Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 11;76(Pt 10):1634–1637. doi: 10.1107/S2056989020012062

Rietveld refinement of the langbeinite-type phosphate K2Ni0.5Hf1.5(PO4)3

Liang Zhou a, Denys S Butenko a, Ivan V Ogorodnyk b, Nickolai I Klyui c, Igor V Zatovsky a,*
PMCID: PMC7534254  PMID: 33117578

Cubic K2Ni0.5Hf1.5(PO4)3 crystallizes in the langbeinite structure type. The principal building units are two independent [(Ni,Hf)O6] octa­hedra, [PO4] tetra­hedra and [KO9] and [KO12] polyhedra.

Keywords: powder diffraction, langbeinite structure type, multimetal phosphate, crystal structure

Abstract

Polycrystalline potassium nickel(II) hafnium(IV) tris­(orthophosphate), a langbeinite-type phosphate, was synthesized by a solid-state method. The three-dimensional framework of the title compound is built up from two types of [MO6] octa­hedra [the M sites are occupied by Hf:Ni in ratios of 0.754 (8):0.246 (8) and 0.746 (8):0.254 (8), respectively] and [PO4] tetra­hedra are connected via O vertices. The K+ cations are located in two positions within large cavities of the framework, having coordination numbers of 9 and 12. The Hf, Ni and K sites lie on threefold rotation axes, while the P and O atoms are situated in general positions.

Chemical context  

Langbeinite-related complex oxides have a variety of inter­esting properties, for example, ferroelectricity or ferroelasticity (Norberg, 2002). In particular, complex phosphates of this type have attracted attention for their high thermal and chemical stability, and many different combinations for structural substitutions are possible (Wulff et al., 1992; Slobodyanik et al., 2012). These characteristics made it possible to propose the family of langbeinite-type phosphates as successful hosts for the immobilization of radioactive waste (Orlova et al., 2011). Moreover, in the last decade rare-earth (RE)-containing langbeinite-type phosphates have been studied intensively owing to their outstanding luminescent properties and applications in LEDs (Liang & Wang, 2011; Liu et al., 2016; Sadhasivam et al., 2017; Terebilenko et al., 2020). Accordingly, further studies of iso- and heterovalent substitution within the cationic sites of the langbeinite structure are important. Structural data for langbeinite-type Hf-containing phosphates are scarce and include only K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a ) and K2YHf(PO4)3 (Ogorodnyk et al., 2009).

In this report, we describe the powder X-ray refinement using the Rietveld method for the multimetal phosphate K2Ni0.5Hf1.5(PO4)3 (I), structurally isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957).

Structural commentary  

As shown in Fig. 1, in the structure of (I) the K, Ni and Hf sites are localized on threefold rotation axes (Wyckoff position 4 a), while the P and all O atoms occupy general sites (12 b). Two metallic sites (Hf,Ni)1 and (Hf,Ni)2 show mixed occupancy with a Hf:Ni ratio of about 0.75:0.25 (nickel proportion 0.246 (8) for the M1 site and 0.254 (8) for the M2 site). A similar M II:M IV ratio was also observed for isostructural phosphates of general composition M I M II 0.5 M IV 1.5(PO4)3, viz. K2Ni0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2007b ), Rb2Ni0.5Ti1.5(PO4)3 (Strutynska et al., 2015), K2Co0.5Ti1.5(PO4)3 and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006), K2Ni0.5Zr1.5(PO4)3 (Zatovsky, 2014), K1.96Mn0.57Zr1.43(PO4)3 and K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a ).

Figure 1.

Figure 1

A view of the asymmetric unit of K2Ni0.5Hf1.5(PO4)3, with displacement spheres drawn at the 50% probability level.

The (Hf,Ni)—O distances in (I) are 1.989 (15) and 2.121 (14) Å for the [(Hf,Ni)1O6] octa­hedron, and 2.131 (17) and 2.172 (16) Å for the [(Hf,Ni)2O6] octa­hedron. The two independent [(Hf,Ni)O6] octa­hedra are linked by three [PO4] tetra­hedra to form an [M 2P3O18] building unit (Fig. 2). These building units are arranged along three directions (threefold rotation axes) and linked together via oxygen vertices, forming a three-dimensional framework structure. Pairs of K+ cations (two independent sites) are localized in large cavities of the resulting framework. The potassium cations are found in 9- and 12-coordination by O atoms with K—O distances ranging from 2.854 (17) Å to 3.372 (18) Å (Table 1, Fig. 3), leading to distorted polyhedra. The [PO4] tetra­hedron shows considerable distortion (Table 1).

