Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Sep 22;76(Pt 10):1661–1664. doi: 10.1107/S2056989020012608

Crystal structure of {N 1,N 3-bis­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­idene]-2,2-di­methyl­propane-1,3-di­amine}bis­(thio­cyanato-κN)iron(II)

Kateryna Znovjyak a, Maksym Seredyuk a,*, Sergey O Malinkin a, Sergiu Shova b, Lutfullo Soliev c,*
PMCID: PMC7534255  PMID: 33117585

The title compound shows a cis-arrangement of the thio­cyanate anions, while the coordination polyhedron around the iron(II) atom is close to a trigonal prism.

Keywords: iron(II) complex, thio­cyanate complex, high spin state, trigonal distortion, crystal structure

Abstract

The unit cell of the title compound, [FeII(NCS)2(C25H28N8)], consists of two charge-neutral complex mol­ecules related by an inversion centre. In the complex mol­ecule, the tetra­dentate ligand N 1,N 3-bis­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole moieties and aldimine groups. Two thio­cyanate anions, coordinating through their N atoms, complete the coordination sphere of the central ion. In the crystal, neighbouring mol­ecules are linked through weak C—H⋯π, C—H⋯S and C—H⋯N inter­actions into a two-dimensional network extending parallel to (011). The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H (35.2%), H⋯C/C⋯H (26.4%), H⋯S/S⋯H (19.3%) and H⋯N/N⋯H (13.9%).

Chemical context  

Coordination complexes of 3d transition metals represent a large class of potentially applicable materials exhibiting catalytic (Strotmeyer et al., 2003), magnetic (Pavlishchuk et al., 2010) and spin-switching functionalities (Gütlich & Goodwin, 2004) with easily detectable and exploitable variations of physical properties (Gural’skiy et al., 2012; Suleimanov et al., 2015).

Iron(II) complexes based on Schiff bases derived from N-substituted 1,2,3-triazole aldehydes represent an inter­esting class of coordination compounds exhibiting spin-state switching between low- and high-spin states in different temperature regions (Hagiwara et al., 2014, 2016, 2020; Hora & Hagiwara, 2017). In charge-neutral mononuclear complexes of this kind described so far, the thio­cyanate anions occupy the axial position of the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016; Hagiwara et al., 2017).

Having ongoing inter­est in functional 3d metal complexes formed by polydentate ligands (Seredyuk et al., 2006, 2007, 2011, 2015, 2016; Seredyuk, 2012; Valverde-Muñoz et al., 2020), we report here the synthesis and crystal structure of a new high-spin FeII complex based on the tetra­dentate ligand N 1,N 3-bis­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine with thio­cyanate anions arranged in a cis-configuration.graphic file with name e-76-01661-scheme1.jpg

Structural commentary  

The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by four N atoms of the tetra­dentate Schiff-base ligand and two NCS counter-ions (Fig. 1). The average bond length <Fe—N> = 2.19 (9) Å is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004). The N—Fe—N angle between the cis-aligned thio­cyanate N atoms is 87.58 (9)°. The average trigonal distortion parameters Σ = Σ1 12(|90 − φ i|), where φ i is the angle N—Fe—N′ (Drew et al., 1995), and Θ = Σ1 24(|60 − θ i|), where θ i is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990), are 453.2 and 149.38°, respectively. These values reveal a great deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017). With the aid of continuous shape measure (CShM), the closest shape of a coordination polyhedron and its distortion can be determined numerically (Kershaw Cook et al., 2015). The calculated CShM value relative to the ideal Oh symmetry for an octa­hedron is 6.285, while it is 4.008 relative to the ideal D 3h symmetry for a trigonal prism. Hence, the polyhedron is closer to the latter shape; however, it is notably distorted (for the ideal polyhedron CShM = 0). The volume of the [FeN6] coordination polyhedron is 12.4 Å3.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Supra­molecular features  

Neighbouring complex mol­ecules form dimers through double weak contacts C18—H18BCg i of 3.330 (3) Å (Cg corres­ponds to the centroid of the C20–C25 phenyl ring; symmetry codes refer to Table 1). The CH group of one of the triazole rings forms a weak hydrogen bond C7—H7⋯S1ii [3.755 (3) Å] with a thio­cyanate anion. This, together with the C4—H4B⋯C27ii and C4—H4B⋯N10ii inter­actions [3.709 (3) and 3.617 (3) Å] involving the C≡N group of the anion, links the dimers into a supra­molecular chain propagating parallel to [01Inline graphic] (Fig. 2). These chains are weakly bound through double contacts between the benzyl groups and the thio­cyanate anions [C21—H21⋯C27iii = 3.603 (3) Å] and triazole groups [C19—H19A⋯N7iii = 3.311 (3) Å] of neighbouring complex mol­ecules, forming a two-dimensional supra­molecular array extending parallel to (011).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg i 0.93 2.42 3.330 (3) 167
C19—H19A⋯N7ii 0.97 2.38 3.311 (3) 162
C21—H21⋯C27ii 0.93 2.89 3.603 (3) 134
C7—H7⋯S1iii 0.93 2.87 3.755 (3) 159
C4—H4B⋯N10iii 0.97 2.69 3.617 (3) 160
C4—H4B⋯C27iii 0.97 2.75 3.709 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Weak hydrogen bonding (cyan dashed lines), resulting in the formation of chains in the packing.

Hirshfeld surface and 2D fingerprint plots  

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2018), with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.2801 (red) to 1.8236 (blue) a.u. The pale-red spots symbolize short contacts and negative d norm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illus­trated in Fig. 3. The Hirshfeld surfaces mapped over d norm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 35.2%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 26.4%, and the H⋯S/S⋯H contacts contribute 19.3% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 13.9% contribution to the Hirshfeld surface.

Figure 3.

Figure 3

Two projections of d norm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent contacts shorter than the sum of the van der Waals radii, while blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are zones close to the sum of van der Waals radii.

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function d norm plotted onto the surface for the different inter­actions.

Database survey  

A search of the Cambridge Structural Database (CSD 2020, update of May 2020; Groom et al., 2016) revealed four similar FeII thio­cyanate complexes, derivatives of a 1,3-di­amino­propanes and N-substituted 1,2,3-triazole aldehydes, viz. DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017; Hagiwara & Okada, 2016). These complexes show hysteretic spin crossover with the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexa­dentate ligands favoring a trigonal–prismatic environment of the central FeII ion in the low- or high-spin state: CABLOH (Voloshin et al., 2001), BUNSAF (El Hajj et al., 2009), OWIHAE (Seredyuk et al., 2011), OTANOO (Stock et al., 2016). For comparison purposes, Table 2 collates the distortion parameters Σ, Θ and CShM for the latter complexes.

Table 2. Comparison of the distortion parameters for indicated FeII complexes.

Parameters for OTANOO averaged over five independent complex cations.

Compound <Fe–N> (Å) Σ (°) Θ (°) CShM (D 3h)
Title compound 2.186 453.2 149.38 4.008
CABLOH 1.899 725.74 178.16 0.525
BUNSAF 2.218 703.65 201.07 1.887
OWIHAE 2.202 894.48 206.57 0.602
OTANOO 2.191 697.3 183.24 1.098

Synthesis and crystallization  

The ligand of the title compound was obtained in situ by condensation of 1 eq. of 2,2-dimethyl-1,3-propanedi­amine with 2.2 eq. of 1-benzyl-1H-1,2,3-triazole-4-carbaldehyde in boiling methanol over 5 min and subsequent reaction with 1 eq. of [Fe(py)4(NCS)2] dissolved in a minimum amount of boiling methanol with a minimum amount of ascorbic acid. The formed yellow solution was slowly cooled to ambient temperature. The formed orange crystals were subsequently filtered off. Elemental analysis calculated (%) for C27H28FeN10S2: C, 52.94; H, 4.61; N, 22.87; S, 10.47; found: C, 52.88; H, 4.37; N, 22.40; S, 10.35. IR vKBr (cm−1): 1615 (C=N), 2071, 2115 (NCS).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.96–0.97 Å for methyl­ene and methyl groups and 0.93 Å for aromatic H atoms, and refined using a riding model with U iso(H) = 1.2–1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Fe(NCS)2(C25H28N8)]
M r 612.56
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 250
a, b, c (Å) 8.9656 (5), 12.5060 (6), 14.2311 (7)
α, β, γ (°) 67.552 (5), 85.106 (4), 84.087 (4)
V3) 1465.06 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10677, 5175, 4416
R int 0.018
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.082, 1.03
No. of reflections 5175
No. of parameters 391
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.62, −0.59

Computer programs: CrysAlis PRO (Rigaku OD, 2018), olex2.solve (Bourhis et al., 2015), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012608/wm5580sup1.cif

e-76-01661-sup1.cif (395.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012608/wm5580Isup2.hkl

e-76-01661-Isup2.hkl (411.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020012608/wm5580Isup3.cdx

CCDC reference: 2032292

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Fe(NCS)2(C25H28N8)] Z = 2
Mr = 612.56 F(000) = 636
Triclinic, P1 Dx = 1.389 Mg m3
a = 8.9656 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.5060 (6) Å Cell parameters from 4582 reflections
c = 14.2311 (7) Å θ = 1.6–28.8°
α = 67.552 (5)° µ = 0.69 mm1
β = 85.106 (4)° T = 250 K
γ = 84.087 (4)° Plate, orange
V = 1465.06 (14) Å3 0.4 × 0.2 × 0.2 mm

Data collection

Rigaku Oxford Diffraction Xcalibur, Eos diffractometer 5175 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4416 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 1.6°
ω scans h = −10→9
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −14→13
Tmin = 0.911, Tmax = 1.000 l = −16→16
10677 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 Only H-atom displacement parameters refined
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1951P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5175 reflections Δρmax = 0.62 e Å3
391 parameters Δρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.46967 (4) 0.25650 (3) 0.15072 (2) 0.02848 (10)
S1 0.83937 (11) 0.13105 (7) −0.06302 (8) 0.0749 (3)
S2 0.93628 (8) 0.30840 (7) 0.26836 (6) 0.0597 (2)
N1 0.3705 (2) 0.40653 (16) 0.02733 (14) 0.0288 (4)
N2 0.3331 (2) 0.37376 (16) 0.22397 (14) 0.0307 (4)
N3 0.3079 (2) 0.37587 (17) 0.31494 (15) 0.0371 (5)
N4 0.2416 (2) 0.48269 (17) 0.30170 (15) 0.0357 (5)
N5 0.3032 (2) 0.17554 (16) 0.09218 (14) 0.0310 (4)
N6 0.3792 (2) 0.11839 (15) 0.28389 (14) 0.0296 (4)
N7 0.3924 (2) 0.08273 (16) 0.38237 (15) 0.0331 (5)
N8 0.2832 (2) 0.01043 (15) 0.42600 (14) 0.0306 (4)
N9 0.6253 (3) 0.2060 (2) 0.05480 (19) 0.0528 (6)
N10 0.6514 (2) 0.28477 (17) 0.21860 (16) 0.0385 (5)
C1 0.2253 (4) 0.3438 (3) −0.1867 (2) 0.0555 (8)
H1A 0.193892 0.423117 −0.225831 0.056 (9)*
H1B 0.152987 0.294205 −0.190475 0.070 (10)*
H1C 0.321299 0.323624 −0.213362 0.070 (10)*
C2 0.0854 (3) 0.3642 (2) −0.0346 (2) 0.0419 (6)
H2A 0.091918 0.352941 0.035621 0.049 (8)*
H2B 0.010603 0.317602 −0.040245 0.053 (8)*
H2C 0.058264 0.444495 −0.073289 0.058 (9)*
C3 0.2375 (3) 0.3284 (2) −0.07558 (17) 0.0341 (5)
C4 0.3598 (3) 0.4059 (2) −0.07427 (17) 0.0346 (6)
H4A 0.455840 0.377726 −0.096377 0.029 (6)*
H4B 0.336486 0.484535 −0.121707 0.038 (7)*
C5 0.2984 (3) 0.48861 (19) 0.04771 (18) 0.0307 (5)
H5 0.256242 0.553702 −0.003344 0.033 (6)*
C6 0.2840 (2) 0.47738 (18) 0.15301 (17) 0.0290 (5)
C7 0.2245 (3) 0.5470 (2) 0.20293 (19) 0.0351 (6)
H7 0.181423 0.622568 0.174611 0.031 (6)*
C8 0.1953 (3) 0.5106 (3) 0.3915 (2) 0.0493 (7)
H8A 0.190249 0.438538 0.450396 0.066 (9)*
H8B 0.094871 0.548892 0.382656 0.067 (10)*
C9 0.2961 (3) 0.5868 (2) 0.4139 (2) 0.0463 (7)
C10 0.3637 (4) 0.6766 (3) 0.3392 (3) 0.0616 (8)
H10 0.351491 0.691169 0.271088 0.064 (9)*
C11 0.4509 (4) 0.7463 (3) 0.3655 (4) 0.0805 (11)
H11 0.497489 0.806878 0.314888 0.080 (12)*
C12 0.4680 (4) 0.7252 (4) 0.4664 (4) 0.0851 (13)
H12 0.527762 0.770575 0.483973 0.106 (14)*
C13 0.3976 (4) 0.6382 (5) 0.5402 (4) 0.0874 (13)
H13 0.406323 0.625738 0.608290 0.104 (14)*
C14 0.3135 (4) 0.5684 (4) 0.5147 (3) 0.0666 (10)
H14 0.267676 0.507861 0.565894 0.104 (15)*
C15 0.2819 (3) 0.2003 (2) −0.01518 (18) 0.0373 (6)
H15A 0.204471 0.153918 −0.019696 0.042 (7)*
H15B 0.374371 0.177465 −0.045658 0.038 (7)*
C16 0.2287 (3) 0.0988 (2) 0.15956 (18) 0.0364 (6)
H16 0.155892 0.062534 0.142359 0.048 (8)*
C17 0.2622 (3) 0.07019 (19) 0.26449 (18) 0.0314 (5)
C18 0.2011 (3) 0.0009 (2) 0.35577 (18) 0.0357 (6)
H18 0.119557 −0.043570 0.366906 0.042 (7)*
C19 0.2629 (3) −0.0405 (2) 0.53669 (17) 0.0348 (6)
H19A 0.359759 −0.070943 0.565445 0.038 (7)*
H19B 0.200022 −0.104871 0.555534 0.019 (5)*
C20 0.1924 (2) 0.04492 (19) 0.58170 (17) 0.0306 (5)
C21 0.1961 (3) 0.0160 (2) 0.6857 (2) 0.0419 (6)
H21 0.247770 −0.052834 0.725248 0.049 (8)*
C22 0.1244 (3) 0.0879 (2) 0.7316 (2) 0.0506 (7)
H22 0.127846 0.067512 0.801438 0.053 (8)*
C23 0.0476 (3) 0.1901 (2) 0.6733 (2) 0.0490 (7)
H23 −0.002501 0.238136 0.704015 0.049 (8)*
C24 0.0450 (3) 0.2211 (2) 0.5698 (2) 0.0427 (6)
H24 −0.005800 0.290501 0.530513 0.048 (8)*
C25 0.1175 (3) 0.1496 (2) 0.52394 (19) 0.0359 (6)
H25 0.116296 0.171620 0.453750 0.037 (7)*
C26 0.7137 (3) 0.1742 (2) 0.00625 (19) 0.0368 (6)
C27 0.7700 (3) 0.2947 (2) 0.23968 (18) 0.0345 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02404 (18) 0.02930 (18) 0.03075 (19) −0.00346 (13) −0.00173 (13) −0.00939 (14)
S1 0.0808 (6) 0.0533 (5) 0.1010 (7) −0.0154 (4) 0.0440 (5) −0.0481 (5)
S2 0.0373 (4) 0.0653 (5) 0.0640 (5) −0.0146 (3) −0.0200 (3) −0.0040 (4)
N1 0.0271 (10) 0.0298 (10) 0.0312 (10) −0.0087 (8) −0.0005 (8) −0.0121 (9)
N2 0.0294 (11) 0.0304 (10) 0.0334 (11) −0.0020 (8) −0.0054 (8) −0.0124 (9)
N3 0.0412 (12) 0.0357 (11) 0.0358 (12) −0.0008 (9) −0.0053 (9) −0.0149 (9)
N4 0.0365 (12) 0.0361 (11) 0.0396 (12) −0.0018 (9) −0.0041 (9) −0.0199 (10)
N5 0.0353 (11) 0.0284 (10) 0.0316 (11) −0.0042 (8) −0.0030 (8) −0.0130 (9)
N6 0.0276 (10) 0.0269 (10) 0.0330 (11) −0.0037 (8) −0.0028 (8) −0.0091 (9)
N7 0.0296 (11) 0.0307 (10) 0.0341 (11) −0.0061 (8) −0.0025 (8) −0.0056 (9)
N8 0.0280 (10) 0.0274 (10) 0.0325 (11) −0.0041 (8) 0.0008 (8) −0.0068 (9)
N9 0.0371 (14) 0.0676 (16) 0.0621 (16) 0.0012 (11) 0.0028 (12) −0.0361 (14)
N10 0.0295 (12) 0.0374 (12) 0.0464 (13) −0.0031 (9) −0.0078 (9) −0.0122 (10)
C1 0.080 (2) 0.0589 (19) 0.0332 (15) −0.0080 (17) −0.0100 (15) −0.0215 (15)
C2 0.0385 (15) 0.0481 (16) 0.0431 (16) −0.0039 (12) −0.0114 (12) −0.0196 (13)
C3 0.0418 (14) 0.0362 (13) 0.0270 (12) −0.0057 (11) −0.0060 (10) −0.0133 (11)
C4 0.0412 (15) 0.0341 (13) 0.0278 (12) −0.0075 (11) 0.0019 (10) −0.0104 (11)
C5 0.0321 (13) 0.0261 (12) 0.0337 (13) −0.0073 (10) −0.0063 (10) −0.0087 (10)
C6 0.0257 (12) 0.0245 (11) 0.0373 (13) −0.0031 (9) −0.0070 (10) −0.0108 (10)
C7 0.0357 (14) 0.0291 (13) 0.0426 (15) 0.0014 (10) −0.0076 (11) −0.0157 (11)
C8 0.0528 (18) 0.0564 (18) 0.0449 (16) −0.0012 (14) 0.0061 (13) −0.0287 (15)
C9 0.0437 (16) 0.0541 (17) 0.0522 (17) 0.0130 (13) −0.0100 (13) −0.0351 (15)
C10 0.070 (2) 0.067 (2) 0.065 (2) −0.0053 (17) −0.0127 (17) −0.0413 (18)
C11 0.074 (3) 0.069 (2) 0.118 (3) −0.004 (2) −0.019 (2) −0.055 (3)
C12 0.061 (2) 0.111 (3) 0.132 (4) 0.025 (2) −0.039 (3) −0.101 (3)
C13 0.066 (3) 0.143 (4) 0.090 (3) 0.034 (3) −0.033 (2) −0.089 (3)
C14 0.060 (2) 0.096 (3) 0.058 (2) 0.0226 (19) −0.0177 (17) −0.049 (2)
C15 0.0471 (16) 0.0363 (13) 0.0335 (13) −0.0077 (11) −0.0022 (11) −0.0176 (11)
C16 0.0400 (14) 0.0351 (13) 0.0395 (14) −0.0119 (11) −0.0038 (11) −0.0174 (12)
C17 0.0312 (13) 0.0275 (12) 0.0371 (13) −0.0065 (10) −0.0023 (10) −0.0127 (10)
C18 0.0332 (14) 0.0358 (13) 0.0375 (14) −0.0137 (11) −0.0005 (11) −0.0107 (11)
C19 0.0339 (14) 0.0301 (13) 0.0334 (13) −0.0023 (10) −0.0007 (10) −0.0044 (11)
C20 0.0259 (12) 0.0291 (12) 0.0336 (13) −0.0070 (9) −0.0018 (10) −0.0072 (10)
C21 0.0439 (16) 0.0387 (14) 0.0409 (15) 0.0017 (12) −0.0129 (12) −0.0116 (12)
C22 0.0627 (19) 0.0567 (18) 0.0413 (16) −0.0051 (14) −0.0105 (14) −0.0265 (14)
C23 0.0525 (18) 0.0435 (16) 0.0619 (19) −0.0059 (13) −0.0020 (14) −0.0317 (15)
C24 0.0394 (15) 0.0281 (13) 0.0569 (18) −0.0023 (11) −0.0001 (12) −0.0122 (13)
C25 0.0329 (14) 0.0325 (13) 0.0342 (14) −0.0055 (10) 0.0006 (10) −0.0033 (11)
C26 0.0356 (14) 0.0337 (13) 0.0429 (15) −0.0039 (11) −0.0030 (12) −0.0160 (12)
C27 0.0349 (15) 0.0296 (12) 0.0315 (13) −0.0023 (10) −0.0025 (10) −0.0028 (10)

Geometric parameters (Å, º)

Fe1—N1 2.1911 (19) C5—C6 1.446 (3)
Fe1—N2 2.306 (2) C6—C7 1.364 (3)
Fe1—N5 2.2618 (19) C7—H7 0.9300
Fe1—N6 2.1817 (18) C8—H8A 0.9700
Fe1—N9 2.088 (2) C8—H8B 0.9700
Fe1—N10 2.088 (2) C8—C9 1.511 (4)
S1—C26 1.620 (3) C9—C10 1.370 (4)
S2—C27 1.621 (3) C9—C14 1.383 (4)
N1—C4 1.460 (3) C10—H10 0.9300
N1—C5 1.271 (3) C10—C11 1.397 (4)
N2—N3 1.305 (3) C11—H11 0.9300
N2—C6 1.361 (3) C11—C12 1.376 (6)
N3—N4 1.355 (3) C12—H12 0.9300
N4—C7 1.339 (3) C12—C13 1.357 (6)
N4—C8 1.466 (3) C13—H13 0.9300
N5—C15 1.464 (3) C13—C14 1.373 (5)
N5—C16 1.267 (3) C14—H14 0.9300
N6—N7 1.310 (3) C15—H15A 0.9700
N6—C17 1.359 (3) C15—H15B 0.9700
N7—N8 1.345 (2) C16—H16 0.9300
N8—C18 1.338 (3) C16—C17 1.447 (3)
N8—C19 1.459 (3) C17—C18 1.362 (3)
N9—C26 1.147 (3) C18—H18 0.9300
N10—C27 1.161 (3) C19—H19A 0.9700
C1—H1A 0.9600 C19—H19B 0.9700
C1—H1B 0.9600 C19—C20 1.505 (3)
C1—H1C 0.9600 C20—C21 1.386 (3)
C1—C3 1.530 (3) C20—C25 1.390 (3)
C2—H2A 0.9600 C21—H21 0.9300
C2—H2B 0.9600 C21—C22 1.380 (4)
C2—H2C 0.9600 C22—H22 0.9300
C2—C3 1.529 (3) C22—C23 1.380 (4)
C3—C4 1.543 (3) C23—H23 0.9300
C3—C15 1.530 (3) C23—C24 1.374 (4)
C4—H4A 0.9700 C24—H24 0.9300
C4—H4B 0.9700 C24—C25 1.379 (4)
C5—H5 0.9300 C25—H25 0.9300
N1—Fe1—N2 72.65 (7) N4—C7—H7 127.6
N1—Fe1—N5 77.61 (7) C6—C7—H7 127.6
N5—Fe1—N2 107.15 (7) N4—C8—H8A 108.4
N6—Fe1—N1 134.53 (7) N4—C8—H8B 108.4
N6—Fe1—N2 82.74 (7) N4—C8—C9 115.4 (2)
N6—Fe1—N5 73.95 (7) H8A—C8—H8B 107.5
N9—Fe1—N1 94.52 (9) C9—C8—H8A 108.4
N9—Fe1—N2 159.71 (8) C9—C8—H8B 108.4
N9—Fe1—N5 84.55 (8) C10—C9—C8 123.0 (3)
N9—Fe1—N6 116.89 (9) C10—C9—C14 118.9 (3)
N10—Fe1—N1 116.78 (7) C14—C9—C8 118.0 (3)
N10—Fe1—N2 84.55 (8) C9—C10—H10 120.0
N10—Fe1—N5 164.17 (7) C9—C10—C11 120.0 (3)
N10—Fe1—N6 97.64 (7) C11—C10—H10 120.0
N10—Fe1—N9 87.58 (9) C10—C11—H11 120.0
C4—N1—Fe1 121.79 (15) C12—C11—C10 120.0 (4)
C5—N1—Fe1 119.40 (16) C12—C11—H11 120.0
C5—N1—C4 117.8 (2) C11—C12—H12 120.0
N3—N2—Fe1 137.20 (15) C13—C12—C11 119.9 (4)
N3—N2—C6 109.88 (19) C13—C12—H12 120.0
C6—N2—Fe1 111.96 (15) C12—C13—H13 119.9
N2—N3—N4 106.06 (18) C12—C13—C14 120.3 (4)
N3—N4—C8 119.0 (2) C14—C13—H13 119.9
C7—N4—N3 111.3 (2) C9—C14—H14 119.5
C7—N4—C8 129.7 (2) C13—C14—C9 120.9 (4)
C15—N5—Fe1 125.38 (14) C13—C14—H14 119.5
C16—N5—Fe1 115.78 (16) N5—C15—C3 112.87 (19)
C16—N5—C15 118.8 (2) N5—C15—H15A 109.0
N7—N6—Fe1 135.01 (15) N5—C15—H15B 109.0
N7—N6—C17 109.86 (18) C3—C15—H15A 109.0
C17—N6—Fe1 113.90 (14) C3—C15—H15B 109.0
N6—N7—N8 106.19 (18) H15A—C15—H15B 107.8
N7—N8—C19 119.86 (19) N5—C16—H16 121.5
C18—N8—N7 111.16 (19) N5—C16—C17 116.9 (2)
C18—N8—C19 128.89 (19) C17—C16—H16 121.5
C26—N9—Fe1 176.7 (2) N6—C17—C16 118.5 (2)
C27—N10—Fe1 165.1 (2) N6—C17—C18 107.5 (2)
H1A—C1—H1B 109.5 C18—C17—C16 134.0 (2)
H1A—C1—H1C 109.5 N8—C18—C17 105.3 (2)
H1B—C1—H1C 109.5 N8—C18—H18 127.3
C3—C1—H1A 109.5 C17—C18—H18 127.3
C3—C1—H1B 109.5 N8—C19—H19A 109.0
C3—C1—H1C 109.5 N8—C19—H19B 109.0
H2A—C2—H2B 109.5 N8—C19—C20 113.00 (18)
H2A—C2—H2C 109.5 H19A—C19—H19B 107.8
H2B—C2—H2C 109.5 C20—C19—H19A 109.0
C3—C2—H2A 109.5 C20—C19—H19B 109.0
C3—C2—H2B 109.5 C21—C20—C19 118.8 (2)
C3—C2—H2C 109.5 C21—C20—C25 118.4 (2)
C1—C3—C4 106.8 (2) C25—C20—C19 122.7 (2)
C2—C3—C1 109.2 (2) C20—C21—H21 119.5
C2—C3—C4 111.5 (2) C22—C21—C20 121.0 (2)
C2—C3—C15 110.2 (2) C22—C21—H21 119.5
C15—C3—C1 107.8 (2) C21—C22—H22 120.1
C15—C3—C4 111.2 (2) C21—C22—C23 119.7 (3)
N1—C4—C3 111.39 (18) C23—C22—H22 120.1
N1—C4—H4A 109.4 C22—C23—H23 120.0
N1—C4—H4B 109.4 C24—C23—C22 120.0 (3)
C3—C4—H4A 109.4 C24—C23—H23 120.0
C3—C4—H4B 109.4 C23—C24—H24 119.9
H4A—C4—H4B 108.0 C23—C24—C25 120.2 (2)
N1—C5—H5 121.1 C25—C24—H24 119.9
N1—C5—C6 117.7 (2) C20—C25—H25 119.7
C6—C5—H5 121.1 C24—C25—C20 120.6 (2)
N2—C6—C5 117.2 (2) C24—C25—H25 119.7
N2—C6—C7 107.9 (2) N9—C26—S1 179.2 (3)
C7—C6—C5 134.9 (2) N10—C27—S2 179.6 (3)
N4—C7—C6 104.9 (2)
Fe1—N1—C4—C3 73.0 (2) C1—C3—C15—N5 177.6 (2)
Fe1—N1—C5—C6 −0.8 (3) C2—C3—C4—N1 55.2 (3)
Fe1—N2—N3—N4 167.35 (16) C2—C3—C15—N5 −63.3 (3)
Fe1—N2—C6—C5 11.4 (2) C4—N1—C5—C6 167.84 (19)
Fe1—N2—C6—C7 −171.13 (15) C4—C3—C15—N5 60.8 (3)
Fe1—N5—C15—C3 −59.1 (3) C5—N1—C4—C3 −95.4 (2)
Fe1—N5—C16—C17 −1.8 (3) C5—C6—C7—N4 177.4 (2)
Fe1—N6—N7—N8 166.53 (16) C6—N2—N3—N4 0.0 (2)
Fe1—N6—C17—C16 10.7 (3) C7—N4—C8—C9 −79.0 (3)
Fe1—N6—C17—C18 −169.65 (16) C8—N4—C7—C6 −178.2 (2)
N1—C5—C6—N2 −7.7 (3) C8—C9—C10—C11 177.6 (3)
N1—C5—C6—C7 175.7 (2) C8—C9—C14—C13 −176.8 (3)
N2—N3—N4—C7 0.4 (3) C9—C10—C11—C12 −0.5 (5)
N2—N3—N4—C8 178.3 (2) C10—C9—C14—C13 −0.3 (5)
N2—C6—C7—N4 0.6 (3) C10—C11—C12—C13 −1.3 (6)
N3—N2—C6—C5 −177.83 (19) C11—C12—C13—C14 2.3 (6)
N3—N2—C6—C7 −0.4 (3) C12—C13—C14—C9 −1.5 (5)
N3—N4—C7—C6 −0.6 (3) C14—C9—C10—C11 1.3 (5)
N3—N4—C8—C9 103.5 (3) C15—N5—C16—C17 175.0 (2)
N4—C8—C9—C10 37.7 (4) C15—C3—C4—N1 −68.1 (3)
N4—C8—C9—C14 −146.0 (3) C16—N5—C15—C3 124.5 (2)
N5—C16—C17—N6 −6.0 (3) C16—C17—C18—N8 179.7 (3)
N5—C16—C17—C18 174.4 (3) C17—N6—N7—N8 0.4 (2)
N6—N7—N8—C18 −0.4 (3) C18—N8—C19—C20 −102.2 (3)
N6—N7—N8—C19 −177.12 (19) C19—N8—C18—C17 176.5 (2)
N6—C17—C18—N8 0.1 (3) C19—C20—C21—C22 −175.6 (2)
N7—N6—C17—C16 180.0 (2) C19—C20—C25—C24 175.1 (2)
N7—N6—C17—C18 −0.4 (3) C20—C21—C22—C23 0.0 (4)
N7—N8—C18—C17 0.1 (3) C21—C20—C25—C24 −1.9 (3)
N7—N8—C19—C20 74.0 (3) C21—C22—C23—C24 −1.2 (4)
N8—C19—C20—C21 −166.2 (2) C22—C23—C24—C25 0.8 (4)
N8—C19—C20—C25 16.8 (3) C23—C24—C25—C20 0.8 (4)
C1—C3—C4—N1 174.4 (2) C25—C20—C21—C22 1.5 (4)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C20–C25 ring.

D—H···A D—H H···A D···A D—H···A
C18—H18···Cgi 0.93 2.42 3.330 (3) 167
C19—H19A···N7ii 0.97 2.38 3.311 (3) 162
C21—H21···C27ii 0.93 2.89 3.603 (3) 134
C7—H7···S1iii 0.93 2.87 3.755 (3) 159
C4—H4B···N10iii 0.97 2.69 3.617 (3) 160
C4—H4B···C27iii 0.97 2.75 3.709 (3) 171

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z.

Funding Statement

This work was funded by H2020 Marie Skłodowska-Curie Actions grant 734322.

References

  1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  2. Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
  5. El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gural’skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954. [DOI] [PubMed]
  8. Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.
  9. Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019.
  10. Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.
  11. Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880. [DOI] [PubMed]
  12. Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818. [DOI] [PubMed]
  13. Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140. [DOI] [PubMed]
  14. Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.
  15. Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.
  16. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  17. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.
  19. Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.
  20. Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.
  21. Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. [DOI] [PubMed]
  22. Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432. [DOI] [PubMed]
  23. Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265. [DOI] [PubMed]
  26. Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
  27. Suleimanov, I., Kraieva, O., Costa, J. S., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032.
  28. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. The University of Western Australia.
  29. Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem., Int. Ed. https://doi.org/10.1002anie.202006453 [DOI] [PubMed]
  30. Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Polshin, E. V. & Antipin, M. Y. (2001). Polyhedron, 20, 2721–2733.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012608/wm5580sup1.cif

e-76-01661-sup1.cif (395.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012608/wm5580Isup2.hkl

e-76-01661-Isup2.hkl (411.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020012608/wm5580Isup3.cdx

CCDC reference: 2032292

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES