Cubic K2Ni0.5Hf1.5(PO4)3 crystallizes in the langbeinite structure type. The principal building units are two independent [(Ni,Hf)O6] octahedra, [PO4] tetrahedra and [KO9] and [KO12] polyhedra.
Keywords: powder diffraction, langbeinite structure type, multimetal phosphate, crystal structure
Abstract
Polycrystalline potassium nickel(II) hafnium(IV) tris(orthophosphate), a langbeinite-type phosphate, was synthesized by a solid-state method. The three-dimensional framework of the title compound is built up from two types of [MO6] octahedra [the M sites are occupied by Hf:Ni in ratios of 0.754 (8):0.246 (8) and 0.746 (8):0.254 (8), respectively] and [PO4] tetrahedra are connected via O vertices. The K+ cations are located in two positions within large cavities of the framework, having coordination numbers of 9 and 12. The Hf, Ni and K sites lie on threefold rotation axes, while the P and O atoms are situated in general positions.
Chemical context
Langbeinite-related complex oxides have a variety of interesting properties, for example, ferroelectricity or ferroelasticity (Norberg, 2002 ▸). In particular, complex phosphates of this type have attracted attention for their high thermal and chemical stability, and many different combinations for structural substitutions are possible (Wulff et al., 1992 ▸; Slobodyanik et al., 2012 ▸). These characteristics made it possible to propose the family of langbeinite-type phosphates as successful hosts for the immobilization of radioactive waste (Orlova et al., 2011 ▸). Moreover, in the last decade rare-earth (RE)-containing langbeinite-type phosphates have been studied intensively owing to their outstanding luminescent properties and applications in LEDs (Liang & Wang, 2011 ▸; Liu et al., 2016 ▸; Sadhasivam et al., 2017 ▸; Terebilenko et al., 2020 ▸). Accordingly, further studies of iso- and heterovalent substitution within the cationic sites of the langbeinite structure are important. Structural data for langbeinite-type Hf-containing phosphates are scarce and include only K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a ▸) and K2YHf(PO4)3 (Ogorodnyk et al., 2009 ▸).
In this report, we describe the powder X-ray refinement using the Rietveld method for the multimetal phosphate K2Ni0.5Hf1.5(PO4)3 (I), structurally isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957 ▸).
Structural commentary
As shown in Fig. 1 ▸, in the structure of (I) the K, Ni and Hf sites are localized on threefold rotation axes (Wyckoff position 4 a), while the P and all O atoms occupy general sites (12 b). Two metallic sites (Hf,Ni)1 and (Hf,Ni)2 show mixed occupancy with a Hf:Ni ratio of about 0.75:0.25 (nickel proportion 0.246 (8) for the M1 site and 0.254 (8) for the M2 site). A similar M II:M IV ratio was also observed for isostructural phosphates of general composition M I M II 0.5 M IV 1.5(PO4)3, viz. K2Ni0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2007b ▸), Rb2Ni0.5Ti1.5(PO4)3 (Strutynska et al., 2015 ▸), K2Co0.5Ti1.5(PO4)3 and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006 ▸), K2Ni0.5Zr1.5(PO4)3 (Zatovsky, 2014 ▸), K1.96Mn0.57Zr1.43(PO4)3 and K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a ▸).
Figure 1.
A view of the asymmetric unit of K2Ni0.5Hf1.5(PO4)3, with displacement spheres drawn at the 50% probability level.
The (Hf,Ni)—O distances in (I) are 1.989 (15) and 2.121 (14) Å for the [(Hf,Ni)1O6] octahedron, and 2.131 (17) and 2.172 (16) Å for the [(Hf,Ni)2O6] octahedron. The two independent [(Hf,Ni)O6] octahedra are linked by three [PO4] tetrahedra to form an [M 2P3O18] building unit (Fig. 2 ▸). These building units are arranged along three directions (threefold rotation axes) and linked together via oxygen vertices, forming a three-dimensional framework structure. Pairs of K+ cations (two independent sites) are localized in large cavities of the resulting framework. The potassium cations are found in 9- and 12-coordination by O atoms with K—O distances ranging from 2.854 (17) Å to 3.372 (18) Å (Table 1 ▸, Fig. 3 ▸), leading to distorted polyhedra. The [PO4] tetrahedron shows considerable distortion (Table 1 ▸).
Figure 2.
[M 2P3O18] building unit (highlighted in red frames) for (I). K+ cations are shown as blue spheres of arbitrary radius.
Table 1. Selected geometric parameters (Å, °).
| K1—O1i | 2.854 (17) | K2—O4iii | 3.372 (18) |
| K1—O4ii | 3.082 (17) | P1—O1 | 1.503 (15) |
| K1—O2ii | 3.103 (15) | P1—O2 | 1.533 (17) |
| K2—O3ii | 2.944 (16) | P1—O3 | 1.48 (2) |
| K2—O2iii | 2.987 (18) | P1—O4 | 1.506 (18) |
| K2—O4ii | 3.041 (18) | ||
| O1—P1—O2 | 110.2 (10) | O2—P1—O3 | 112.6 (10) |
| O1—P1—O3 | 107.4 (10) | O2—P1—O4 | 106.0 (10) |
| O1—P1—O4 | 120.1 (10) | O3—P1—O4 | 100.3 (11) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 3.
Coordination polyhedra [K1O9] and [K2O12] for (I). Displacement spheres are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y +
, −z +
; (ii) −x +
, −y + 1, z +
; (iii) −z +
, −x + 1, y +
; (iv) −y + 1, z +
, −x +
; (v) y +
, −z +
, −x + 1; (vi) z +
, −x +
, −y + 1; (vii) −z + 1, x +
, −y +
; (viii) −y +
, −z + 1, x +
; (ix) x +
, −y +
, −z + 1].
For (I), the calculation of BVS (bond-valence sums) was performed using the parameters for Hf from Brese & O’Keeffe (1991 ▸), for Ni from Brown (private communication, 2001 ▸) and for K, P from Brown & Altermatt (1985 ▸). The corresponding occupation of the M sites by Hf and Ni atoms was taken into account. The sum of BVS of the cations is +23.67 valence units (v.u.), which is close to the −24 v.u. required for the O atoms.
Synthesis and crystallization
Compound (I) was synthesized using a solid-state reaction method. A well-ground starting mixture of 3.157 g HfO2, 0.374 g NiO, 2.361 g KPO3 and 1.150 g NH4H2PO4 (molar ratio K:Ni:Hf:P = 4:1:3:6) was transferred to a ceramic crucible and pre-heated at 553 K for 2 h. The powder was re-ground, heated at 823 K for 3 h and then milled for 0.5 h in an agate mortar. The resulting fine powder was pressed into a pill and finally calcined at 1273 K for 100 h. The sample was ground before performing powder XRD data collection. Scanning electron microscopy (SEM, Magellan 400, recorded at 10 kV) showed that the obtained sample is an aggregate of small crystallites with a size less than 1 µm (Fig. 4 ▸).
Figure 4.
SEM image for (I) (Insert: image at higher magnification).
Refinement
The experimental, calculated and difference pattern are shown in Fig. 5 ▸. Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Structure refinement was performed using K2YHf(PO4)3 (Ogorodnyk et al., 2009 ▸) as a starting model. A modified pseudo-Voigt function (Thompson et al., 1987 ▸) was used for the profile refinement. The similar shape of the transition-metal octahedra indicated that both M positions are occupied by Ni and Hf simultaneously. For the refinement of their occupancies their coordinates and U iso values were constrained together, and the sum of occupancies constrained to unity for both sites.
Figure 5.
Rietveld refinement of K2Ni0.5Hf1.5(PO4)3. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range 10–108°.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | K2Ni0.5Hf1.5(PO4)3 |
| M r | 660.19 |
| Crystal system, space group | Cubic, P213 |
| Temperature (K) | 293 |
| a (Å) | 10.12201 (5) |
| V (Å3) | 1037.05 (1) |
| Z | 4 |
| Radiation type | Cu Kα1, λ = 1.540598 Å |
| Specimen shape, size (mm) | Flat sheet, 15 × 15 |
| Data collection | |
| Diffractometer | Haoyuan Instrument Co. Ltd DX-2700B |
| Specimen mounting | Glass container |
| Data collection mode | Reflection |
| Scan method | Step |
| 2θ values (°) | 2θmin = 10.008 2θmax = 105.008 2θstep = 0.020 |
| Refinement | |
| R factors and goodness of fit | R p = 6.111, R wp = 7.831, R exp = 4.020, R Bragg = 4.709, R(F) = 3.21, χ2 = 4.410 |
| No. of parameters | 107 |
| No. of restraints | 3 |
Computer programs: data-collection and reduction software supplied by instrument manufacturer (http://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html), FULLPROF (Rodriguez-Carvajal, 2020 ▸), DIAMOND (Brandenburg, 2006 ▸), PLATON (Spek, 2020 ▸), WinGX (Farrugia, 2012 ▸) and enCIFer (Allen et al., 2004 ▸).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012062/wm5581sup1.cif
Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S2056989020012062/wm5581Isup2.rtv
CCDC reference: 2026681
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| K2Ni0.5Hf1.5(PO4)3 | Dx = 4.228 Mg m−3 |
| Mr = 660.19 | Cu Kα radiation, λ = 1.540598 Å |
| Cubic, P213 | T = 293 K |
| Hall symbol: P 2ac 2ab 3 | Particle morphology: tetrahedra |
| a = 10.12201 (5) Å | yellow |
| V = 1037.05 (1) Å3 | flat_sheet, 15 × 15 mm |
| Z = 4 | Specimen preparation: Prepared at 293 K and 101.3 kPa |
Data collection
| Haoyuan Instrument Co. Ltd DX-2700B diffractometer | Data collection mode: reflection |
| Radiation source: X-ray tube, X-ray | Scan method: step |
| Graphite monochromator | 2θmin = 10.008°, 2θmax = 105.008°, 2θstep = 0.020° |
| Specimen mounting: glass container |
Refinement
| Rp = 6.111 | 107 parameters |
| Rwp = 7.831 | 3 restraints |
| Rexp = 4.020 | 3 constraints |
| RBragg = 4.709 | Standard least squares refinement |
| R(F) = 3.21 | (Δ/σ)max = 0.001 |
| 4751 data points | Background function: Linear Interpolation between a set background points with refinable heights |
| Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetry | Preferred orientation correction: Modified March's Function |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| K1 | 0.7042 (5) | 0.7042 (5) | 0.7042 (5) | 0.028 (4)* | |
| K2 | 0.9319 (8) | 0.9319 (8) | 0.9319 (8) | 0.044 (4)* | |
| Ni1 | 0.14423 (16) | 0.14423 (16) | 0.14423 (16) | 0.0022 (12)* | 0.246 (8) |
| Ni2 | 0.4147 (2) | 0.4147 (2) | 0.4147 (2) | 0.0019 (12)* | 0.254 (8) |
| Hf1 | 0.14423 (16) | 0.14423 (16) | 0.14423 (16) | 0.0022 (12)* | 0.754 (8) |
| Hf2 | 0.4147 (2) | 0.4147 (2) | 0.4147 (2) | 0.0019 (12)* | 0.746 (8) |
| P1 | 0.4624 (6) | 0.2349 (10) | 0.1229 (9) | 0.004 (2)* | |
| O1 | 0.3218 (13) | 0.2314 (17) | 0.0752 (16) | 0.011 (6)* | |
| O2 | 0.5508 (14) | 0.3023 (16) | 0.0201 (15) | 0.008 (4)* | |
| O3 | 0.5028 (13) | 0.0973 (17) | 0.1500 (18) | 0.008 (6)* | |
| O4 | 0.4953 (16) | 0.2985 (17) | 0.2533 (14) | 0.009 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| ? | ? | ? | ? | ? | ? | ? |
Geometric parameters (Å, º)
| K1—O1i | 2.854 (17) | Hf1—O1 | 2.121 (14) |
| K1—O4ii | 3.082 (17) | Hf1—O2x | 1.989 (15) |
| K1—O2ii | 3.103 (15) | Hf1—O1xi | 2.121 (14) |
| K1—O1iii | 2.854 (17) | Hf1—O2xii | 1.989 (15) |
| K1—O4iv | 3.082 (17) | Hf2—O4 | 2.172 (16) |
| K1—O2iv | 3.103 (15) | Hf2—O3i | 2.131 (17) |
| K1—O1v | 2.854 (17) | Hf2—O4xi | 2.172 (16) |
| K1—O4vi | 3.082 (17) | Hf2—O3iii | 2.131 (17) |
| K1—O2vi | 3.103 (15) | Ni1—O1 | 2.121 (14) |
| K2—O3ii | 2.944 (16) | Ni1—O2x | 1.989 (15) |
| K2—O2vii | 2.987 (18) | Ni1—O1xi | 2.121 (14) |
| K2—O4ii | 3.041 (18) | Ni1—O2xii | 1.989 (15) |
| K2—O4vii | 3.372 (18) | Ni2—O4 | 2.172 (16) |
| K2—O3iv | 2.944 (16) | Ni2—O3i | 2.131 (17) |
| K2—O2viii | 2.987 (18) | Ni2—O4xi | 2.172 (16) |
| K2—O4iv | 3.041 (18) | Ni2—O3iii | 2.131 (17) |
| K2—O4viii | 3.372 (18) | P1—O1 | 1.503 (15) |
| K2—O3vi | 2.944 (16) | P1—O2 | 1.533 (17) |
| K2—O2ix | 2.987 (18) | P1—O3 | 1.48 (2) |
| K2—O4vi | 3.041 (18) | P1—O4 | 1.506 (18) |
| K2—O4ix | 3.372 (18) | ||
| O1—Hf1—O2x | 90.8 (6) | O1xi—Ni1—O2x | 87.8 (6) |
| O1—Hf1—O1xi | 93.7 (6) | O2x—Ni1—O2xii | 87.7 (6) |
| O1—Hf1—O2xii | 175.2 (6) | O1xi—Ni1—O2xii | 90.8 (6) |
| O1xi—Hf1—O2x | 87.8 (6) | O3i—Ni2—O4 | 95.2 (6) |
| O2x—Hf1—O2xii | 87.7 (6) | O4—Ni2—O4xi | 94.5 (6) |
| O1xi—Hf1—O2xii | 90.8 (6) | O3iii—Ni2—O4 | 168.5 (6) |
| O3i—Hf2—O4 | 95.2 (6) | O3i—Ni2—O4xi | 78.6 (6) |
| O4—Hf2—O4xi | 94.5 (6) | O3i—Ni2—O3iii | 92.7 (6) |
| O3iii—Hf2—O4 | 168.5 (6) | O3iii—Ni2—O4xi | 95.2 (6) |
| O3i—Hf2—O4xi | 78.6 (6) | O1—P1—O2 | 110.2 (10) |
| O3i—Hf2—O3iii | 92.7 (6) | O1—P1—O3 | 107.4 (10) |
| O3iii—Hf2—O4xi | 95.2 (6) | O1—P1—O4 | 120.1 (10) |
| O1—Ni1—O2x | 90.8 (6) | O2—P1—O3 | 112.6 (10) |
| O1—Ni1—O1xi | 93.7 (6) | O2—P1—O4 | 106.0 (10) |
| O1—Ni1—O2xii | 175.2 (6) | O3—P1—O4 | 100.3 (11) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) −z+1/2, −x+1, y+1/2; (iv) −y+1, z+1/2, −x+3/2; (v) y+1/2, −z+1/2, −x+1; (vi) z+1/2, −x+3/2, −y+1; (vii) −z+1, x+1/2, −y+3/2; (viii) −y+3/2, −z+1, x+1/2; (ix) x+1/2, −y+3/2, −z+1; (x) x−1/2, −y+1/2, −z; (xi) z, x, y; (xii) −z, x−1/2, −y+1/2.
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
- Brown, I. D. (2001). Private communication.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Liang, W. & Wang, Y. (2011). Mater. Chem. Phys. 127, 170–173.
- Liu, J., Duan, X., Zhang, Y., Li, Z., Yu, F. & Jiang, H. (2016). J. Alloys Compd. 660, 356–360.
- Norberg, S. T. (2002). Acta Cryst. B58, 743–749. [DOI] [PMC free article] [PubMed]
- Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838–2844.
- Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
- Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63–i64. [DOI] [PMC free article] [PubMed]
- Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.
- Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51–62.
- Rodriguez-Carvajal, J. (2020). FULLPROF. Laboratoire Léon Brillouin (CEA–CNRS), France.
- Sadhasivam, S., Manivel, P., Jeganathan, K., Jayasankar, C. K. & Rajesh, N. P. (2017). Mater. Lett. 188, 399–402.
- Slobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V. N. & Gütlich, P. (2012). Inorg. Chem. 51, 1380–1385. [DOI] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Strutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, A. N. (2015). Cryst. Res. Technol. 50, 549–555.
- Terebilenko, K. V., Nedilko, S. G., Chornii, V. P., Prokopets, V. M., Slobodyanik, M. S. & Boyko, V. V. (2020). RSC Adv. 10, 25763–25772. [DOI] [PMC free article] [PubMed]
- Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
- Wulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103–106.
- Zatovsky, I. V. (2014). Acta Cryst. E70, i41. [DOI] [PMC free article] [PubMed]
- Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020012062/wm5581sup1.cif
Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S2056989020012062/wm5581Isup2.rtv
CCDC reference: 2026681
Additional supporting information: crystallographic information; 3D view; checkCIF report