Figure 2.

Figure 2

[M 2P3O18] building unit (highlighted in red frames) for (I). K+ cations are shown as blue spheres of arbitrary radius.

Table 1. Selected geometric parameters (Å, °).

K1—O1i 2.854 (17) K2—O4iii 3.372 (18)
K1—O4ii 3.082 (17) P1—O1 1.503 (15)
K1—O2ii 3.103 (15) P1—O2 1.533 (17)
K2—O3ii 2.944 (16) P1—O3 1.48 (2)
K2—O2iii 2.987 (18) P1—O4 1.506 (18)
K2—O4ii 3.041 (18)    
       
O1—P1—O2 110.2 (10) O2—P1—O3 112.6 (10)
O1—P1—O3 107.4 (10) O2—P1—O4 106.0 (10)
O1—P1—O4 120.1 (10) O3—P1—O4 100.3 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Coordination polyhedra [K1O9] and [K2O12] for (I). Displacement spheres are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y + Inline graphic, −z + Inline graphic; (ii) −x + Inline graphic, −y + 1, z + Inline graphic; (iii) −z + Inline graphic, −x + 1, y + Inline graphic; (iv) −y + 1, z + Inline graphic, −x + Inline graphic; (v) y + Inline graphic, −z + Inline graphic, −x + 1; (vi) z + Inline graphic, −x + Inline graphic, −y + 1; (vii) −z + 1, x + Inline graphic, −y + Inline graphic; (viii) −y + Inline graphic, −z + 1, x + Inline graphic; (ix) x + Inline graphic, −y + Inline graphic, −z + 1].

For (I), the calculation of BVS (bond-valence sums) was performed using the parameters for Hf from Brese & O’Keeffe (1991), for Ni from Brown (private communication, 2001) and for K, P from Brown & Altermatt (1985). The corresponding occupation of the M sites by Hf and Ni atoms was taken into account. The sum of BVS of the cations is +23.67 valence units (v.u.), which is close to the −24 v.u. required for the O atoms.

Synthesis and crystallization  

Compound (I) was synthesized using a solid-state reaction method. A well-ground starting mixture of 3.157 g HfO2, 0.374 g NiO, 2.361 g KPO3 and 1.150 g NH4H2PO4 (molar ratio K:Ni:Hf:P = 4:1:3:6) was transferred to a ceramic crucible and pre-heated at 553 K for 2 h. The powder was re-ground, heated at 823 K for 3 h and then milled for 0.5 h in an agate mortar. The resulting fine powder was pressed into a pill and finally calcined at 1273 K for 100 h. The sample was ground before performing powder XRD data collection. Scanning electron microscopy (SEM, Magellan 400, recorded at 10 kV) showed that the obtained sample is an aggregate of small crystallites with a size less than 1 µm (Fig. 4).

Figure 4.

Figure 4

SEM image for (I) (Insert: image at higher magnification).

Refinement  

The experimental, calculated and difference pattern are shown in Fig. 5. Crystal data, data collection and structure refinement details are summarized in Table 2. Structure refinement was performed using K2YHf(PO4)3 (Ogorodnyk et al., 2009) as a starting model. A modified pseudo-Voigt function (Thompson et al., 1987) was used for the profile refinement. The similar shape of the transition-metal octa­hedra indicated that both M positions are occupied by Ni and Hf simultaneously. For the refinement of their occupancies their coordinates and U iso values were constrained together, and the sum of occupancies constrained to unity for both sites.

Figure 5.

Figure 5

Rietveld refinement of K2Ni0.5Hf1.5(PO4)3. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range 10–108°.

Table 2. Experimental details.

Crystal data
Chemical formula K2Ni0.5Hf1.5(PO4)3
M r 660.19
Crystal system, space group Cubic, P213
Temperature (K) 293
a (Å) 10.12201 (5)
V3) 1037.05 (1)
Z 4
Radiation type Cu Kα1, λ = 1.540598 Å
Specimen shape, size (mm) Flat sheet, 15 × 15
 
Data collection
Diffractometer Haoyuan Instrument Co. Ltd DX-2700B
Specimen mounting Glass container
Data collection mode Reflection
Scan method Step
2θ values (°) min = 10.008 2θmax = 105.008 2θstep = 0.020
 
Refinement
R factors and goodness of fit R p = 6.111, R wp = 7.831, R exp = 4.020, R Bragg = 4.709, R(F) = 3.21, χ2 = 4.410
No. of parameters 107
No. of restraints 3

Computer programs: data-collection and reduction software supplied by instrument manufacturer (http://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html), FULLPROF (Rodriguez-Carvajal, 2020), DIAMOND (Brandenburg, 2006), PLATON (Spek, 2020), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012062/wm5581sup1.cif

e-76-01634-sup1.cif (14.2KB, cif)

Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S2056989020012062/wm5581Isup2.rtv

e-76-01634-Isup2.rtv (347.2KB, rtv)

CCDC reference: 2026681

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

K2Ni0.5Hf1.5(PO4)3 Dx = 4.228 Mg m3
Mr = 660.19 Cu Kα radiation, λ = 1.540598 Å
Cubic, P213 T = 293 K
Hall symbol: P 2ac 2ab 3 Particle morphology: tetrahedra
a = 10.12201 (5) Å yellow
V = 1037.05 (1) Å3 flat_sheet, 15 × 15 mm
Z = 4 Specimen preparation: Prepared at 293 K and 101.3 kPa

Data collection

Haoyuan Instrument Co. Ltd DX-2700B diffractometer Data collection mode: reflection
Radiation source: X-ray tube, X-ray Scan method: step
Graphite monochromator min = 10.008°, 2θmax = 105.008°, 2θstep = 0.020°
Specimen mounting: glass container

Refinement

Rp = 6.111 107 parameters
Rwp = 7.831 3 restraints
Rexp = 4.020 3 constraints
RBragg = 4.709 Standard least squares refinement
R(F) = 3.21 (Δ/σ)max = 0.001
4751 data points Background function: Linear Interpolation between a set background points with refinable heights
Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetry Preferred orientation correction: Modified March's Function

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
K1 0.7042 (5) 0.7042 (5) 0.7042 (5) 0.028 (4)*
K2 0.9319 (8) 0.9319 (8) 0.9319 (8) 0.044 (4)*
Ni1 0.14423 (16) 0.14423 (16) 0.14423 (16) 0.0022 (12)* 0.246 (8)
Ni2 0.4147 (2) 0.4147 (2) 0.4147 (2) 0.0019 (12)* 0.254 (8)
Hf1 0.14423 (16) 0.14423 (16) 0.14423 (16) 0.0022 (12)* 0.754 (8)
Hf2 0.4147 (2) 0.4147 (2) 0.4147 (2) 0.0019 (12)* 0.746 (8)
P1 0.4624 (6) 0.2349 (10) 0.1229 (9) 0.004 (2)*
O1 0.3218 (13) 0.2314 (17) 0.0752 (16) 0.011 (6)*
O2 0.5508 (14) 0.3023 (16) 0.0201 (15) 0.008 (4)*
O3 0.5028 (13) 0.0973 (17) 0.1500 (18) 0.008 (6)*
O4 0.4953 (16) 0.2985 (17) 0.2533 (14) 0.009 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
? ? ? ? ? ? ?

Geometric parameters (Å, º)

K1—O1i 2.854 (17) Hf1—O1 2.121 (14)
K1—O4ii 3.082 (17) Hf1—O2x 1.989 (15)
K1—O2ii 3.103 (15) Hf1—O1xi 2.121 (14)
K1—O1iii 2.854 (17) Hf1—O2xii 1.989 (15)
K1—O4iv 3.082 (17) Hf2—O4 2.172 (16)
K1—O2iv 3.103 (15) Hf2—O3i 2.131 (17)
K1—O1v 2.854 (17) Hf2—O4xi 2.172 (16)
K1—O4vi 3.082 (17) Hf2—O3iii 2.131 (17)
K1—O2vi 3.103 (15) Ni1—O1 2.121 (14)
K2—O3ii 2.944 (16) Ni1—O2x 1.989 (15)
K2—O2vii 2.987 (18) Ni1—O1xi 2.121 (14)
K2—O4ii 3.041 (18) Ni1—O2xii 1.989 (15)
K2—O4vii 3.372 (18) Ni2—O4 2.172 (16)
K2—O3iv 2.944 (16) Ni2—O3i 2.131 (17)
K2—O2viii 2.987 (18) Ni2—O4xi 2.172 (16)
K2—O4iv 3.041 (18) Ni2—O3iii 2.131 (17)
K2—O4viii 3.372 (18) P1—O1 1.503 (15)
K2—O3vi 2.944 (16) P1—O2 1.533 (17)
K2—O2ix 2.987 (18) P1—O3 1.48 (2)
K2—O4vi 3.041 (18) P1—O4 1.506 (18)
K2—O4ix 3.372 (18)
O1—Hf1—O2x 90.8 (6) O1xi—Ni1—O2x 87.8 (6)
O1—Hf1—O1xi 93.7 (6) O2x—Ni1—O2xii 87.7 (6)
O1—Hf1—O2xii 175.2 (6) O1xi—Ni1—O2xii 90.8 (6)
O1xi—Hf1—O2x 87.8 (6) O3i—Ni2—O4 95.2 (6)
O2x—Hf1—O2xii 87.7 (6) O4—Ni2—O4xi 94.5 (6)
O1xi—Hf1—O2xii 90.8 (6) O3iii—Ni2—O4 168.5 (6)
O3i—Hf2—O4 95.2 (6) O3i—Ni2—O4xi 78.6 (6)
O4—Hf2—O4xi 94.5 (6) O3i—Ni2—O3iii 92.7 (6)
O3iii—Hf2—O4 168.5 (6) O3iii—Ni2—O4xi 95.2 (6)
O3i—Hf2—O4xi 78.6 (6) O1—P1—O2 110.2 (10)
O3i—Hf2—O3iii 92.7 (6) O1—P1—O3 107.4 (10)
O3iii—Hf2—O4xi 95.2 (6) O1—P1—O4 120.1 (10)
O1—Ni1—O2x 90.8 (6) O2—P1—O3 112.6 (10)
O1—Ni1—O1xi 93.7 (6) O2—P1—O4 106.0 (10)
O1—Ni1—O2xii 175.2 (6) O3—P1—O4 100.3 (11)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) −z+1/2, −x+1, y+1/2; (iv) −y+1, z+1/2, −x+3/2; (v) y+1/2, −z+1/2, −x+1; (vi) z+1/2, −x+3/2, −y+1; (vii) −z+1, x+1/2, −y+3/2; (viii) −y+3/2, −z+1, x+1/2; (ix) x+1/2, −y+3/2, −z+1; (x) x−1/2, −y+1/2, −z; (xi) z, x, y; (xii) −z, x−1/2, −y+1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  4. Brown, I. D. (2001). Private communication.
  5. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Liang, W. & Wang, Y. (2011). Mater. Chem. Phys. 127, 170–173.
  8. Liu, J., Duan, X., Zhang, Y., Li, Z., Yu, F. & Jiang, H. (2016). J. Alloys Compd. 660, 356–360.
  9. Norberg, S. T. (2002). Acta Cryst. B58, 743–749. [DOI] [PMC free article] [PubMed]
  10. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838–2844.
  11. Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
  12. Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63–i64. [DOI] [PMC free article] [PubMed]
  13. Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.
  14. Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51–62.
  15. Rodriguez-Carvajal, J. (2020). FULLPROF. Laboratoire Léon Brillouin (CEA–CNRS), France.
  16. Sadhasivam, S., Manivel, P., Jeganathan, K., Jayasankar, C. K. & Rajesh, N. P. (2017). Mater. Lett. 188, 399–402.
  17. Slobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V. N. & Gütlich, P. (2012). Inorg. Chem. 51, 1380–1385. [DOI] [PubMed]
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Strutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, A. N. (2015). Cryst. Res. Technol. 50, 549–555.
  20. Terebilenko, K. V., Nedilko, S. G., Chornii, V. P., Prokopets, V. M., Slobodyanik, M. S. & Boyko, V. V. (2020). RSC Adv. 10, 25763–25772. [DOI] [PMC free article] [PubMed]
  21. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
  22. Wulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103–106.
  23. Zatovsky, I. V. (2014). Acta Cryst. E70, i41. [DOI] [PMC free article] [PubMed]
  24. Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012062/wm5581sup1.cif

e-76-01634-sup1.cif (14.2KB, cif)

Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S2056989020012062/wm5581Isup2.rtv

e-76-01634-Isup2.rtv (347.2KB, rtv)

CCDC reference: 2026681

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES