Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 4;76(Pt 10):1587–1590. doi: 10.1107/S205698902001169X

Synthesis and crystal structure of tri­ethyl­ammonium hexa­bromido­uranate(IV) di­chloro­methane monosolvate

Holger Lars Deubner a, Marcel Koester a, Carsten von Haenisch a, Florian Kraus a,*
PMCID: PMC7534249  PMID: 33117569

The synthesis and crystal structure determination of (Et3NH)2[UBr6]·CH2Cl2 is reported.

Keywords: crystal structure, uranium, bromide, tri­ethyl­amine

Abstract

Tri­ethyl­ammonium hexa­bromido­uranate(IV) di­chloro­methane monosolvate, [(C2H5)3NH]2[UBr6]·CH2Cl2, was obtained in the form of dark-brown crystals from the reaction of uranium penta­bromide with NEt3 and ethyl­ene glycol in di­chloro­methane at low temperature. During the progress of the reaction, the reduction of uranium(V) to uranium(IV) was observed, whose associated oxidation product could not be identified. The uranium atom of the [UBr6]2– anion is coordinated by six bromido ligands in the shape of an octa­hedron. Between cations, anion and solvent mol­ecules of crystallization, numerous C—H⋯Hal hydrogen-bond-like inter­actions are present, leading to a three-dimensional network structure.

Chemical context  

Starting in the 1950s, a variety of hexa­chlorido­uranates(IV) with organic cations have been investigated and described [CSD Database, Version 2.0.4, accessed 19.05.2020 (Groom et al., 2016); Staritzky & Singer, 1952). Examples of this type of compound are (Me4N)2[UCl6], (Ph4As)2[UCl6]·CH2Cl2, or the 4,4′-bipyridin-1-ium hexa­chlorido­uranate(IV) (C10H10N2)[UCl6] (Autillo & Wilson, 2017; Müller et al., 1984; Wacker et al., 2019). All these compounds have a slightly distorted octa­hedron-shaped [UCl6]2– coordination polyhedron in common with Cl—U—Cl angles close to 90° and some of them, like [BuMeIm]2[UCl6], feature hydrogen-bonding networks or weak hydrogen inter­actions (Nikitenko et al., 2007). Examples of hexa­bromido­uranates(IV) with organic cations are (PPh4)2[UBr6]·4CH3CN (Bohrer et al., 1988), [P(C6H5)3C2H5]2[UBr6] (Caira et al., 1978) or (Ph3EtP)2[UBr6] (Caira et al., 1978). As in the case of the hexa­chlorido­uranates(IV), the [UBr6]2– octa­hedra show a slight distortion and the compounds feature an extended network of hydrogen bonds. The only two structurally elucidated examples of hexa­bromido­uranate(V) anions, [UBr6], that show significantly shorter U—Br distances compared to [UBr6]2– anions are (Ph4P)[UBr6] and (Ph4P)[UBr6]·2CCl4 (Bohrer et al., 1988). These two compounds as well as (PPh4)[UBr6]·CH2Cl2 serve as examples for the stability of uranium(V) in organic solvents; however, a reduction of UV to UIV was observed upon removal of the solvent (Bohrer et al., 1988). During this reaction, elemental bromine was formed via oxidation besides the adduct UBr4·CH3CN (Bohrer et al., 1988).

We, however, observe reduction of UBr5 to uranium(IV) as [UBr6]2– and the protonation of NEt3. It is plausible that ethyl­ene glycol serves as the proton source for the formation of the HNEt3 + cations; however, we do not know where the glycolate anions end up. We also do not know what the reducing agent for the reduction of UV to UIV) is, or if UBr5 is simply unstable under these conditions and is converted to UBr4 and 0.5 Br2. We also do not know how UBr5 is dissolved, that is, whether U2Br10 mol­ecules or other mono- or polynuclear complexes, such as of gylcolates, are present in solution. Elemental bromine may be present within the brown solution and act as an oxidizing agent under the formation of the Br anions required to constitute the [UBr6]2– anions. For the reactions to be stoichiometric, some leftover U species should have been formed that we did not observe. In summary, the detailed formation of the title compound (Et3NH)2[UBr6]·CH2Cl2 remains unclear.graphic file with name e-76-01587-scheme1.jpg

Structural commentary  

The compound tri­ethyl­ammonium hexa­bromido­uranate(IV)–di­chloro­methane (1/1) (Et3NH)2[UBr6]·CH2Cl2 crystallizes in the monoclinic crystal system, space group P21/n (No. 14), with the lattice parameters a = 10.7313 (3), b = 17.4534 (4), c = 15.0090 (5) Å, β = 92.0550 (10)°, V = 2809.34 (14) Å3, Z = 4 at T = 100 K. The uranium atom of the cation is coordinated by six bromine ligands in the shape of a slightly distorted octa­hedron. The atomic distances between the uranium atom and the bromido ligands range from 2.7562 (4) to 2.7847 (5) Å (Table 1). The Br—U—Br angles in the octa­hedron-like polyhedron range from 86.519 (13) to 94.879 (14) and show a quite significant distortion from the ideal angle of 90°. These atomic distances and angles are in good agreement with the compounds reported previously (Bohrer et al., 1988; Caira et al., 1978). The atomic distances of the two symmetry-independent tri­ethyl­ammonium cations are in good agreement with each other, as well as with the literature, for example in bis­(tri­ethyl­ammonium) tetra­chlorido­dioxidouranium(VI) (Gatto et al., 2003; Serezhkina et al., 2010; Bois et al., 1976). Fig. 1 shows a section of the crystal structure.

Table 1. Selected inter­atomic distances d (Å) for (Et3NH)2[UBr6].

Atom 1 Atom 2 d
U1 Br1 2.7835 (4)
  Br2 2.7562 (4)
  Br3 2.7847 (5)
  Br4 2.7613 (4)
  Br5 2.7631 (5)
  Br6 2.7658 (4)
N1 C11 1.500 (6)
  C13 1.514 (6)
  C15 1.515 (5)
N2 C21 1.508 (5)
  C23 1.517 (6)
  C25 1.504 (5)
C1 Cl1 1.756 (5)
  Cl2 1.751 (5)
C11 C12 1.521 (7)
C13 C14 1.508 (6)
C15 C16 1.506 (6)
C21 C22 1.509 (6)
C23 C24 1.511 (7)
C25 C26 1.503 (6)

Figure 1.

Figure 1

Section of the crystal structure of (Et3NH)2[UBr6]·CH2Cl2, illustrating the asymmetric unit. Displacement ellipsoids are shown at the 70% probability level at 100 K and H atoms are drawn with an arbitrary radius.

Supra­molecular features  

Sections of the crystal structure, illustrating the hydrogen-bonding situation, are shown in Fig. 2. The hydrogen bonds were inspected visually and those with angles less than 134° were removed from the analysis. The Br3 and Br5 atoms of the [UBr6]2– anion act as acceptors for the bifurcated N—H⋯Br hydrogen bond. The other HNEt3 + cation (with N2) also forms a N—H⋯Br hydrogen bond, however, not bifurcated. Hydrogen-bond lengths and angles are given in Table 2. Furthermore, C—H⋯Hal hydrogen-bond-like inter­actions between the HNEt3 + cations and the Br atoms of the [UBr6]2– anion as well as to the Cl atoms of the di­chloro­methane mol­ecules are also present. Overall, a three-dimensional hydrogen-bonded network results. An overview of the hydrogen-bond lengths between the cations, anion and solvent mol­ecule in the compound reported here is given in Table 2. The C–H⋯Br hydrogen bonds in (Ph3EtP)2[UBr6] (Caira et al., 1978) range from 2.782 (1) to 3.504 (2) Å. An example for N–H⋯Br hydrogen bonds is (C6H8NS3)2[UBr6] (Conradi et al., 1986), with lengths of 2.81 (9) Å for the inter­actions. These bond lengths are comparable with the presented data.

Figure 2.

Figure 2

The hydrogen bonds and hydrogen-bond-like inter­actions (dashed lines) present in the structure of the title compound. (a) and (b) show the inter­actions of the HNEt+ cation with N1, (c) of the HNEt+ cation with N2, and (d) shows the inter­actions of DCM. Displacement ellipsoids within each subfigure are shown at the 70% probability level at 100 K and H atoms are drawn with an arbitrary radius. See Table 2 for symmetry operators.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3 1.00 2.71 3.480 (3) 134
N1—H1⋯Br5i 1.00 2.83 3.658 (3) 141
C11—H11A⋯Br2 0.99 3.13 4.070 (5) 158
C11—H11B⋯Br4ii 0.99 3.24 4.184 (4) 160
C13—H13B⋯Br6i 0.99 3.38 4.339 (5) 163
C14—H14A⋯Br2ii 0.98 3.38 4.350 (6) 173
C14—H14B⋯Cl1i 0.98 2.95 3.922 (5) 169
C16—H16B⋯Cl2iii 0.98 2.97 3.904 (5) 160
N2—H2⋯Br1 1.00 2.59 3.499 (4) 152
C21—H21B⋯Br5i 0.99 3.12 4.005 (5) 150
C22—H22C⋯Br4 0.98 3.20 4.139 (5) 162
C23—H23A⋯Cl1 0.99 2.88 3.865 (5) 171
C25—H25B⋯Br5i 0.99 3.00 3.886 (4) 149
C1—H1B⋯Br3iv 0.99 2.81 3.729 (5) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Synthesis and crystallization  

50 mg of UBr5 (0.08 mmol, 1.00 eq) were dissolved in 2 mL of predried DCM and 0.06 mL of NEt3 (40 mg, 0.39 mmol, 5.00 eq.) were added. Then, after stirring briefly, 0.01 mL of ethyl­ene glycol (10 mg, 0.20 mmol, 2.50 eq.) were added dropwise. After two h, the reaction mixture was filtered and the obtained brown filtrate was cooled to 241 K. The product was obtained in crystalline form after three days as brown plates. A selected crystal was investigated by X-ray diffraction. As only a few crystals precipitated from the cold filtrate, the yield could not be determined, but it can be assumed that it was rather low. No further analysis was carried out on the few minute crystals or the filtrate. UBr5 was synthesized according to the literature (Deubner et al., 2019).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically (N—H = 1.00Å, C—H = 0.98–0.99Å) refined using a riding model with U iso(H) = 1.2U eq(N,C) or 1.5U eq(Cmeth­yl). The maximum and minimum residual electron densities are located close to the U atom at distances of 0.77 and 1.19 Å, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula (C6H16N)2[UBr6]·CH2Cl2
M r 1006.81
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.7318 (4), 17.4541 (4), 15.0082 (4)
β (°) 92.055 (1)
V3) 2809.44 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.50
Crystal size (mm) 0.1 × 0.1 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-RED32; Stoe & Cie, 2009)
T min, T max 0.049, 0.527
No. of measured, independent and observed [I > 2σ(I)] reflections 35494, 5945, 5307
R int 0.065
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.059, 1.04
No. of reflections 5945
No. of parameters 223
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.52, −1.12

Computer programs: X-AREA (Stoe & Cie, 2018), SHELXT2018/3 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and DIAMOND (Brandenburg, 2019).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001169X/zl2792sup1.cif

e-76-01587-sup1.cif (1MB, cif)

CCDC reference: 2025374

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C6H16N)2[UBr6]·CH2Cl2 F(000) = 1848
Mr = 1006.81 Dx = 2.380 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.7318 (4) Å Cell parameters from 72381 reflections
b = 17.4541 (4) Å θ = 5.1–53.6°
c = 15.0082 (4) Å µ = 14.50 mm1
β = 92.055 (1)° T = 100 K
V = 2809.44 (14) Å3 Plate, dark brown
Z = 4 0.1 × 0.1 × 0.05 mm

Data collection

STOE IPDS 2T diffractometer 5945 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 5307 reflections with I > 2σ(I)
Planar graphite monochromator Rint = 0.065
Detector resolution: 6.67 pixels mm-1 θmax = 26.8°, θmin = 2.6°
rotation method, ω scans h = −13→13
Absorption correction: numerical (X-Red32; Stoe & Cie, 2009) k = −22→22
Tmin = 0.049, Tmax = 0.527 l = −19→18
35494 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0252P)2 + 6.7371P] where P = (Fo2 + 2Fc2)/3
5945 reflections (Δ/σ)max = 0.002
223 parameters Δρmax = 1.52 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
U1 0.70763 (2) 0.60417 (2) 0.25294 (2) 0.01693 (5)
Br1 0.69695 (4) 0.57164 (3) 0.43407 (3) 0.02583 (10)
Br2 0.71934 (4) 0.62538 (3) 0.07145 (3) 0.02426 (10)
Br3 0.79682 (4) 0.45554 (3) 0.23313 (3) 0.02729 (10)
Br4 0.46676 (4) 0.55130 (3) 0.22569 (3) 0.02739 (10)
Br5 0.61892 (4) 0.74956 (2) 0.28651 (3) 0.02490 (10)
Br6 0.95008 (4) 0.65689 (3) 0.27283 (3) 0.02697 (10)
Cl1 0.80839 (13) 0.55597 (8) 0.65867 (8) 0.0411 (3)
Cl2 0.83159 (13) 0.58050 (10) 0.85069 (9) 0.0513 (4)
N1 0.7139 (3) 0.3577 (2) 0.0379 (2) 0.0233 (8)
H1 0.755481 0.354489 0.098517 0.028*
N2 0.7104 (3) 0.3716 (2) 0.4459 (2) 0.0232 (8)
H2 0.705708 0.424063 0.419282 0.028*
C1 0.8582 (4) 0.5179 (3) 0.7622 (3) 0.0350 (11)
H1A 0.813690 0.469171 0.772342 0.042*
H1B 0.948470 0.506395 0.761006 0.042*
C11 0.7928 (4) 0.4099 (3) −0.0159 (3) 0.0305 (10)
H11A 0.798906 0.460352 0.014011 0.037*
H11B 0.751630 0.417679 −0.075281 0.037*
C12 0.9236 (4) 0.3788 (4) −0.0280 (4) 0.0439 (14)
H12A 0.960175 0.363457 0.030062 0.066*
H12B 0.975348 0.418558 −0.054084 0.066*
H12C 0.919360 0.334222 −0.067749 0.066*
C13 0.7052 (5) 0.2763 (3) 0.0032 (3) 0.0306 (10)
H13A 0.789983 0.253987 0.003254 0.037*
H13B 0.655161 0.245525 0.044208 0.037*
C14 0.6472 (5) 0.2707 (3) −0.0896 (3) 0.0387 (12)
H14A 0.561944 0.290737 −0.089751 0.058*
H14B 0.645537 0.216946 −0.108520 0.058*
H14C 0.696590 0.300684 −0.130777 0.058*
C15 0.5882 (4) 0.3948 (3) 0.0504 (3) 0.0244 (9)
H15A 0.601033 0.447669 0.072758 0.029*
H15B 0.542776 0.397995 −0.008087 0.029*
C16 0.5098 (4) 0.3514 (3) 0.1146 (3) 0.0322 (11)
H16A 0.484504 0.302216 0.087991 0.048*
H16B 0.435415 0.381437 0.127367 0.048*
H16C 0.558378 0.342157 0.170045 0.048*
C21 0.6301 (4) 0.3208 (3) 0.3864 (3) 0.0260 (9)
H21A 0.626464 0.269114 0.413275 0.031*
H21B 0.669358 0.315813 0.327985 0.031*
C22 0.4989 (4) 0.3505 (3) 0.3715 (3) 0.0310 (10)
H22A 0.455318 0.348800 0.427708 0.046*
H22B 0.454521 0.318541 0.327033 0.046*
H22C 0.501713 0.403488 0.349993 0.046*
C23 0.6641 (4) 0.3789 (3) 0.5399 (3) 0.0296 (10)
H23A 0.709967 0.420914 0.570805 0.036*
H23B 0.574683 0.392884 0.536600 0.036*
C24 0.6800 (6) 0.3064 (3) 0.5941 (3) 0.0445 (13)
H24A 0.636358 0.264126 0.563271 0.067*
H24B 0.644987 0.313862 0.652859 0.067*
H24C 0.768859 0.294031 0.601240 0.067*
C25 0.8449 (4) 0.3475 (3) 0.4436 (3) 0.0248 (9)
H25A 0.854298 0.296273 0.471340 0.030*
H25B 0.868916 0.343198 0.380740 0.030*
C26 0.9315 (4) 0.4027 (3) 0.4915 (3) 0.0325 (11)
H26A 0.918147 0.454356 0.467310 0.049*
H26B 1.018010 0.387174 0.483028 0.049*
H26C 0.914733 0.402615 0.555219 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
U1 0.01705 (8) 0.01736 (9) 0.01627 (7) 0.00032 (6) −0.00099 (5) −0.00022 (5)
Br1 0.0311 (2) 0.0274 (2) 0.01893 (18) 0.00404 (18) 0.00139 (16) 0.00121 (17)
Br2 0.0261 (2) 0.0274 (2) 0.01914 (18) −0.00121 (17) −0.00094 (16) −0.00011 (16)
Br3 0.0308 (2) 0.0229 (2) 0.0278 (2) 0.00371 (17) −0.00318 (17) −0.00230 (17)
Br4 0.02038 (19) 0.0287 (2) 0.0329 (2) −0.00374 (17) −0.00104 (17) 0.00114 (18)
Br5 0.0270 (2) 0.0205 (2) 0.0272 (2) 0.00144 (17) 0.00110 (16) −0.00114 (17)
Br6 0.02052 (19) 0.0305 (2) 0.0297 (2) −0.00311 (17) −0.00316 (16) −0.00108 (18)
Cl1 0.0534 (7) 0.0411 (7) 0.0285 (6) −0.0082 (6) −0.0010 (5) 0.0058 (5)
Cl2 0.0456 (7) 0.0706 (10) 0.0377 (7) −0.0045 (7) 0.0036 (6) −0.0211 (7)
N1 0.0237 (17) 0.026 (2) 0.0199 (17) 0.0037 (15) −0.0050 (14) −0.0013 (15)
N2 0.0231 (17) 0.0223 (19) 0.0242 (18) −0.0015 (15) −0.0009 (14) −0.0026 (15)
C1 0.027 (2) 0.047 (3) 0.031 (2) 0.004 (2) −0.0007 (19) −0.003 (2)
C11 0.027 (2) 0.036 (3) 0.028 (2) −0.005 (2) −0.0007 (18) −0.002 (2)
C12 0.027 (2) 0.069 (4) 0.036 (3) −0.001 (3) 0.006 (2) −0.007 (3)
C13 0.038 (2) 0.020 (2) 0.033 (2) 0.0048 (19) −0.008 (2) 0.0000 (19)
C14 0.053 (3) 0.029 (3) 0.033 (2) 0.004 (2) −0.013 (2) −0.005 (2)
C15 0.021 (2) 0.025 (2) 0.027 (2) 0.0018 (17) −0.0027 (17) −0.0005 (18)
C16 0.026 (2) 0.040 (3) 0.031 (2) −0.003 (2) −0.0024 (18) 0.005 (2)
C21 0.024 (2) 0.027 (2) 0.028 (2) −0.0003 (18) −0.0003 (17) −0.0036 (18)
C22 0.024 (2) 0.035 (3) 0.034 (2) 0.001 (2) 0.0015 (18) −0.006 (2)
C23 0.025 (2) 0.037 (3) 0.027 (2) 0.003 (2) 0.0051 (18) −0.009 (2)
C24 0.058 (3) 0.045 (3) 0.032 (3) −0.001 (3) 0.021 (2) 0.006 (2)
C25 0.0187 (19) 0.030 (3) 0.026 (2) 0.0036 (18) 0.0041 (16) 0.0029 (18)
C26 0.024 (2) 0.038 (3) 0.035 (2) −0.004 (2) −0.0069 (19) 0.000 (2)

Geometric parameters (Å, º)

U1—Br2 2.7562 (4) C14—H14A 0.9800
U1—Br4 2.7613 (4) C14—H14B 0.9800
U1—Br5 2.7631 (5) C14—H14C 0.9800
U1—Br6 2.7658 (4) C15—C16 1.506 (6)
U1—Br1 2.7835 (4) C15—H15A 0.9900
U1—Br3 2.7847 (5) C15—H15B 0.9900
Cl1—C1 1.756 (5) C16—H16A 0.9800
Cl2—C1 1.751 (5) C16—H16B 0.9800
N1—C11 1.500 (6) C16—H16C 0.9800
N1—C13 1.514 (6) C21—C22 1.509 (6)
N1—C15 1.515 (5) C21—H21A 0.9900
N1—H1 1.0000 C21—H21B 0.9900
N2—C25 1.504 (5) C22—H22A 0.9800
N2—C21 1.508 (5) C22—H22B 0.9800
N2—C23 1.517 (6) C22—H22C 0.9800
N2—H2 1.0000 C23—C24 1.511 (7)
C1—H1A 0.9900 C23—H23A 0.9900
C1—H1B 0.9900 C23—H23B 0.9900
C11—C12 1.521 (7) C24—H24A 0.9800
C11—H11A 0.9900 C24—H24B 0.9800
C11—H11B 0.9900 C24—H24C 0.9800
C12—H12A 0.9800 C25—C26 1.503 (6)
C12—H12B 0.9800 C25—H25A 0.9900
C12—H12C 0.9800 C25—H25B 0.9900
C13—C14 1.508 (6) C26—H26A 0.9800
C13—H13A 0.9900 C26—H26B 0.9800
C13—H13B 0.9900 C26—H26C 0.9800
Br2—U1—Br4 88.519 (13) H14A—C14—H14B 109.5
Br2—U1—Br5 94.879 (14) C13—C14—H14C 109.5
Br4—U1—Br5 90.407 (14) H14A—C14—H14C 109.5
Br2—U1—Br6 89.194 (13) H14B—C14—H14C 109.5
Br4—U1—Br6 177.674 (14) C16—C15—N1 112.6 (4)
Br5—U1—Br6 90.214 (14) C16—C15—H15A 109.1
Br2—U1—Br1 175.943 (14) N1—C15—H15A 109.1
Br4—U1—Br1 90.307 (14) C16—C15—H15B 109.1
Br5—U1—Br1 89.011 (13) N1—C15—H15B 109.1
Br6—U1—Br1 91.945 (13) H15A—C15—H15B 107.8
Br2—U1—Br3 89.519 (13) C15—C16—H16A 109.5
Br4—U1—Br3 89.792 (14) C15—C16—H16B 109.5
Br5—U1—Br3 175.601 (13) H16A—C16—H16B 109.5
Br6—U1—Br3 89.760 (14) C15—C16—H16C 109.5
Br1—U1—Br3 86.593 (13) H16A—C16—H16C 109.5
C11—N1—C13 114.4 (4) H16B—C16—H16C 109.5
C11—N1—C15 109.2 (3) N2—C21—C22 113.4 (4)
C13—N1—C15 113.5 (3) N2—C21—H21A 108.9
C11—N1—H1 106.3 C22—C21—H21A 108.9
C13—N1—H1 106.3 N2—C21—H21B 108.9
C15—N1—H1 106.3 C22—C21—H21B 108.9
C25—N2—C21 110.5 (3) H21A—C21—H21B 107.7
C25—N2—C23 113.0 (3) C21—C22—H22A 109.5
C21—N2—C23 113.6 (3) C21—C22—H22B 109.5
C25—N2—H2 106.3 H22A—C22—H22B 109.5
C21—N2—H2 106.3 C21—C22—H22C 109.5
C23—N2—H2 106.3 H22A—C22—H22C 109.5
Cl2—C1—Cl1 112.5 (3) H22B—C22—H22C 109.5
Cl2—C1—H1A 109.1 C24—C23—N2 113.3 (4)
Cl1—C1—H1A 109.1 C24—C23—H23A 108.9
Cl2—C1—H1B 109.1 N2—C23—H23A 108.9
Cl1—C1—H1B 109.1 C24—C23—H23B 108.9
H1A—C1—H1B 107.8 N2—C23—H23B 108.9
N1—C11—C12 112.8 (4) H23A—C23—H23B 107.7
N1—C11—H11A 109.0 C23—C24—H24A 109.5
C12—C11—H11A 109.0 C23—C24—H24B 109.5
N1—C11—H11B 109.0 H24A—C24—H24B 109.5
C12—C11—H11B 109.0 C23—C24—H24C 109.5
H11A—C11—H11B 107.8 H24A—C24—H24C 109.5
C11—C12—H12A 109.5 H24B—C24—H24C 109.5
C11—C12—H12B 109.5 C26—C25—N2 112.8 (4)
H12A—C12—H12B 109.5 C26—C25—H25A 109.0
C11—C12—H12C 109.5 N2—C25—H25A 109.0
H12A—C12—H12C 109.5 C26—C25—H25B 109.0
H12B—C12—H12C 109.5 N2—C25—H25B 109.0
C14—C13—N1 113.4 (4) H25A—C25—H25B 107.8
C14—C13—H13A 108.9 C25—C26—H26A 109.5
N1—C13—H13A 108.9 C25—C26—H26B 109.5
C14—C13—H13B 108.9 H26A—C26—H26B 109.5
N1—C13—H13B 108.9 C25—C26—H26C 109.5
H13A—C13—H13B 107.7 H26A—C26—H26C 109.5
C13—C14—H14A 109.5 H26B—C26—H26C 109.5
C13—C14—H14B 109.5
C13—N1—C11—C12 −54.2 (5) C25—N2—C21—C22 −168.9 (4)
C15—N1—C11—C12 177.2 (4) C23—N2—C21—C22 62.8 (5)
C11—N1—C13—C14 −61.4 (5) C25—N2—C23—C24 −56.5 (5)
C15—N1—C13—C14 64.9 (5) C21—N2—C23—C24 70.5 (5)
C11—N1—C15—C16 −171.9 (4) C21—N2—C25—C26 171.9 (4)
C13—N1—C15—C16 59.1 (5) C23—N2—C25—C26 −59.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br3 1.00 2.71 3.480 (3) 134
N1—H1···Br5i 1.00 2.83 3.658 (3) 141
C11—H11A···Br2 0.99 3.13 4.070 (5) 158
C11—H11B···Br4ii 0.99 3.24 4.184 (4) 160
C13—H13B···Br6i 0.99 3.38 4.339 (5) 163
C14—H14A···Br2ii 0.98 3.38 4.350 (6) 173
C14—H14B···Cl1i 0.98 2.95 3.922 (5) 169
C16—H16B···Cl2iii 0.98 2.97 3.904 (5) 160
N2—H2···Br1 1.00 2.59 3.499 (4) 152
C21—H21B···Br5i 0.99 3.12 4.005 (5) 150
C22—H22C···Br4 0.98 3.20 4.139 (5) 162
C23—H23A···Cl1 0.99 2.88 3.865 (5) 171
C25—H25B···Br5i 0.99 3.00 3.886 (4) 149
C1—H1B···Br3iv 0.99 2.81 3.729 (5) 155

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant .

References

  1. Autillo, M. & Wilson, R. E. (2017). Inorg. Chem. 56, 4834–4839.
  2. Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119–127.
  3. Bois, C., Dao, N. Q. & Rodier, N. (1976). J. Inorg. Nucl. Chem. 38, 755–757.
  4. Brandenburg, K. (2019). DIAMOND.Crystal Impact GbR, Bonn, Germany.
  5. Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116–1120.
  6. Conradi, E., Bohrer, R. & Müller, U. (1986). Chem. Ber. 119, 2582–2589.
  7. Deubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402–6411. [DOI] [PubMed]
  8. Gatto, C. C., Lang, E. S. & Abrahm, U. (2003). Chem. Commun. 6, 1001–1003.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Müller, U., Klingelhöfer, P., Eicher, J. & Bohrer, R. (1984). Z. Kristallogr. 168, 121–131.
  11. Nikitenko, S. I., Hennig, C., Grigoriev, M. S., Naour, C. L., Cannes, C., Trubert, D., Bossé, E., Berthon, C. & Moisy, P. (2007). Polyhedron, 26, 3136–3142.
  12. Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V. & Neklyudova, N. A. (2010). Russ. J. Inorg. Chem. 55, 1020–1025.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Staritzky, E. & Singer, J. (1952). Acta Cryst. 5, 536–540.
  16. Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Stoe & Cie (2018). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.
  18. Wacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G. & Knope, K. E. (2019). Inorg. Chem. 58, 10578–10591. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001169X/zl2792sup1.cif

e-76-01587-sup1.cif (1MB, cif)

CCDC reference: 2025374

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES