)
P4—Co0—Co2i 90.7 (2) P5vii—Co3—Co3xii 94.1 (3)
P4ii—Co0—Co2i 170.1 (3) P5—Co3—Co3xii 94.1 (3)
Co3iii—Co0—Co2i 116.8 (2) Co3xiii—Co3—Co3xii 60.0
Co3i—Co0—Co2i 67.70 (14) P5xi—Co3—Co0viii 159.3 (3)
Co2ii—Co0—Co2i 120.6 (2) P5xii—Co3—Co0viii 89.59 (18)
Co2—Co0—Co2i 71.4 (2) P4viii—Co3—Co0viii 53.20 (19)
Co2iii—Co0—Co2i 79.6 (2) P5vii—Co3—Co0viii 108.5 (3)
P6—Co0—Co1 164.3 (3) P5—Co3—Co0viii 52.4 (2)
P5i—Co0—Co1 98.8 (3) Co3xiii—Co3—Co0viii 105.1 (2)
P4—Co0—Co1 56.2 (2) Co3xii—Co3—Co0viii 138.58 (11)
P4ii—Co0—Co1 56.2 (2) P5xi—Co3—Co0ix 89.59 (18)
Co3iii—Co0—Co1 62.53 (14) P5xii—Co3—Co0ix 159.3 (3)
Co3i—Co0—Co1 62.53 (14) P4viii—Co3—Co0ix 53.20 (19)
Co2ii—Co0—Co1 108.4 (2) P5vii—Co3—Co0ix 52.4 (2)
Co2—Co0—Co1 108.4 (2) P5—Co3—Co0ix 108.5 (3)
Co2iii—Co0—Co1 129.67 (15) Co3xiii—Co3—Co0ix 105.1 (2)
Co2i—Co0—Co1 129.67 (15) Co3xii—Co3—Co0ix 138.58 (11)
P6—Co0—Co1iv 104.29 (19) Co0viii—Co3—Co0ix 80.8 (2)
P5i—Co0—Co1iv 158.8 (3) P5xi—Co3—Co1viii 106.4 (3)
P4—Co0—Co1iv 55.3 (2) P5xii—Co3—Co1viii 52.2 (2)
P4ii—Co0—Co1iv 55.3 (2) P4viii—Co3—Co1viii 54.34 (19)
Co3iii—Co0—Co1iv 107.12 (19) P5vii—Co3—Co1viii 159.6 (3)
Co3i—Co0—Co1iv 107.12 (19) P5—Co3—Co1viii 93.3 (2)
Co2ii—Co0—Co1iv 63.65 (16) Co3xiii—Co3—Co1viii 140.83 (9)
Co2—Co0—Co1iv 63.65 (16) Co3xii—Co3—Co1viii 105.3 (2)
Co2iii—Co0—Co1iv 133.59 (16) Co0viii—Co3—Co1viii 60.09 (15)
Co2i—Co0—Co1iv 133.59 (16) Co0ix—Co3—Co1viii 107.4 (2)
Co1—Co0—Co1iv 60.0 (2) P5xi—Co3—Co1ix 52.2 (2)
P5v—Co1—P4v 108.1 (2) P5xii—Co3—Co1ix 106.4 (3)
P5v—Co1—P4vi 108.1 (2) P4viii—Co3—Co1ix 54.34 (19)
P4v—Co1—P4vi 93.1 (4) P5vii—Co3—Co1ix 93.3 (2)
P5v—Co1—P4ii 108.0 (3) P5—Co3—Co1ix 159.6 (3)
P4v—Co1—P4ii 144.0 (3) Co3xiii—Co3—Co1ix 140.83 (9)
P4vi—Co1—P4ii 76.3 (3) Co3xii—Co3—Co1ix 105.3 (2)
P5v—Co1—P4 108.0 (3) Co0viii—Co3—Co1ix 107.4 (2)
P4v—Co1—P4 76.3 (3) Co0ix—Co3—Co1ix 60.09 (15)
P4vi—Co1—P4 144.0 (3) Co1viii—Co3—Co1ix 75.95 (16)
P4ii—Co1—P4 92.1 (4) P5xi—Co3—Co2 131.18 (19)
P5v—Co1—Co0 89.0 (3) P5xii—Co3—Co2 131.18 (19)
P4v—Co1—Co0 128.2 (2) P4viii—Co3—Co2 82.0 (3)
P4vi—Co1—Co0 128.2 (2) P5vii—Co3—Co2 52.8 (2)
P4ii—Co1—Co0 51.9 (2) P5—Co3—Co2 52.8 (2)
P4—Co1—Co0 51.9 (2) Co3xiii—Co3—Co2 66.1 (3)
P5v—Co1—Co1v 150.6 (4) Co3xii—Co3—Co2 126.1 (3)
P4v—Co1—Co1v 55.1 (2) Co0viii—Co3—Co2 56.70 (15)
P4vi—Co1—Co1v 55.1 (2) Co0ix—Co3—Co2 56.70 (15)
P4ii—Co1—Co1v 92.1 (2) Co1viii—Co3—Co2 116.37 (18)
P4—Co1—Co1v 92.1 (2) Co1ix—Co3—Co2 116.37 (18)
Co0—Co1—Co1v 120.4 (2) Co0—P4—Co0vii 98.9 (4)
P5v—Co1—Co1iv 149.4 (4) Co0—P4—Co2 70.2 (2)
P4v—Co1—Co1iv 92.6 (2) Co0vii—P4—Co2 70.2 (2)
P4vi—Co1—Co1iv 92.6 (2) Co0—P4—Co1x 144.1 (4)
P4ii—Co1—Co1iv 54.4 (2) Co0vii—P4—Co1x 72.93 (17)
P4—Co1—Co1iv 54.4 (2) Co2—P4—Co1x 74.3 (3)
Co0—Co1—Co1iv 60.4 (2) Co0—P4—Co1iv 72.93 (17)
Co1v—Co1—Co1iv 60.0 Co0vii—P4—Co1iv 144.1 (4)
P5v—Co1—Co0v 91.0 (3) Co2—P4—Co1iv 74.3 (3)
P4v—Co1—Co0v 51.8 (2) Co1x—P4—Co1iv 93.1 (4)
P4vi—Co1—Co0v 51.8 (2) Co0—P4—Co3i 69.9 (3)
P4ii—Co1—Co0v 128.0 (2) Co0vii—P4—Co3i 69.9 (3)
P4—Co1—Co0v 128.0 (2) Co2—P4—Co3i 116.5 (4)
Co0—Co1—Co0v 180.0 (2) Co1x—P4—Co3i 133.35 (18)
Co1v—Co1—Co0v 59.6 (2) Co1iv—P4—Co3i 133.35 (18)
Co1iv—Co1—Co0v 119.6 (2) Co0—P4—Co1 71.84 (17)
P5v—Co1—Co3iii 54.26 (19) Co0vii—P4—Co1 141.5 (4)
P4v—Co1—Co3iii 162.3 (3) Co2—P4—Co1 133.94 (18)
P4vi—Co1—Co3iii 93.40 (17) Co1x—P4—Co1 135.3 (4)
P4ii—Co1—Co3iii 53.7 (2) Co1iv—P4—Co1 70.4 (2)
P4—Co1—Co3iii 107.1 (3) Co3i—P4—Co1 72.0 (3)
Co0—Co1—Co3iii 57.38 (16) Co0—P4—Co1vii 141.5 (4)
Co1v—Co1—Co3iii 140.25 (9) Co0vii—P4—Co1vii 71.84 (17)
Co1iv—Co1—Co3iii 103.5 (2) Co2—P4—Co1vii 133.94 (18)
Co0v—Co1—Co3iii 122.64 (18) Co1x—P4—Co1vii 70.4 (2)
P5v—Co1—Co3i 54.26 (19) Co1iv—P4—Co1vii 135.3 (4)
P4v—Co1—Co3i 93.40 (17) Co3i—P4—Co1vii 72.0 (3)
P4vi—Co1—Co3i 162.3 (3) Co1—P4—Co1vii 92.1 (4)
P4ii—Co1—Co3i 107.1 (3) Co0viii—P5—Co1iv 127.8 (5)
P4—Co1—Co3i 53.7 (2) Co0viii—P5—Co3xiii 131.9 (2)
Co0—Co1—Co3i 57.38 (15) Co1iv—P5—Co3xiii 73.6 (3)
Co1v—Co1—Co3i 140.25 (9) Co0viii—P5—Co3xiv 131.9 (2)
Co1iv—Co1—Co3i 103.5 (2) Co1iv—P5—Co3xiv 73.6 (3)
Co0v—Co1—Co3i 122.64 (18) Co3xiii—P5—Co3xiv 93.3 (4)
Co3iii—Co1—Co3i 75.95 (16) Co0viii—P5—Co3 69.5 (3)
P5v—Co1—Co2v 55.41 (19) Co1iv—P5—Co3 133.9 (2)
P4v—Co1—Co2v 52.7 (2) Co3xiii—P5—Co3 67.5 (2)
P4vi—Co1—Co2v 105.6 (3) Co3xiv—P5—Co3 131.1 (4)
P4ii—Co1—Co2v 163.3 (3) Co0viii—P5—Co3ii 69.5 (3)
P4—Co1—Co2v 95.17 (19) Co1iv—P5—Co3ii 133.9 (2)
Co0—Co1—Co2v 123.5 (2) Co3xiii—P5—Co3ii 131.1 (4)
Co1v—Co1—Co2v 102.6 (2) Co3xiv—P5—Co3ii 67.5 (2)
Co1iv—Co1—Co2v 140.73 (11) Co3—P5—Co3ii 91.3 (4)
Co0v—Co1—Co2v 56.54 (14) Co0viii—P5—Co2 69.7 (3)
Co3iii—Co1—Co2v 109.6 (2) Co1iv—P5—Co2 73.8 (2)
Co3i—Co1—Co2v 66.10 (15) Co3xiii—P5—Co2 79.62 (16)
P4—Co2—P5vii 103.7 (3) Co3xiv—P5—Co2 147.3 (4)
P4—Co2—P5 103.7 (3) Co3—P5—Co2 75.6 (2)
P5vii—Co2—P5 89.3 (3) Co3ii—P5—Co2 139.2 (4)
P4—Co2—P6 103.6 (2) Co0viii—P5—Co2ii 69.7 (3)
P5vii—Co2—P6 152.7 (3) Co1iv—P5—Co2ii 73.8 (2)
P5—Co2—P6 85.31 (18) Co3xiii—P5—Co2ii 147.3 (4)
P4—Co2—P6vii 103.6 (2) Co3xiv—P5—Co2ii 79.62 (16)
P5vii—Co2—P6vii 85.30 (18) Co3—P5—Co2ii 139.2 (4)
P5—Co2—P6vii 152.7 (3) Co3ii—P5—Co2ii 75.6 (2)
P6—Co2—P6vii 87.33 (17) Co2—P5—Co2ii 89.3 (3)
P4—Co2—Co0vii 53.20 (19) Co0i—P6—Co0viii 120.0
P5vii—Co2—Co0vii 90.21 (18) Co0i—P6—Co0 120.0
P5—Co2—Co0vii 155.9 (3) Co0viii—P6—Co0 120.0
P6—Co2—Co0vii 105.4 (2) Co0i—P6—Co2xv 69.23 (17)
P6vii—Co2—Co0vii 51.06 (12) Co0viii—P6—Co2xv 68.36 (17)
P4—Co2—Co0 53.20 (19) Co0—P6—Co2xv 136.33 (9)
P5vii—Co2—Co0 155.9 (3) Co0i—P6—Co2iii 68.36 (17)
P5—Co2—Co0 90.21 (18) Co0viii—P6—Co2iii 136.33 (9)
P6—Co2—Co0 51.06 (12) Co0—P6—Co2iii 69.23 (17)
P6vii—Co2—Co0 105.4 (2) Co2xv—P6—Co2iii 77.58 (13)
Co0vii—Co2—Co0 80.6 (2) Co0i—P6—Co2i 68.36 (17)
P4—Co2—Co0viii 140.20 (12) Co0viii—P6—Co2i 136.33 (9)
P5vii—Co2—Co0viii 106.2 (3) Co0—P6—Co2i 69.23 (17)
P5—Co2—Co0viii 51.6 (2) Co2xv—P6—Co2i 137.59 (6)
P6—Co2—Co0viii 50.70 (12) Co2iii—P6—Co2i 87.34 (17)
P6vii—Co2—Co0viii 104.5 (2) Co0i—P6—Co2viii 69.23 (17)
Co0vii—Co2—Co0viii 150.1 (2) Co0viii—P6—Co2viii 68.36 (17)
Co0—Co2—Co0viii 92.22 (16) Co0—P6—Co2viii 136.33 (9)
P4—Co2—Co0ix 140.20 (12) Co2xv—P6—Co2viii 87.34 (17)
P5vii—Co2—Co0ix 51.6 (2) Co2iii—P6—Co2viii 137.59 (6)
P5—Co2—Co0ix 106.2 (3) Co2i—P6—Co2viii 77.58 (13)
P6—Co2—Co0ix 104.5 (2) Co0i—P6—Co2ii 136.33 (9)
P6vii—Co2—Co0ix 50.70 (12) Co0viii—P6—Co2ii 69.23 (17)
Co0vii—Co2—Co0ix 92.22 (16) Co0—P6—Co2ii 68.37 (17)
Co0—Co2—Co0ix 150.1 (2) Co2xv—P6—Co2ii 77.58 (13)
Co0viii—Co2—Co0ix 79.6 (2) Co2iii—P6—Co2ii 77.58 (13)
P4—Co2—Co1x 52.99 (19) Co2i—P6—Co2ii 137.59 (6)
P5vii—Co2—Co1x 50.7 (2) Co2viii—P6—Co2ii 137.59 (6)
P5—Co2—Co1x 102.3 (3) Co0i—P6—Co2 136.33 (9)
P6—Co2—Co1x 156.4 (2) Co0viii—P6—Co2 69.23 (17)
P6vii—Co2—Co1x 94.84 (11) Co0—P6—Co2 68.37 (17)
Co0vii—Co2—Co1x 59.81 (15) Co2xv—P6—Co2 137.59 (6)
Co0—Co2—Co1x 106.0 (2) Co2iii—P6—Co2 137.59 (6)
Co0viii—Co2—Co1x 148.9 (2) Co2i—P6—Co2 77.58 (13)
Co0ix—Co2—Co1x 94.89 (12) Co2viii—P6—Co2 77.58 (13)
P4—Co2—Co1iv 52.99 (19) Co2ii—P6—Co2 87.33 (17)

Symmetry codes: (i) −y, xy, z; (ii) x, y, z−1; (iii) −y, xy, z−1; (iv) −y+1, xy+1, z; (v) −x+y, −x+1, z; (vi) −x+y, −x+1, z−1; (vii) x, y, z+1; (viii) −x+y, −x, z; (ix) −x+y, −x, z+1; (x) −y+1, xy+1, z+1; (xi) −y+1, xy, z+1; (xii) −y+1, xy, z; (xiii) −x+y+1, −x+1, z; (xiv) −x+y+1, −x+1, z−1; (xv) −x+y, −x, z−1.

Funding Statement

This work was funded by National Science Foundation grant EAR – 1651017 to A. Campbell.

References

  1. Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373–384.
  2. Campbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y. & Prakapenka, V. B. (2009). Earth Planet. Sci. Lett. 286, 556–564.
  3. Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. & Prakapenka, V. B. (2007). Phys. Earth Planet. Inter. 162, 119–128.
  4. Chun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30–33.
  5. Dera, P., Lavina, B., Borkowski, L. A., Prakapenka, V. B., Sutton, S. R., Rivers, M. L., Downs, R. T., Boctor, N. Z. & Prewitt, C. T. (2008). Geophys. Res. Lett. 35, l10301.
  6. Dhahri, E. (1996). J. Phys. Condens. Matter, 8, 4351–4360.
  7. Ellner, M. & Mittemeijer, E. J. (2001). Z. Anorg. Allg. Chem. 627, 2257–2260.
  8. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. & Prakapenka, V. (2007). PNAS, 104, 9182–9186. [DOI] [PMC free article] [PubMed]
  9. Fujii, S., Ishida, S. & Asano, S. (1988). J. Phys. F: Met. Phys. 18, 971–980.
  10. Hamilton, W. C. (1965). Acta Cryst. 18, 502–510.
  11. Heinz, D. L. & Jeanloz, R. (1987). High Press. Res. Miner. Phys. 2, 113–127.
  12. Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309–313.
  13. Jeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95–104.
  14. Jeitschko, W., Meisen, U. & Scholz, U. D. (1984). J. Solid State Chem. 55, 331–336.
  15. Loveday, J. S., McMahon, M. I. & Nelmes, R. J. (1990). J. Appl. Cryst. 23, 392–396.
  16. Maaref, S., Madar, R., Chaudouet, P., Senateur, J. P. & Fruchart, R. (1981). J. Solid State Chem. 40, 131–135.
  17. Mao, H. K. & Bell, P. M. (1976). Science, 191, 851–852. [DOI] [PubMed]
  18. Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
  19. Okamoto, H. & Massalski, T. B. (1990). Editors. Binary Alloy Phase Diagrams. OH, USA: ASM International.
  20. Olofsson, O. & Ganglberger, E. (1970). Acta Chem. Scand. 24, 2389–2396.
  21. Ono, S. & Kikegawa, T. (2006). Am. Mineral. 91, 1941–1944.
  22. Ono, S., Oganov, A. R., Brodholt, J. P., Vočadlo, L., Wood, I. G., Lyakhov, A., Glass, C. W., Côté, A. S. & Price, G. D. (2008). Earth Planet. Sci. Lett. 272, 481–487.
  23. Pan, Y., Lin, Y., Chen, Y., Liu, Y. & Liu, C. (2016). J. Mater. Chem. A, 4, 4745–4754.
  24. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  25. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. (2014). Angew. Chem. 126, 5531–5534. [DOI] [PubMed]
  26. Pramanik, M., Tominaka, S., Wang, Z. L., Takei, T. & Yamauchi, Y. (2017). Angew. Chem. 129, 13693–13697. [DOI] [PubMed]
  27. Prescher, C. & Prakapenka, V. B. (2015). High. Press. Res. 35, 223–230.
  28. Prins, R. & Bussell, M. E. (2012). Catal. Lett. 142, 1413–1436.
  29. Reehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563–569.
  30. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  31. Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M. & Jacobsen, S. D. (2008). High Pressure Res. 28, 273–292.
  32. Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961–1979.
  33. Rundqvist, S. (1962). Acta Chem. Scand. 16, 1–19.
  34. Schlesinger, M. E. (2002). Chem. Rev. 102, 4267–4302. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I–Kawaguchi, S. & Hirao, N. (2019). Geophys. Res. Lett. 46, 11944–11949.
  38. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  39. Zachariasen, W. H. (1949). Acta Cryst. 2, 288–291.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Co12P7_at_48GPa, Co12P7_at_15GPa. DOI: 10.1107/S2056989020012657/wm5583sup1.cif

e-76-01665-sup1.cif (86.9KB, cif)

Structure factors: contains datablock(s) Co12P7_at_48GPa. DOI: 10.1107/S2056989020012657/wm5583Co12P7_at_48GPasup2.hkl

Structure factors: contains datablock(s) Co12P7_at_15GPa. DOI: 10.1107/S2056989020012657/wm5583Co12P7_at_15GPasup3.hkl

CCDC references: 2032430, 2032429

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES